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Vibrio parahaemolyticus is a food-borne pathogen, which is often isolated 
from various seafood products. In this study, two kinds of bacteriophages was 
isolated from the offshore sediments samples. The anti-phage mutant strain 
were obtained after seventeen rounds of co-culture of Vibrio parahaemolyticus 
and mixed bacteriophage, multigroup sequencing was carried out on 
spontaneous the anti-phage mutant strain and the wild-type strain. We used 
the Sanger sequencing to verify the accuracy of the mutation sites. Biolog 
GEN III MicroPlates were used to evaluate the metabolic capacity of wild-type 
strains and the anti-phage mutant strain. In this study, we found that with flaG 
gene (slight homology to N terminus of multiple flagellins) mutated, making the 
bacteriophage unable to absorb to the cell surface of the host. And, the growth 
competitiveness of the anti-phage mutant strain is lower than the wild-type 
strain. These results indicated that the fitness cost, including loss of the growth 
competitiveness, constitutes a barrier to the prevalence of these defense 
mechanisms. And the selection pressure on different anti-phage strategies 
depends on the trade-off between mortality imposed by bacteriophages 
and fitness cost of the defense strategy under the given environmental 
conditions. In conclusion, this study provides valuable insights into the phage-
host interaction and phage resistance in Vibrio parahaemolyticus. Our study 
provided knowledge for the evolutionary adaption of bacteria against the 
bacteriophage, which could add more information to understand the phage 
resistance mechanism before applying in the industry.
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Introduction

Vibrio parahaemolyticus is a Gram-negative bacterium, which is widely distributed in 
seawater, seabed sediments and seafood, eating fresh food containing Vibrio parahaemolyticus 
will cause human infection (Raszl et al., 2016; Kim et al., 2017). Antimicrobial agents have 
been an important attempt at animal therapy since penicillin was discovered in the 1920s 
(Aarestrup and Wegener, 1999). In order to control the harm of Vibrio parahaemolyticus, 
antibiotics have to be  used in aquaculture. However, antibiotic-resistant Vibrio 
parahaemolyticus appeared because of the overuse of antibiotics and antibiotic-resistant Vibrio 
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parahaemolyticus will cause economic losses and threaten human 
health (Lesmana et al., 2001; Ottaviani et al., 2013; Elmahdi et al., 
2016; Kang et al., 2017). Therefore, it is necessary to find a new way to 
control the spread of antibiotic-resistant Vibrio parahaemolyticus.

With the emergence of drug-resistant bacteria, the antibacterial 
effect of antibiotics has failed and new antibiotics have not been found. 
Bacteriophage therapy has returned to people’s field of vision because 
bacteriophage destroys the potential of bacteria (Carlton, 1999; Lu and 
Collins, 2007, 2009; Sharma et  al., 2017; Jamal et  al., 2019). The 
mechanism of bacteriophage therapy is different from that of antibiotics, 
bacteriolytic bacteriophage can control and kill bacteria in the process 
of host proliferation (Yang et al., 2019). Importantly, these viruses were 
nontoxic to humans, bacteriophages cannot survive in the environment 
alone, and they are aimed at specific host strains (Chan et al., 2018). As 
early as 1919, bacteriophage therapy treated chickens infected with 
Salmonella gallinarum (Sulakvelidze et al., 2001). Bacteriophage therapy 
could control bacterial infections in fish, shrimp, and other aquatic 
products in aquaculture (Matamp and Bhat, 2019; Nikapitiya et al., 
2020). Karunasagar et al. (2007) have confirmed that bacteriophage 
therapy is an effective disease prevention method for aquaculture. 
Therefore, bacteriophage therapy is an eco-friendly treatment and can 
effectively kill Vibrio parahaemolyticus in aquaculture.

At present, there have been a lot of reports about the isolation and 
identification of Vibrio bacteriophage and its application in animals 
(Rong et al., 2014; Alagappan et al., 2016; Raszl et al., 2016; Kalatzis 
et al., 2018; Ahmmed et al., 2019; Ren et al., 2019; Liang et al., 2022). 
However, this method has not yet reached the stage of clinical 
application, and it is still in the exploratory stage (Plaza et al., 2018). 
Before clinical application, several limiting problems (such as effect, 
mode of administration, bacteriophage resistance, etc.) must be solved 
(Kalatzis et al., 2018). In this study, two lytic bacteriophage (PGA and 
PGB) infecting Vibrio parahaemolyticus, was isolated from a large-
scale aquaculture areas, and their morphological size, biological 
characteristics and genetic characteristics were identified. Then the 
inhibition of PGA and PGB on the growth of Vibrio parahaemolyticus 
were studied and the evolutionary trade-offs between bacteriophage 
and bacteria were studied. This identification and analysis will deepen 
our understanding of Vibrio bacteriophage and provide a theoretical 
basis for controlling Vibrio parahaemolyticus.

