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In cats and humans, several physiological and environmental factors have 
been shown to alter the gut microbiota of healthy individuals. Cats share 
several diseases with humans such as inflammatory bowel diseases and low-
grade intestinal T-cell lymphoma. The physiopathology of these chronic 
enteropathies is poorly understood but may involve disequilibrium of the gut 
microbiota composition and disruption of normal microbiome activity profiles. 
These disorders are increasingly diagnosed in the feline species due to improved 
medicalization and easier access to endoscopy in veterinary practice. This 
review addresses the current data on the gut microbiota of cats in health and 
in chronic enteropathies. Such functional analysis will help the advancement of 
innovative diagnostic tools and targeted therapeutic strategies.
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1 Introduction

Domestic cats, residing in 29% of North American households in 2022, hold a 
distinguished place as beloved pets (Scott Nolen, 2022). Their owners maintain elevated 
expectations for their healthcare. In feline medicine, chronic enteropathies (CE), comprising 
Inflammatory Bowel Diseases (IBD) and Low-Grade Intestinal T-Cell Lymphoma (LGITL), 
are major concerns with increasingly high incidence (Marsilio, 2021). Both incurable diseases 
display challenging diagnosis and available treatments have significant adverse effects 
(Marsilio, 2021). Moreover, LGITL is thought to evolve toward higher-grade lymphoma 
despite appropriate treatment in some cats (Wright et al., 2019). Therefore, there is still a need 
to understand the pathophysiology of feline CE to set out new therapeutic strategies. Many 
spontaneous feline diseases have their counterpart in human medicine, which highlights their 
interest in comparative pathology. Recently, LGITL has been described as an interesting model 
of indolent T-cell lymphoproliferative disorder of the gastrointestinal tract (ITLPD-GI) in 
humans (Freiche et al., 2021). Advances in this biomedical field are likely to benefit to feline 
patients but also to provide new insights into human diseases.
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Like humans, the digestive tract of cats hosts a myriad of 
microorganisms whose links with physiology and health have been 
established. In humans, the gut microbiota interacts with the 
immune system and has been identified as a major player in the 
pathogenesis of IBD, comprising Crohn’s disease (CD) and 
ulcerative colitis (UC), and various gastrointestinal neoplasms 
including gastric mucosa-associated lymphoid tissue lymphoma 
(Nakamura et al., 1998; Nishida et al., 2018). Pet cats share the 
domestic environment of their owners and are therefore exposed 
to the same environmental factors. Additionally, they are in daily 
contact with their owners and share resting and cooking areas, 
which may promote the fecal-oral transmission of commensals and 
enteropathogenic bacteria in both directions, as suspected with 
Clostridioides difficile (Alves et al., 2022). Cat ownership has been 
shown to induce bacterial fluxes in humans and influence owners’ 
gut microbiota composition and function (Du et al., 2021).

The domestic cat (Felis silvestris catus) is a strict carnivore but 
can also digest, absorb and metabolize dietary carbohydrates. 
Despite this major difference with the human dietary regimen, 
feline models remain relevant for the study of the gut microbiota 
and intestinal health in humans, regarding the wide variation in 
meat consumption in human populations and the possible 
association between excessive intake of red meat or overprocessed 
meat and colorectal neoplasms (Farvid et al., 2021). The special 
dietary requirements of cats impact the profile of their core gut 
microbiome (Ganz et al., 2022). Several recent studies have focused 
on the composition of the feline gut microbiota in health and CE 
(Garraway et al., 2018; Marsilio et al., 2019; Ganz et al., 2022). 
Therefore, we aim in this review to discuss the links between gut 
microbiota, intestinal inflammation and the development of IBD 
and LGITL in cats, in order to highlight the gaps in knowledge and 
propose future research perspectives.

2 Gut microbiota in healthy cats

The cat’s gut microbiota is teeming with a variety of 
microorganisms including bacteria, fungi, viruses, and protozoa. 
Bacteria overwhelmingly dominate the cats’ microbiota, comprising 
roughly 98% of the total population and playing crucial roles in 
maintaining host health (Pilla and Suchodolski, 2021). The role of the 
fungal population, or mycobiota, and its contribution to health and 

disease in the feline gut remains elusive (Tay et al., 2022), as well as the 
implication of protozoa and viruses in the microbiota community.

When examining the bacterial composition, several studies of the 
feline gut microbiota have identified five phyla: Actinobacteria, 
Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria (Ritchie et al., 
2008, 2010; Tun et al., 2012; Ganz et al., 2022). Two additional studies 
recovered only four of these bacterial phyla and failed to detect 
Fusobacteria and Proteobacteria, respectively (Desai et al., 2009; Handl 
et al., 2011). The five bacterial phyla identified in cats are shared with 
the core microbiome of humans and pet dogs (Arumugam et al., 2011; 
You and Kim, 2021). In cats, two studies have identified the 
Bacteroidetes/Chlorobi group as prominent (Tun et al., 2012; Ganz 
et  al., 2022), with Bacteroides species such as B. vulgatus, 
B. thetaiotaomicron, B. fragilis and Porphyromonas gingivalis being the 
most common and widespread (Tun et al., 2012). Firmicutes also prevail 
(Ritchie et al., 2008, 2010; Desai et al., 2009; Handl et al., 2011), with 
Clostridia being the most abundant class, along with Erysipelotrichia, 
Negativicutes (Ganz et al., 2022), Bacilli, Mollicutes, and Lactobacillales 
(Tun et al., 2012). Lactobacillales comprise the most important probiotic 
bacteria of the cat, dog and human gut microbiome, and has great 
beneficial effects on their intestinal health (Strompfová et al., 2017; Fusi 
et al., 2019; Rastogi and Singh, 2022). In the widest study aimed at 
establishing a comprehensive dataset for the “core microbiota” in 161 
North American domestic cats, the taxonomic analysis identified 30 
major genera belonging to the five predominant phyla listed above 
(Ganz et al., 2022). Detected genera were noted in over 55% of the 
healthy cat population and comprised Prevotella, Bacteroides, Collinsella, 
Catenibacterium, Blautia, Faecalibacterium and Megasphaera which 
displayed the highest relative abundance. Of these genera, several feline 
gut microorganisms were associated with short-chain fatty acid (SCFAs; 
e.g., acetate, butyrate, and propionate) synthesis, such as 
Faecalibacterium spp. (Ganz et al., 2022). SCFAs represent the main 
metabolites produced by gut microbiota fermentation of dietary fibers 
and non-digestible carbohydrates. They serve as key energy sources for 
the host epithelium, improve motility, and exert immunomodulatory 
and anti-inflammatory effects (Yao et al., 2022).

Discrepancies between studies are noticeable and may be partly 
attributable to various methodologies (Table 1). Most studies rely on 
sequence-based methods whose results may differ depending on the 
choice of bacterial targets, such as 16S rRNA and groEL (or cpn60) 
gene sequences. Both genes have been shown to be relevant barcodes 
for bacteria, with groEL providing a more robust target for 

TABLE 1 Methodology of studies assessing the gut microbiota composition in healthy adult cats.

Study Animals Samples Microbiota analysis method

Desai et al. (2009) 9 pet cats Feces Cpn60 gene sequencing

Ganz et al. (2022) 161 pet cats Feces 16S rRNA gene sequencing

Universal Primers 505F/816R

Handl et al. (2011) 12 pet cats Feces 16S rRNA gene pyrosequencing

Universal primers 28F/519R

Ritchie et al. (2008) 5 colony cats Intestinal 

fragments

16S rRNA gene sequencing

Primers 342F/786R

Ritchie et al. (2010) 27 pet cats Feces 16S rRNA gene sequencing

Universal primers 341F/786R + Group-specific primers for Bifidobacterium and Lactobacillus spp.