Materials and methods

Sample acquisition

A total of 10 bacterial strains were used in this study (Table 1). A 
strain of Vibrio parahaemolyticus (MCCC 1A16298) came from 
China Marine Culture Collection Center (MCCC). Other strains 
were provided by Third Institute of Oceanography of China State 
Oceanic Administration. All the bacteria were grown in 2216E liquid 
medium at 28°C.

Isolation and purification

The offshore sedimentse (100 g) was collected from an aquaculture 
areas. Bacteriophages were isolated using the double-layer agar plate 
method (Clokie, 2009). Briefly, approximately 100 g of offshore 

sedimentse was mixed with 300 mL of 2216E liquid culture and 50 mL 
of Vibrio parahaemolyticus and cultivated at 28°C, 180 rpm for 5 days. 
Samples (10 mL) were collected at 24, 72, and 120 h (Ding et al., 2020). 
After centrifugation, the supernatant was filtered with 0.22-μm 
membrane and diluted in sterile PBS. Then 100  μL of diluted 
supernatant was mixed with 100 μL of Vibrio parahaemolyticus by 
incubation at 28°C for 10 min. Finally, add 6 mL 2216E semisolid 
medium, pour it on the surface of hard agar plate and incubate 
overnight at 37°C. The plaque was purified 6 times until the plaque 
with the same size and shape was obtained to ensure the purity of the 
phage stock (Wang et al., 2019; Ding et al., 2020).

Observing bacteriophage morphology 
using TEM

To identify the morphological characteristics, the morphology of 
bacteriophage PGA and PGB were characterized using the 
TEM. Briefly, the purified bacteriophage supernatants were added 
onto the surface of a copper grid and adsorbed at room temperature 
for 15 min. The bacteriophages were negatively stained with 2% 
phosphotungstic acid in darkness for 30 s and the morphological 
characteristics were observed under TEM.

Bacteriophage whole genome sequencing 
and phylogenetic analysis

Genomic DNA of bacteriophage was extracted using a Genomic 
DNA Mini Kit. DNA concentration and purity were measured using 
NanoDrop One at the same time. ALFA-SEQ DNA Library Prep kit 
was used for Library-building operations. The library quality was 
assessed by the Qubit 4.0 Fluorometer and Qsep400 High-Throughput 
Nucleic Acid Protein Analysis system. Then prepared DNA samples 
were initially fragmented randomly to generate DNA fragments of 
desired lengths. The sticky ends resulting from the fragmentation were 
then repaired to create blunt ends. Subsequently, a specific adapter 

TABLE 1 Host range of bacteriophage vB_VpaS_PGA and vB_VpaS_PGB.

Strains Lytic activity of 
bacteriophage 
vB_VpaS_PGA

Lytic activity of 
bacteriophage 
vB_VpaS_PGB

Bacillus marisflavi − −

Bacillus vietnamensis − −

Pseudomonas 

xanthomarina

− −

Vibrio maritimus − −

Vibrio neocaledonicus − −

Bacillus cereus − −

Bacillus fengqiuensis − −

Bacillus idriensis − −

Oceanbacillus − −

Vibrio 

parahaemolyticus

+++ +++

− No lytic ability; + weak lytic ability; ++ lytic ability; +++ highly strong lytic ability.
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with a 3′ end containing a “T” base was ligated to the repaired DNA 
fragments by adding a base “A” at the 3′ end of the fragments. Finally, 
PCR amplification was performed to amplify the DNA fragments with 
the ligated adapters at both ends, completing the construction of the 
entire library. The constructed and qualified library was subjected to 
cluster preparation and sequencing on an Illumina Novaseq 6000 
platform. To control the quality, Soapnuke was employed to eliminate 
low-quality sequencing data and duplicate data generated during PCR 
(Chen et al., 2018). Then BWA removed the host sequences from the 
reads (Li and Durbin, 2009). The trimmed reads were assembled by 
metaviralspade. In addition, ORFs of the bacteriophage genome were 
predicted by the GeneMarks online server and ORF Finder (Stalin and 
Srinivasan, 2017). In addition, the GeneMarks online server and ORF 
Finder were used to predict ORFs in the bacteriophage genome (Stalin 
and Srinivasan, 2017). Translated ORFs are annotated against NCBI’s 
non-redundant protein database by BLASTP algorithm (E value < 
0.001). To predict the prophage and antibiotics resistance, we used the 
web tools VirulenceFinder (Joensen et al., 2014) and ResFinder server 
(Zankari et al., 2012). The two bacteriophage genomes were uploaded 
to the ViPTree for phylogenetic analysis (Nishimura et  al., 2017). 
We compared the bacteriophages with other reported bacteriophages 
by progressive Mauve algorithm (Darling et al., 2004; Li et al., 2022).