Tun et al. (2012) 5 pet cats Feces Shotgun 454-pyrosequencing
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species-level identification (Links et al., 2012). Within the numerous 
studies using 16S rRNA gene sequencing, various amplicon primers, 
sequencing technologies and bioinformatics tools are also susceptible 
to impact the assessment of microbial composition (Clooney et al., 
2016; O’Sullivan et al., 2021). Of note, group-specific primers were 
more effective than universal bacterial primers for detection of 
Bifidobacterium and Lactobacillus spp. in the feces of healthy pet cats 
(Ritchie et al., 2010). More advanced techniques such as shotgun 
metagenomic sequencing are better able to detect less abundant taxa 
in bacterial communities, and the genera missed by sequence-based 
methods may carry biologically relevant function (Durazzi et al., 
2021). The shotgun metagenomic approach has only been performed 
in five client-owned healthy cats, thus the representativeness of these 
results for the overall pet cat population is questionable (Tun et al., 
2012). A dysbiosis index has been established to evaluate the balance 
of intestinal microbiota by measuring the fecal abundances of 
Bacteroides, Bifidobacterium, Clostridium hiranonis, Escherichia coli, 
Faecalibacterium, Streptococcus, and Turicibacter by quantitative PCR 
techniques (Sung et al., 2022). It provides a targeted assessment of 
these bacterial groups that have been determined to be frequently 
altered in chronic enteropathies or after antibiotic therapies. Thus it 
depicts the extent of intestinal dysbiosis, and the abundance of 
Clostridium hiranonis also predicts the ability of the intestinal 
microbiota to convert primary bile acids (Sung et al., 2022). It is now 
available in routine clinical practice and is also frequently used in the 
research setting, although it fails to provide in-depth description of 
the composition of the fecal microbiota. Besides biases introduced by 
methodological differences, batch effect correction is rarely addressed 
in the analysis of the gut microbiota from healthy cats. Regarding 
sample collection and storage, most studies assessed the fecal 
bacterial community and some surveys were based on the collection 
and mailing of samples by owners, with risks of inconsistent technical 
lead times (Ganz et  al., 2022). There is a need to reinforce the 
robustness of the data produced by defining pre-analytical and 
analytical standards. The feline species lacks a reference gut 
microbiome gene catalog established by whole genome metagenomics 
studies, as described in humans and pet dogs (Coelho et al., 2018; 
Kim et  al., 2021). This is a major shortcoming for taxonomic 
assignment and functional characterization of the healthy feline gut 
microbiota. It is worth noting that gut microbes are far from being 
inert and are constantly evolving in response to the different changes 
in environment and physiology. While such a community plays an 
essential role in cats’ health, it still can be influenced by many factors 
including age, dietary habits and exposure to xenobiotics. In this 
regard, several studies assessed the effect of age on the gut microbiota 
composition and provided inconsistent results, likely caused by 
different methodologies, including bacterial culture, 16S rRNA gene 
sequencing and shotgun sequencing technologies conducted on the 
feces of colony or client-owned cats (Deusch et al., 2015; Masuoka 
et al., 2017; Bermingham et al., 2018; Li et al., 2022). For example, the 
shifts in abundances of Bifidobacteria and Lactobacillus varied, but 
both bacterial genera were not found to be predominant in the feline 
gut microbiota, unlike dogs and humans (Masuoka et  al., 2017; 
Bermingham et al., 2018). Furthermore, the impact of macronutrient 
composition of pet foods on gut microbiota is a current area of 
interest. Regarding the effects of dietary complex carbohydrates, two 
studies conducted on four experimental and 10 privately-owned 
healthy adult cats respectively, failed to identify significant shifts in 