Phage ability and application analysis

In the prediction of bacteriophage hosts, BLASTn was used for 
preliminary analysis (Altschul et al., 1990), followed by the refinement 
of the analysis results using DeepHost (Ruohan et  al., 2022). The 
dependent database is NCBI taxonomy database1 (Federhen, 2012). 
Graphage was used to predict the lytic activity of bacteriophages (Wang 
et al., 2022) with its database derived from TemPhD2 (Zhang X. et al., 
2022; Zhang M. et al., 2022) and the NCBI RefSeq database3 (O’Leary 
et al., 2016). The genes conferring bacteriophage resistance against 
bacterial CRISPR systems were analyzed by MMseqs2 (Steinegger and 
Söding, 2017) and AcRanker (Eitzinger et al., 2020), and reference data 
was from Anti-CRISPRdb4 (Dong et al., 2018). MMseqs2 was also used 
to analyze the safety of bacteriophages (Steinegger and Söding, 2017). 
It involved searching the bacteriophage genome for antibiotic resistance 
genes and virulence genes in the CARD5 (McArthur et al., 2013) and 
VFDB6 (Chen et al., 2005) databases.

Host range of bacteriophage

The host range of bacteriophage PGA and PGB on the Vibrio 
parahaemolyticus strains was determined by the double-layer agar 
plate method for 10 bacteria strains (Table  1; Pujato et  al., 2017; 
Moodley et al., 2019; Feng et al., 2021). For this, 100 μL of Vibrio 
parahaemolyticus was added into 6 mL of 2216E semisolid medium, 

1 https://www.ncbi.nlm.nih.gov/taxonomy

2 https://phage.deepomics.org/

3 https://www.ncbi.nlm.nih.gov/refseq/

4 http://guolab.whu.edu.cn/anti-CRISPRdb/

5 https://card.mcmaster.ca/

6 http://www.mgc.ac.cn/VFs/main.htm

pour it on the surface of hard agar plate. After curing, 5 μL 
bacteriophage liquid was dripped onto the plate and incubated 
overnight at 37°C to allow cell lysis by the isolated bacteriophages, 
then their plaque formation is monitored. Check whether lysis has 
occurred, judging from the clarity of lysis: (−) no lysis; (+) weak lysis; 
(++) lysis; (+++) strong lysis (Liang et al., 2022).

One-step growth curve

The one-step growth experiment was carried out as mentioned 
above, and some modifications were made (Hagens and Loessner, 
2010). In brief, bacteriophage was mixed with Vibrio parahaemolyticus 
at MOI of 0.1 and incubated at 28°C for 20 min. After centrifugation 
at 8,000 rpm for 10 min to remove unabsorbed free bacteriophage, the 
mixture of bacteriophage and bacteria was washed with 2216E for 
three times. When they were harvested by centrifugation, the 
sediments of bacterial cells and bacteriophages were suspended with 
200 mL of fresh 2216E, and incubated with shaking at 28°C at a speed 
of 150 rpm. The moment was defined as t = 0 min, and samples are 
collected at intervals of 10 or 30 min (0, 10, 20, 30, 40, 50, 60, 90, and 
120 min) before the bacteriophage titer of each sample is determined 
by the double-layer method. The outbreak size was calculated as the 
ratio of the final count of bacteriophage particles released during the 
incubation period to the initial count of infected bacterial cells. 
One-step growth curves was drawn, and the incubation period, rising 
period and bacteriophage burst size of bacteriophage PGA and PGB 
were calculated as mentioned above (Pujato et al., 2015).

Bacteriophage lytic activity against Vibrio 
parahaemolyticus in liquid culture

The antibacterial effect of bacteriophage PGA and PGB against 
Vibrio parahaemolyticus was detected in a 96-well plate (Liang et al., 
2022). Briefly, bacteriophage was added into the Vibrio 
parahaemolyticus as MOI 0.01, 0.1, 1, and 10. Then 200 μL of the 
mixture was added into a 96-well plate. The blank group was 2216E 
liquid medium, and the control group was Vibrio parahaemolyticus. 
The 96-well plate was placed in the Microplate Reader (28°C, low 
speed) for culture. Starting from 0 min, the absorbance (OD600) was 
detected for each sample every 10 min.

Isolation of anti-phage mutant strain

To obtain Vibrio parahaemolyticus mutants resistant to 
bacteriophage, following the method described (Yang et al., 2020) as 
described previously with some modifications. Briefly, 100 μL of 
bacteriophage was added into 10 mL of exponential phase Vibrio 
parahaemolyticus (OD600 = 0.1), the culture was cultivated on a shaker 
at 28°C with shaking for 3 days and the OD600 was monitored.

Bacteriophage adsorption assays

Bacteriophage adsorption test was carried out by Vibrio 
parahaemolyticus (Le et al., 2014). Briefly, bacteriophage was added 
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with an MOI of 0.01 and adsorbed at 28°C for 20 min. Then the 
bacteriophage and bacteria mixture were washed three times with 
PBS. Finally, the morphology of mixture was characterized using the 
transmission electron microscopy (Yang et al., 2020).

Transcriptomics and analysis of 
differentially expressed genes

Genome Sequencing was performed by Magigene Biotechnology 
Co., Ltd. (Guangzhou, China). The expression level of transcripts were 
quantified by Salmon (Patro et al., 2017). DEGs were performed using 
the edgeR (Robinson et al., 2010). GO and KEGG enrichment analysis 
of DEGs were implemented by the clusterProfiler.

Growth assays in Biolog GEN III 
MicroPlates

Wild strains and the anti-phage mutant strain of Vibrio 
parahaemolyticus were analyzed by Biolog GEN III MicroPlates. The 
growth assays of bacteriophages PGA and PGB was tested according 
to the method described by Williams et al. (2017).

Statistical analysis

In order to calculate the average value and standard deviation of 
the numerical data of three independent experiments, the variance 
analysis method is used. The differences between treatments were 
analyzed by t-test.

Nucleotide sequence accession number

The complete genome sequence of bacteriophage PGA and PGB 
have been deposited in the GenBank database under the accession 
number PP001175 and PP001176. Transcriptional sequencing of 
Vibrio parahaemolyticus have been deposited in the BioProject 
database under the accession number PRJNA1055304.

Results

Isolation and authenticate of 
bacteriophage

vB_VpaS_PGA and vB_VpaS_PGB morphology
We induced and isolated two bacteriophage that could target the 

Vibrio parahaemolyticus, obtained from the offshore sedimentse of a 
large-scale aquaculture areas. Bacteriophage PGA and PGB formed 
clear plaques (about 1.6 mm in diameter of PGA and about 1 mm in 
diameter of PGB) on the double-layered agar plate (Figures 1A,B), 
indicating that the bacteriophage was lytic. After staining with 2% 
PTA negatively, the TEM image showed that PGA (Figure 1C) and 
PGB (Figure  1D) consist of an icosahedral head and a long 
non-contractile tail. The measurements of length of head, diameter 
of head, and length of contractile tails of PGA were 66.5 ± 2, 61 ± 1, 

and 100 ± 5 nm while those of PGB were 72.5 ± 2, 70.5 ± 1, and 
136 ± 5 nm. By the International Virus Classification and 
Nomenclature, bacteriophages PGA and PGB belong to the family 
Myoviridae, order Caudovirales (Lefkowitz et  al., 2018). 
Bacteriophages PGA and PGB belonged to the order Myoviridae and 
then were named as vB_VpaS_PGA (bacteriophage PGA) and vB_
VpaS_PGB (bacteriophage PGB).

Host range
To determine the host range of bacteriophages PGA and PGB, the 

double-layer agar plate method was used for 10 bacteria strains. As the 
results (Figure 1E; Table 1), bacteriophage PGA and PGB can only lyse 
Vibrio parahaemolyticus. These results indicated that these phages had 
a narrow host range which can specifically target Vibrio 
parahaemolyticus strains, suggesting the potential of the bacteriophage 
PGA and PGB to be a candidate for bacteriophage therapy (Liang 
et al., 2022).

Biological characteristics of vB_VpaS_PGA and 
vB_VpaS_PGB

The life cycle of bacteriophage, including the latent period, 
explosive phase, and plateau phase, was quantified using a one-step 
growth curve. As shown in Figure 1F, PGA was characterized by a 
short incubation period of 20 min, an outbreak period of 60 min and 
a burst size of 88.4 PFUs/infected cell, indicating that phages grew 
efficiently and rapidly after adsorption on the host surface. The latent 
period and burst period of phage PGB were 50 and 90 min, and the 
burst size was about 222.0 PFUs/infected cell (Figure 1G). Taking 
these together, bacteriophages PGA and PGB have a good lysis effect 
to Vibrio parahaemolyticus (Liang et al., 2022).

Phage genome analysis
In order to understand the Genetic characteristics of 

bacteriophages, the genome of bacteriophage PGA and PGB were 
sequenced and analyzed (Yang et al., 2020). Genomic characterization 
of the two bacteriophages indicated (Figures 2A,B) that the genomes 
of PGA and PGB are circular double-stranded DNA (of 40.27 and 
40.27 bp, respectively). The GC content of bacteriophage PGA 
(42.26%) was similar to PGB (42.28%; Li et al., 2022). In addition, the 
results (Table 2) show that although 63 and 62 ORFs were identified 
in PGA and PGB respectively, only 28.57% and 27.42% of the ORFs 
were assigned to specific functions (DNA replication, DNA 
metabolism, DNA packaging, and structure formation).