microbial communities when adding dietary fiber to the diet (i.e., 
cellulose, fructo-oligosaccharides (FOS), pectin, and inulin) and 
showed high inter-individual variability in the response to nutritional 
modifications (Barry et al., 2012; Garcia-Mazcorro et al., 2017). In a 
separate study involving eight experimental cats, adding dietary 
supplements of short-chain FOS, galacto-oligosaccharides (GOS) or 
a combination of both prebiotics resulted in increased levels of 
cultured Bifidobacterium spp. (Kanakupt et al., 2011), which is known 
to be  associated with gut health (O’Callaghan and van Sinderen, 
2016). Cats consuming the diet enriched with mixed short-chain FOS 
and GOS showed significantly greater fecal concentrations of butyrate 
and valerate, and a trend toward greater fecal concentrations of 
acetate (Kanakupt et al., 2011). Of note, Bifidobacteria have been 
shown to produce acetate, thus being involved in the SCFAs-mediated 
favorable effects on host gastrointestinal health (Fukuda et al., 2011). 
This experimental dietary intervention mimics the supplementation 
with prebiotic fibers that may be implemented in pet cats suffering 
from gastrointestinal signs. On the other hand, feeding 12 
experimental cats with a raw meat-based diet was found to raise the 
levels of Clostridium and Fusobacterium in their feces (Butowski 
et al., 2019). Of note, Fusobacterium has been incriminated in the 
development of cancer in cats and humans (Kostic et  al., 2012; 
Garraway et al., 2018). Addition of plant-based fiber to this high-
protein diet induced the predominance of Prevotella (similarly to a 
control industrial pet food) and a group of unclassified 
Peptostreptococcaceae (Butowski et al., 2019). Available data report 
that Peptostreptococcaceae have been involved in the development of 
various human infections within the digestive tract (Tannock et al., 
2012; Wei et al., 2019). However, this bacterial family has been shown 
to be prominent in eight experimental healthy cats, particularly when 
fed canned diets, and does not seem to exhibit deleterious effects 
(Bermingham et  al., 2018). Most of the aforementioned dietary 
interventions have been conducted on small numbers of experimental 
animals and relied on sequence-based methodologies to assess the 
gut microbiota. Further studies should be  carried out in larger 
populations of pet cats, and involve the use of whole-genome shotgun 
sequencing with functional analyses to ensure the consistency and 
the relevance of these findings. Recent evidence has also shown that 
lifestyle influences the feline gut mycobiota composition, with indoor 
cats displaying more Ascomycota, while outdoor cats show more 
Basidiomycota. Nevertheless, the presence of the genus Peniophorella 
has been observed in both indoor and outdoor cats and stands out as 
the dominant component of the mycobiota (Tay et  al., 2022). 
Understanding the influence of different factors on microbial 
communities would be a prerequisite to better decipher the molecular 
mechanisms involved in the symbiosis that marks holobiont health 
(Masuoka et al., 2017; Whittemore et al., 2019; Pilla and Suchodolski, 
2021). The dysbiosis index has been shown to remain stable over 2 
months in 17 indoor adult pet cats exempt from any living or dietary 
changes throughout the follow-up period, whereas it showed large 
shifts in eight client-owned cats receiving antibiotics and in 68 client-
owned cats with IBD (Sung et al., 2024). Similar prospective studies 
including monitoring of the dysbiosis index and deeper assessment 
of the gut microbiota composition and metabolic activities during 
nutritional interventions would be  desirable to document the 
impact of physiological factors, that are thought to be minimal 
when compared with dysbiotic alterations associated with 
pathological states.
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3 Gut microbiota in feline 
spontaneous IBD and LGITL