The potential applications of bacteriophages were analyzed via 
bioinformatics tools, and the results were visualized using TBtools-II 
in Figures 2C,D (Chen et al., 2023). The genome structure and ORFs 
of PGA and PGB were determined from previous whole genome 
sequencing analysis. BLASTn and DeepHost were utilized to analyze 
potential hosts for the bacteriophage and map them to their 
corresponding positions on the genome. From the analysis of 
bacteriophage lifestyle, it is evident that both PGA and PGB 
demonstrate pronounced bacteriolytic activity against their 
respective hosts. AcRanker and MMseq2 revealed a higher 
abundance of anti-CRISPR system genes in PGB compared to PGA, 
which exhibited a lower presence of such genes. Based on the 
alignment and comparison results using MMseqs2, the presence of 
virulence genes and antibiotic resistance genes was not detected in 
both PGA and PGB (as shown in the innermost circles in 
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FIGURE 1

Characterization of Bacteriophage. (A) Plaques of bacteriophage vB_VpaS_PGA. (B) Plaques of bacteriophage vB_VpaS_PGB. (C) Transmission electron 
microscopy of bacteriophage vB_VpaS_PGA. (D) Transmission electron microscopy of bacteriophage vB_VpaS_PGB. (E) Host range of bacteriophage 
vB_VpaS_PGA and vB_VpaS_PGB. (F) One-step growth curve of PGA. (G) One-step growth curve of PGB.
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Figures 2C,D). PGA and PGB meet the prerequisites (non-virulence 
genes, antimicrobial resistance genes or lysogenic genes) of 
bacteriophage therapy candidates, so they can be used as specific 

lytic bacteriophages (Bardina et  al., 2016; Li et  al., 2021). In 
summary, the analyses have demonstrated the strong lytic activity of 
PGA and PGB toward their host, as well as the absence of virulence 
genes and drug resistance genes, thus ensuring the genetic safety of 
these phages for applications. The bioinformatics-based predictions 
and validations contribute to assessing the security and efficacy of 
utilizing these two phage strains for therapeutic interventions.

We found that the phylogenetic analysis (Figures 2E,F) revealed 
that PGA and PGB had the closest relationship withVibrio 
bacteriophage vB_VpP_BT-1011 (NC_070774). The homology of 
PGA and PGB with vB_VpP_BT-1011 was 75.86% and 76.35% 
respectively, only two Vibrio bacteriophages appear in the 
corresponding phylogenetic tree and it shows that they are new 
species of this genus (Li et al., 2022).

FIGURE 2

Genomic characterization of bacteriophages. (A) Genomic characterization of vB_VpaS_PGA. Rings from the outermost to the center: (1) scale marks 
of the genome; (2) protein-coding genes on the forward strand; (3) protein-coding genes on the reverse strand; (4) genes on the forward strand (gray); 
(5) genes on the reverse strand (blue); (6) GC content; (7) GC skewProtein-coding genes are color coded according to their COG categories. 
(B) Genomic characterization of vB_VpaS_PGB. Rings from the outermost to the center: (1) scale marks of the genome; (2) protein-coding genes on 
the forward strand; (3) protein-coding genes on the reverse strand; (4) genes on the forward strand (gray); (5) genes on the reverse strand (blue); (6) 
GC content; (7) GC skewProtein-coding genes are color coded according to their COG categories. (C) Security and efficacy of vB_VpaS_PGA. Rings 
from the outermost to the center: (1) scale marks of genome; (2) the phage host predicted by analysis; (3) the lifestyle of phage (virulent or temperate); 
(4)anti-CRISPR protein region; (5) virulence factor and antibiotics resistance gene (not exist). (D) Security and efficacy of vB_VpaS_PGA. Rings from the 
outermost to the center: (1) scale marks of genome; (2) the phage host predicted by analysis; (3) the lifestyle of phage (virulent or temperate); (4)anti-
CRISPR protein region; (5) virulence factor and antibiotics resistance gene (not exist). (E) Phylogenetic analysis of vB_VpaS_PGA (circular). The 
phylogenetic tree was constructed using the Maximum Likelihood method with 1,000 bootstrap replicates. Amino acid sequences of the terminase 
large subunit. (F) Phylogenetic analysis of vB_VpaS_PGB (circular). The phylogenetic tree was constructed using the Maximum Likelihood method with 
1,000 bootstrap replicates. Amino acid sequences of the terminase large subunit.

TABLE 2 Basic genome characteristics of PGA, PGB.

Characteristic PGA PGB

Genome length (bp) 40.27 40.27

No. of GC content (%) 42.26 42.28

ORFs 63 62

Functionally annotated ORF 18 17

Virulence gene 0 0

Antimicrobial resistance gene 0 0
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Anti-phage mutant strain showed clear 
resistance to bacteriophage PGA/PGB