Chronic inflammation is thought to arise in genetically susceptible 
individuals, due to complex interactions between the intestinal 
immune system, exposome factors (mainly dietary components) and 
the microbiome (Marsilio, 2021). In populations of pet cats with 
chronic gastrointestinal signs (i.e., vomiting and/or diarrhea of at least 
2–3 weeks’ duration) that did not benefit from exhaustive 
characterization, bacterial diversity of the fecal microbiota was shown 
to be decreased when compared with healthy individuals (Suchodolski 
et al., 2015; Kathrani et al., 2022). The fecal microbiota of 15 partially 
characterized colony cats with chronic diarrhea, in whom only 
extraintestinal and infectious/parasitic disorders were ruled out, was 
predominantly composed of bacteria belonging to the phyla 
Firmicutes (with prevailing classes Bacilli and Clostridia), 
Bacteroidetes (with prevailing classes Bacteroidia and Flavobacteria), 
Fusobacteria, Proteobacteria, Tenericutes and Actinobacteria, in 
decreasing order (Ramadan et al., 2014). Of note, Tenericutes are not 
major components of the healthy feline gut microbiota and are 
predominantly commensals or obligate parasites in humans and 
domestic animals. They are primarily known for their Mollicutes 
clade, housing opportunistically pathogenic genera like Mycoplasma, 
Ureaplasma, and Acholeplasma (Trachtenberg, 2005). Alterations in 
microbial communities from the phylum Firmicutes have been 
further described in comparison to healthy cats: pet cats with chronic 
gastrointestinal signs exhibited greater abundance of bacteria from the 
class Erysipelotrichia and the genera Lactobacillus and Clostridium, 
and a decrease in the genus Faecalibacterium (Suchodolski et al., 2015; 
Kathrani et al., 2022). In humans, bacteria from the Erysipelotrichiaceae 
family have been correlated with gastrointestinal inflammation and 
metabolic disorders (Labbé et al., 2014). Faecalibacterium spp. are also 
commonly decreased in fecal and mucosal samples from human 
patients with IBD. For instance, Faecalibacterium prausnitzi, a strain 
that has been shown to produce butyrate and exert anti-inflammatory 
properties, is commonly described as a general health biomarker (Cao 
et al., 2014). Functionally, qualitative changes in the fecal microbiota 
of cats with chronic gastrointestinal signs were associated with 
significant alterations in bacterial gene contents referring to the 
metabolism of carbohydrates, vitamins, amino acids and xenobiotics 
(Suchodolski et al., 2015). All these results should be treated with 
caution, because a more comprehensive characterization of these 
studied feline populations would be highly desirable, with exhaustive 
exclusion of extraintestinal illnesses, infectious or parasitic diseases 
and focal gastrointestinal disorders, with final demonstration of 
inflammatory or low-grade lymphomatous intestinal infiltration.

Regarding the fecal microbiota of privately-owned cats with 
histologically confirmed IBD, dysbiotic alterations associated with the 
disease (Figure 1) are less documented than in humans and dogs. In 
feline IBD, overall bacterial diversity was shown to be decreased in 
comparison to healthy cats, but specific patterns of dysbiosis could 
not be identified in these 13 privately-owned diseased cats (Marsilio 
et al., 2019). Increased populations of mucosa-associated bacteria, 
assessed by a more targeted fluorescence in situ hybridization (FISH) 
approach, have been associated with clinical disease activity and 
duodenal inflammation evaluated by histopathology and cytokine 
mRNA profiles (Janeczko et  al., 2008). Another molecular-based 
enumeration study using FISH in feline feces showed increased 

numbers of sulfate-reducing bacteria from the genus Desulfovibrio 
spp., and decreased numbers of bacteria from the genera 
Bifidobacteria spp. and Bacteroidetes spp. in colony cats with IBD 
when compared with healthy colony cats (Inness et  al., 2007). 
However, studies using advanced techniques for in-depth assessment 
of the gut microbiota in sufficiently large populations of cats with IBD 
are still lacking. From a functional standpoint, untargeted 
metabolomic analysis found that metabolic changes identified in cats 
with IBD were similar to humans and other animal models with 
IBD. They comprised increased fecal amino-acids consistent with 
malabsorption, increased fecal arachidonate, omega-3 fatty acids and 
simple sphingolipids possibly accompanying intestinal inflammation, 
and decreased fecal indole derivatives attributed to intestinal dysbiosis 
(Marsilio et al., 2021).