To assess the growth-inhibitory effect of bacteriophages PGA and 
PGB on Vibrio parahaemolyticus, the growth curve was measure by 
bacteriophage PGA/PGB. As the results (Figures 3A,B), when the MOI 
was 1 and 10 respectively, the growth of Vibrio parahaemolyticus was 
obviously inhibited within 8 h, and then increased exponentially. 
Meanwhile Vibrio parahaemolyticus regrew after 4 h at MOI of 0.01 and 
0.1. This means that Vibrio parahaemolyticus regrows after adding single 
bacteriophage. Then we determine the growth-inhibitory effect of the 
mixed bacteriophage on Vibrio parahaemolyticus. The results (Figure 3C) 
again revealed spontaneous mutation of Vibrio parahaemolyticus 
occurred during co-culture. Based on the bacteriophage co-culture assay, 

we hypothesized that spontaneous mutation of Vibrio parahaemolyticus 
may lead to the inhibition of bacteriophage adsorption. In order to prove 
this hypothesis, the anti-phage mutant strain were obtained after 17 
rounds of co-culture of Vibrio parahaemolyticus and mixed 
bacteriophage. The anti-phage mutant strain was designated as the anti-
phage mutant strain VP-17. Then whether the bacteriophage was 
adsorbed on Vibrio parahaemolyticus was observed by transmission 
electron microscope. The results (Figures  4A–D) confirmed that 
spontaneous mutation of Vibrio parahaemolyticus result in the inhibition 
of bacteriophage adsorption.

Genomic analysis of differences between 
the wild-type strain and the anti-phage 
mutant strain

To determine the genomic changes associated with bacteriophage 
adsorption, multigroup sequencing was carried out on spontaneous 
the anti-phage mutant strain (VP-17) and the wild-type strain 
(MCCC 1A16298; Martin et al., 2018). We found 25 SNP differences 
by comparing the core genomes of the wild-type strains and the anti-
phage mutant strain (Supplementary Table S2). Since an spontaneous 
mutation was observed in the co-culture by Vibrio parahaemolyticus 
(Figure 3C), it is expected that the mutant gene of bacteriophage 
resistance can be identified by differential RNA-seq. Specifically, the 
results of differential expression analysis showed that compared with 
wild-type strains, 316 genes were up-regulated and 466 genes were 
down-regulated in phage-resistant mutant (Figure  5A). On the 
whole, genes related to pyruvate metabolism, propanoate 
metabolism, glycolysis/gluconeogenesis and flagellar assembly 
(Figure 5B) were found to be more differentially expressed when 
spontaneous mutation of Vibrio parahaemolyticus occurred during 
co-culture. The function of these genes are closely related to the 
survival of bacteria and their adaptation to stimuli (Kim and 
McCarter, 2000), and the results of GO enrichment analysis also 
confirmed this result (Figure 5C). The analysis of the interaction 
between the gene where the mutation site is located and the 
differentially expressed gene shows that the gene 1_orf 01980 where 
the mutation site is located has an interaction relationship with 90 
differential genes (Figure 5D). The gene 1_orf 01980 prediction is 
related to flaG gene, flaG gene is a flagella gene, which has chemotaxis 
and motility (Ahmmed et al., 2019). In order to verify the accuracy 
of the mutation site, we used the Sanger sequencing to sequence 
SNPs. The result (Figure 5E) showed that the anti-phage mutant 
strain did exist SNP mutation sites.

Trade-off of bacteriophage resistance and 
growth competitiveness

In order to evaluate the metabolic capacity of the wild-type strain 
and the anti-phage mutant strain, Biolog GEN III MicroPlates were used 
to analyze this capacity. After 24 h of incubation, MCCC 1A16298 and 
VP-17 strains had differences in carbon source utilization on the Biolog 
GEN III MicroPlate (Figures 6A–F) by naked eye observation, it shows 
that there are differences between the two kinds of bacteria in their ability 
to use carbon sources. Statistical analysis via a t-test (Figures 7A,B) 
showing that every negative control of MCCC 1A16298 and VP-17 did 

FIGURE 3

Lysis of Vibrio parahaemolyticus strains by vibriophage vB_VpaS_
PGA and vB_VpaS_PGB. vB_VpaS_PGA and vB_VpaS_PGB infected 
different Vibrio parahaemolyticus strains of infection (MOI), and the 
densities of the cultures were determined by measuring absorbance 
at 600  nm. (A) Bacteriophage vB_VpaS_PGB. (B) Bacteriophage vB_
VpaS_PGB. (C) Bacteriophage vB_VpaS_PGA and bacteriophage vB_
VpaS_PGB.
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not increase significantly, and no statistically significant differences in the 
absorbance of the positive control, it shows that the growth rate in 
complete culture medium was similar. At these four time points (6, 12, 
18, and 24 h), the data trend of all carbon source were consistent. 
Therefore, we  use data of 24 h time point for statistical analysis. Of 
particular surprise, the results (Figures 7C–J) showed that there were no 
statistically significant differences between VP-17 and MCCC 1A16298. 
Then the growth competitiveness of the wild strains and the anti-phage 
mutant strain was also tested, the two kinds of bacteria were mixed in a 
certain proportion, and samples were taken and sequenced at different 
time points (60, 260, 610 and 1,010 min). The results (Figure 7K) show 
that with the passage of time, the proportion of the anti-phage mutant 
strain is decreasing, while the proportion of the wild-type strains is 
increasing. In other words, the growth competitiveness of the wild-type 
strain is stronger than that of the anti-phage mutant strain. The above 
data demonstrated that the anti-phage mutant strain obtained 
bacteriophage resistance at the cost of growth competitiveness.

Discussion

With the continuous deterioration of antibiotic resistance and the 
continuous growth of drug-resistant pathogens, bacteriophage therapy 
is favored (Carlton, 1999; Lu and Collins, 2007, 2009). As early as 

1919, bacteriophage therapy treated chickens infected with Salmonella 
gallinarum (Sulakvelidze et  al., 2001). In the past 20 years, many 
researchers have studied the identification and clinical application of 
bacteriophage (Dedrick et al., 2019; Jault et al., 2019). At present, most 
of the research on bacteriophage is based on sequencing to predict its 
function. For bacteriophage therapy, it is necessary to solve the 
development of bacteriophage resistance to the host. However, the 
mechanism of bacteriophage resistance is rarely reported, we  lack 
detailed knowledge about their ecological and evolutionary 
interactions (Kortright et al., 2019; Markwitz et al., 2021; North and 
Brown, 2021; Tang et al., 2022).

The interactions between bacteriophages and the anti-phage 
mutants are complex. To gain insight into such relationships, 
we screened a collection of 2 vibriophages (PGA and PGB) from the 
offshore sedimentse samples. It is evident that both PGA and PGB 
demonstrate pronounced bacteriolytic activity against their respective 
hosts. Most importantly, no virulence gene was identified showing the 
safety of vibriophages PGA and PGB in biocontrol applications. To 
resist bacteriophage infection, host genes sometimes evolve mutations 
and have a significant impact on their own metabolic activities. In this 
study, it was found that the anti-phage mutants can not be adsorbed 
by bacteriophage because of the mutation of flaG gene (slight 
homology to N terminus of multiple flagellins) mutated (Figure 5E; 
Sar et al., 1990; Ahmmed et al., 2019). It is reported that through 

FIGURE 4

Transmission electron microscopy of bacteriophage adsorbing Vibrio parahaemolyticus. (A) Bacteriophage vB_VpaS_PGA adsorption of the wild-type 
strain. (B) Bacteriophage vB_VpaS_PGA adsorption of the anti-phage mutant strain. (C) Bacteriophage vB_VpaS_PGB adsorption of the wild-type 
strain. (D) Bacteriophage vB_VpaS_PGB adsorption of the anti-phage mutant strain.
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FIGURE 5

Genetic changes from the wild-type strain to the anti-phage mutant strain. (A) Differential gene volcanic map. (B) KEGG function enrichment analysis 
statistical chart. (C) GO function enrichment analysis statistical chart. (D) Network diagram of interaction relationship between genes with mutation 
sites and differentially expressed genes. Blue is the differentially expressed gene, and yellow is the gene with mutation site. From an interactive point of 
view, there is variation information. Gene 1_orf 01980 interacts with 90 different genes. (E) SNP comparison.
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modifying cell surface to prevent bacteriophage attachment and entry, 
bacteriophage adsorption is blocked, resulting in bacteriophage 
resistance (Destoumieux-Garzón et al., 2005; Samson et al., 2013; Hill 
et  al., 2018). Specifically, the mutation of cell surface receptors 
(fimbriae, flagella, outer membrane proteins, and lipopolysaccharide) 
is very important to inhibit the binding of bacteriophage to the host 
bacteria (Qimron et al., 2006; Westra et al., 2015; Houte et al., 2016; 
Shen and Loessner, 2021).

In addition, the growth competitiveness of wild strains and the 
anti-phage mutants was also tested, it was found that the growth 
competitiveness of the anti-phage mutant strain is lower than the 
wild-type strain. It is reported that under the pressure of bacteriophage 
selection, bacteria evolve bacteriophage resistance through bacterial 
defense systems (Bikard and Marraffini, 2012; Samson et al., 2013). 
Anti-phage mutant strain may make trade-offs with bacterial growth 

rate, toxicity, drug resistance, utilization of carbon source and 
formation of biofilm (Mangalea and Duerkop, 2020; Castledine et al., 
2022), which is consistent with our results. In the natural environment, 
the bacterial community are diverse and the bacterial population are 
dynamic. Bacteria compete for resources and follow the principle of 
competition and exclusion, and those bacteria with slow growth rates 
will be  eliminated. Although the anti-phage mutants acquired 
resistance to phage, their growth competitiveness also declined. Under 
the condition of competitive exclusion principle, the mutant strain is 
not competitive and may be eliminated, which opens up a new idea 
for phage therapy to produce drug resistance. In the natural 
environment, few living things exist in a constant environment, and 
trade-offs will be different in different environments. This study also 
provides an insight into the co-evolution of trade-offs from the 
perspective of the evolution of microbial laboratory.