A pathogenic theory that currently prevails in cats is that of a 
continuum between IBD and LGITL, given the common coexistence 
of inflammatory and lymphomatous infiltrations, and frequent 
previous history of IBD in animals with LGITL (Marsilio et al., 2023). 
Cats with LGITL have been shown to exhibit lower fecal bacterial 
diversity than healthy cats, and a trend toward lower alpha-diversity 
than cats with IBD based on 16S rRNA gene sequencing (Figure 1) 
(Marsilio et al., 2019). This study comparing feces from 14 pet cats 
with LGITL with feces from 38 privately-owned healthy cats and 13 
pet cats with IBD failed to identify significant differences in microbial 
communities between groups, probably due to low numbers of 
animals (Marsilio et al., 2019). Targeted bacterial quantification based 
on FISH in endoscopic or laparoscopic gastrointestinal biopsies 
identified increased numbers of mucosa-associated Fusobacterium 
spp. and Bacteroides spp. in the ileum and increased numbers of 
mucosa-associated Fusobacterium spp. in the colon of 14 pet cats with 
histologically confirmed LGITL when compared with 14 pet cats with 
histologic IBD (Garraway et al., 2018). The abundance of Fusobacteria 
spp. in adherent mucus showed the highest correlation with the 
number of CD11b+ myeloid cells and with the up-regulation of NF-κB 
expression in the gastrointestinal mucosa of cats with LGITL, when 
compared with cats with IBD (Garraway et al., 2018). A more recent 
study based on 16S rRNA gene sequencing also identified increased 
abundance of bacteria from the Fusobacteriaceae family in seven pet 
cats with histologically diagnosed LGITL compared with 13 pet cats 
with histologic IBD (Benvenuti et al., 2024). Taken together, these 
findings open the door to a possible implication of Fusobacterium spp. 
in the carcinogenesis of LGITL. Of note, Fusobacterium has also been 
incriminated in carcinogenesis in humans with colorectal neoplasia 
(Kostic et al., 2012). Functional alterations related to dysbiosis were 
found to be more severe in 11 pet cats with LGITL than in 11 pet cats 
with IBD, and fecal concentrations of polyunsaturated fatty acids were 
shown to discriminate between both types of feline CE (Marsilio et al., 
2021). Lower fecal concentrations of indolelactate, a microbial indole 
catabolite of tryptophan, were also recovered in 31 cats with LGITL 
when compared with 44 cats with IBD (Barko et al., 2023). These data 
being scarce, further studies are required to determine whether some 
characteristics of the fecal microbiota and its metabolic activities may 
predict the diagnosis of feline IBD or LGITL, and improve therapeutic 
interventions. In humans, the ITLPD-GI is a recently described entity 
recognized as a low-grade, clonal, T-cell lymphoproliferative neoplasm 
arising in the digestive tract (Sanguedolce et al., 2021). It is a rare 
disease with a protracted clinical course, whose diagnosis is 
particularly challenging due to heterogeneous histological and 
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molecular features. The relationship between IBD and ITLPD-GI in 
humans remains unclear and no data are available regarding the 
implication of gut microbiota in the development of ITLPD-
GI. LGITL being a frequent disorder in cats, studying its pathogenesis 
may provide new insights into the pathogenesis of human ITLPD-GI.

As a whole, the state of knowledge concerning alterations in the 
intestinal microbiota of cats with CE remains insufficient. Studies are 
frequently underpowered with small populations of spontaneously ill 
privately-owned cats (Table  2). Thus, cats with histologically 
confirmed IBD and LGITL are sometimes grouped together into a 
broader group of cats with CE to characterize the gut microbiota 
composition in comparison with healthy cats. A 16S rRNA gene 
sequencing approach identified a distinct pattern of dysbiosis in 27 pet 
cats with CE, with increased abundances of facultative anaerobes from 
the Enterobacteriaceae and Streptococcaceae families, and decreased 
abundances of obligate anaerobic members of the phyla Firmicutes 
(Ruminococcaceae and Turicibacteraceae families), Actinobacteria 
(Bifidobacterium genus) and Bacteroidetes (Bacteroides plebius) 
(Marsilio et al., 2019). A similar study conducted in 16 pet cats with 
histologically confirmed CE recovered increased abundances of the 
phylum Proteobacteria, the orders Enterobacterales and 
Lactobacillales, the family Enterobacteriaceae and the genus 
Escherichia Shigella, and decreased abundances of the phylum 
Bacteroideta and the order Peptococcales when compared with 14 
privately-owned healthy pet cats (Miller et al., 2023). Some of these 
shifts are similar to those identified by more robust studies conducted 
in humans with IBD, such as decreased abundances of obligate 
anaerobes from the Firmicutes and Bacteroidetes phyla (Frank et al., 

2007), and increased abundance of facultative anaerobes from the 
Enterobacteriaceae family (Khorsand et al., 2022). Regarding more 
targeted molecular methods, the dysbiosis index based on the 
quantification of the abundances of seven select bacterial groups was 
able to discriminate between groups of 68 cats with CE and 80 healthy 
pet cats, with 76% of cats with CE presenting increased dysbiosis 
index (Sung et al., 2022). This biomarker has the advantage of being 
accessible for the diagnosis of dysbiosis in routine clinical practice. 
However, it provides partial assessment of the gut microbiota 
composition and does not bring better insights into the interactions 
between gut microbiota and feline CE. Metabolic alterations 
resembling those described in human IBD and relating to tryptophan, 
arachidonic acid, glutathione and lipids have also been underlined in 
pet cats with CE (Marsilio et al., 2021; Barko et al., 2023; Miller et al., 
2023; Sung et al., 2023). Additional studies are mandatory to relate gut 
microbiota compositions and metabolic alterations.

4 Modulation of the gut microbiota in 
cats with CE

Interventional dietary trials (unspecified composition) in 15 
experimental cats with chronic diarrhea showed significant 
correlations between improvement of fecal consistency (assessed by 
fecal score) and fecal bacterial abundance of the phyla Actinobacteria 
(i.e., genus Slackia and Collinsella), Proteobacteria (i.e., Campylobacter 
upsaliensis, the genus Raoultella, and unidentified genus of the family 
Succinivibrionaceae), and Firmicutes (unidentified genus of the family 

FIGURE 1

Overview of major changes in the gut microbiota composition and activities in cats with chronic enteropathies (inflammatory bowel diseases and low-
grade intestinal T-cell lymphoma). Up and down arrows represent increases and decreases, respectively. BA, bile acids; IBD, inflammatory bowel 
diseases; LGITL, low-grade intestinal T-cell lymphoma; PUFA, polyunsaturated fatty acid.
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Lachnospiraceae) determined by 16S rRNA 454-pyrosequencing 
(Ramadan et al., 2014). Feeding a hydrolyzed protein diet to 36 client-
owned cats with suspected or histologically confirmed CE induced a 
decrease in alpha-diversity and an increase in the abundance of 
Bifidobacterium assessed with a 16S rRNA sequencing approach 
(Kathrani et  al., 2022). Various Bifidobacteria strains enhance 
intestinal barrier functions and regulate cytokine network, reducing 
therefore intestinal inflammation (Caviglia et al., 2020). Cats that did 
not respond to a hydrolyzed protein regimen showed higher baseline 
alpha-diversity and increased abundance of Oscillobacter and 
Desulfovibrionaceae than responders (Kathrani et al., 2022).

Data regarding the use of probiotics in cats with CE are scarce. In 
a trial conducted on eight pet cats from the same household suffering 
from chronic diarrhea, administration of Bacillus licheniformis-
fermented products improved fecal scores and decreased feline 
chronic enteropathy activity indexes in some individuals (Lee et al., 
2022). Changes in the bacterial composition of the gut microbiota 
were also described, with a decrease in the abundance of Clostridium 
perfringens and an increase in the abundance of Blautia spp., 
Ruminococcus torques and Ruminococcus gnavus (Lee et al., 2022). 
Oral fecal microbiota transplant capsules were prospectively 
administered to 46 pet cats with chronic gastrointestinal signs, leading 
to partial stool donor bacterial engraftment (Rojas et al., 2023). The 
fecal microbiota of responders tended to become more similar to the 
fecal microbiota of healthy cats (Rojas et al., 2023). All these data 

determined by 16S rRNA sequencing techniques must be interpreted 
cautiously because the underlying disorders were not fully investigated 
and the evolution of gastrointestinal inflammation was not assessed 
in these populations of cats with suspected CE.