FIGURE 6

Picture of one representative set of Biolog plates after 24  h of incubation. From left to right: Wells A1 and A9 of each plate are the negative and positive 
controls. Chemical indicator assays are in columns 10–12. The names of carbon sources in each well are provided in Table 3. (A–C) The three 
independent biological replicates of the wild-type strain. (D–F) The three independent biological replicates of the anti-phage mutant strain.
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TABLE 3 The names of carbon sources in each well.

A1 negative 
control

A2 Dextrin A3 
D-Maltose

A4 
D-Trehalose

A5 
D-Cellobiose

A6 
Gentiobiose

A7 Sucrose A8 
D-Turanose

A9 Stachyose A10 positive 
control

A11 pH 
6

A12 pH 
5

B1 D-Raffinose B2 α-D-Lactose B3 D-Melibiose B4 β-Methyl-D-

Glucoside

B5 D-Salicin B6 N-Acetyl-D-

Glucosamine

B7 N-Acetyl-β-

DMannosamine

B8 N-Acetyl-D-

Galactosamine

B9 

N-AcetylNeuraminic 

Acid

B10 1% NaCl B11 4% 

NaCl

B12 8% 

NaCl

C1 α-D-Glucose C2 D-Mannose C3 D-Fructose C4 D-Galactose C5 3-Methyl 

Glucose

C6 D-Fucose C7 L-Fucose C8 L-Rhamnose C9 Inosine C10 1% Sodium 

Lactate

C11 Fusidic 

Acid

C12 

D-Serine

D1 D-Sorbitol D2 D-Mannitol D3 D-Arabitol D4 myo-Inositol D5 Glycerol D6 D-Glucose-6-

PO4

D7 D-Fructose-

6-PO4

D8 D-Aspartic 

Acid

D9 D-Serine D10 

Troleandomycin

D11 

Rifamycin 

SV

D12 

Minocycline

E1 Gelatin E2 Glycyl-L-

Proline

E3 L-Alanine E4 L-Arginine E5 L-Aspartic Acid E6 L-Glutamic 

Acid

E7 L-Histidine E8 

L-Pyroglutamic 

Acid

E9 L-Serine E10 Lincomycin E11 

Guanidine 

HCl

E12 

Niaproof 4

F1 Pectin F2 

D-Galacturonic 

Acid

F3 L-Galactonic 

Acid Lactone

F4 D-Gluconic 

Acid

F5 D-Glucuronic 

Acid

F6 

Glucuronamide

F7 Mucic Acid F8 Quinic Acid F9 D-Saccharic Acid F10 Vancomycin F11 

Tetrazolium 

Violet

F12 

Tetrazolium 

Blue

G1 p-Hydroxy-

PhenylaceticAcid

G2 Methyl 

Pyruvate

G3 D-Lactic 

Acid Methyl 

Ester

G4 L-Lactic Acid G5 Citric Acid G6 α-Keto-

Glutaric Acid

G7 D-Malic 

Acid

G8 L-Malic Acid G9 Bromo-Succinic 

Acid

G10 Nalidixic 

Acid

G11 

Lithium 

Chloride

G12 

Potassium 

Tellurite

H1 Tween 40 H2 γ-Amino-

Butryric Acid

H3 α-Hydroxy-

Butyric Acid

H4 β-Hydroxy-

D,LButyric Acid

H5 α-Keto-Butyric 

Acid

H6 Acetoacetic 

Acid

H7 Propionic 

Acid

H8 Acetic Acid H9 Formic Acid H10 Aztreonam H11 

Sodium 

Butyrate

H12 Sodium 

Bromate
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Overall, this characterization and analysis provides a theoretical 
basis for the application of bacteriophage therapy. Bacteriophage 
treatment can not only enhance the resistance to bacteriophage, but also 
enhance the sensitivity to antibiotics (German and Misra, 2001; Chan 
et al., 2016). The positive effect of bacteriophage resistance can improve 
the sensitivity of antibiotics, which can make up for the deficiency of 
bacteriophage therapy (Wang et al., 2021). This provides an idea for 
treatment and can be  used together with other reagents (such as 
antibiotics and lyases). This study provides a basis for further study on 
the relationship between related bacteriophages of Vibrio 
parahaemolyticus. In the future, it is necessary to further study the 
diversity of bacteriophage and its biological control mechanism against 
bacteria, especially pathogens, and more work is needed to understand 
the complexity of pleiotropic interaction between various bacteriophages 
and bacteria. However, this research has its limitations. The environment 
of this experiment is too single simple, the medium used to isolate and 
cultivate microorganisms in the laboratory has a strong selection 
function. This method can not fully reflect the ecological function of 
marine microorganisms (Bacteria and bacteriophages), for the dynamic 
changes during phage therapy, it is very important to better understand 
the community evolution and ecological variability.
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(K) The growth competitiveness of the wild strains and the anti-
phage mutant strain, Compare the proportions of the wild strains 
and the anti-phage mutant strain at different time points (60, 260, 
610, and 1,010  min).
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