5 Conclusion and future prospects

Chronic enteropathies are of increasing interest in companion 
animals, including in cats, given their challenging diagnosis and 
multifactorial nature. Recent evidence has questioned the role of the 
dysbiotic microbiota in such diseases. Still, only a few data are 
available at this point and it remains a field in its infancy. 
Characterization of the feline gut microbiota mainly relies on 
sequence-based approaches and lack more comprehensive evaluation 
of its composition and activities with deeper shotgun metagenomics 
studies. Thus, reference data regarding the gut microbiota of healthy 
cats are lacking. Studies of gut microbiota alterations in cats 
spontaneously suffering from CE rarely include a sufficient number 
of histologically confirmed cases of IBD or LGITL. Regarding 
therapeutic perspectives, microbiota modulation trials are frequently 
conducted on small populations of experimental animals and fail to 
sufficiently document beneficial effects on the pathological process 
of CE. Accordingly, it is now imperative to bear a clear picture of the 
relevance of the different contributing factors in the development of 

TABLE 2 Methodology of studies assessing the gut microbiota composition in cats with suspected or confirmed chronic enteropathies.

Study Animals Samples Microbiota analysis method

Benvenuti 

et al. (2024)

13 pet cats with IBD; 7 pet cats with LGITL Feces 16S rRNA gene sequencing

Primers for V3-V4 regions (341F/805R)

Garraway et al. 

(2018)

14 pet cats with IBD; 14 pet cats with LGITL Intestinal 

biopsies

Fluorescence in situ hybridization

Universal bacterial probe

Specific probes (Clostridium spp., Bacteroides/Prevotella group, Fusobacterium 

spp., Enterobacteriaceae, Helicobacter spp., Faecalibacterium spp.)

Inness et al. 

(2007)

11 colony cats with IBD; 34 healthy colony cats Feces Fluorescence in situ hybridization

Specific probes (Bifidobacterium spp., Bacteroides spp., C. histolyticum subgp., 

Lactobacillus-Enterococcus subgp., Desulfovibrio spp.)

Janeczko et al. 

(2008)

17 pet cats with IBD; 10 healthy colony cats Intestinal 

biopsies

Fluorescence in situ hybridization

Universal bacterial probe

Specific probes (Clostridium spp., Bacteroides/Prevotella group, 

Enterobacteriaceae, E. coli, Streptococcus spp., Helicobacter spp.)

Kathrani et al. 

(2022)

42 pet cats with suspected or confirmed CE; 14 

healthy pet cats

Feces 16S rRNA gene sequencing

Primers for V3-V4 regions

Marsilio et al. 

(2019)

13 pet cats with IBD; 14 pet cats with LGITL; 38 

healthy pet cats

Feces 16S rRNA gene sequencing

Primers for the V4 region (515F/806R)

Miller et al. 

(2023)

6 pet cats with IBD; 6 pet cats with LGITL; 6 pet 

cats with uncharacterized CE; 14 healthy pet cats

Feces 16S rRNA gene sequencing

Primers for V3-V4 regions

Ramadan et al. 

(2014)

15 colony cats with uncharacterized chronic 

diarrhea

Feces 16S rRNA gene pyrosequencing

Primers for the V1-V2 region

Suchodolski 

et al. (2015)

29 pet cats with uncharacterized chronic diarrhea; 

21 healthy pet cats

Feces 16S rRNA gene sequencing

Primers for the V4 region (515F/806R)

Sung et al. 

(2022)

68 pet cats with IBD or LGITL; 80 healthy pet cats Feces Quantitative polymerase chain reaction

Total bacteria + Specific groups (Bacteroides, Bifidobacterium, E. coli, 

Faecalibacterium, Fusobacterium, Streptococcus, Turicibacter, Blautia, Clostridium 

hiranonis)

CE, chronic enteropathy; IBD, histologically confirmed inflammatory bowel disease; LGITL, histologically confirmed low-grade intestinal T-cell lymphoma.
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feline CE and to gain a better mechanistic understanding of 
microbiota-host interactions in order to open the way to a more 
individualized medicine.
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