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American ginseng residue is an industrial by-product of ginseng saponin 
extraction, including polysaccharides and amino acids; however, it is often 
discarded into the natural environment, representing a waste of resources as 
well as an environmental issue. In this study, we examined the effects of adding 
American ginseng residue to the basal diet of sika deer. Twelve antler-bearing 
male sika deer were assigned randomly to groups fed a diet supplemented with 
0% (CON), 1% (LGR), and 3% (HGR) American ginseng residue, respectively, (n  =  4 
per group) for 5  weeks. Supplementation with 3% American ginseng residue 
significantly increased antler production and feed utilization efficiency in antler-
bearing sika deer (p  <  0.05). There were no significant differences in serum 
biochemical indexes among the three groups, but serum immunoglobulin A and 
glutathione peroxidase levels were significantly increased in the LGR and HGR 
groups (p  <  0.05). Supplementation with American ginseng residue affected 
rumen fermentation in sika deer, significantly increasing the rumen contents of 
acetic acid, propionic acid, and total volatile fatty acids, and decreasing rumen fluid 
pH (p  <  0.05), but had no significant effect on microbial protein or ammoniacal 
nitrogen content. American ginseng residue also affected the rumen bacterial 
composition, with significant up-regulation of Bacteroidota abundance in the 
HGR group, significant increases in Fibrobacterota and Fibrobacter abundance 
in the LGR group, and a significant decrease in Oscillospiraceae_UCG-005. 
Supplementation with ginseng residue had no significant effect on volatile fatty 
acids in the feces of sika deer, but did affect the composition of fecal bacteria, 
with significant decreases in Desulfobacterota and Rikenellaceae_RC9_gut_
group in the HGR group, and a significant increase in Ruminococcus in the LGR 
group (p  <  0.05). In addition, the abundance of Paeniclostridium in the feces 
decreased linearly with increasing concentration of ginseng residue, with a 
significant difference among the groups (p  <  0.05). This study comprehensively 
evaluated the effects of American ginseng residue as a potential feed additive on 
the production performance and gastrointestinal bacterial community in antler-
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bearing sika deer. The results indicated that ginseng residue was a suitable feed 
additive for improving production performance and health in sika deer.

KEYWORDS

American ginseng residue, antioxidant, gastrointestinal bacteria, rumen fermentation, 
sika deer

1 Introduction

Ginseng residue is an industrial by-product resulting from the 
extraction of ginseng plants, such as American ginseng (Panax 
quinquefolius L.) and ginseng (Panax ginseng C. A. Mey.). These residues 
were previously disposed of as landfill, with adverse effects on the 
ecological environment. Given the efficacy and importance of 
ginsenosides in human health care products, many residues after 
ginsenoside extraction still contain active ingredients, such as 
polysaccharides and amino acids (Sun et al., 2022, 2023); however, 
extracting these would entail additional costs. Ginseng residue has 
previously been reported as a novel source of cellulose to provide energy 
to piglets, after microbial fermentation to break down lignocellulose 
(Xiao et al., 2022); however, this likely disrupted the functions of the 
active substances. We therefore considered that it would be possible to 
avoid wasting the functional ingredients of ginseng residue, such as 
active polysaccharides, oligopeptides, and sterols, by direct feeding, 
while simultaneously reducing environmental pressures.

Panax quinquefolius, P. ginseng, P. notoginseng, and P. japonicus are 
all well-known medicinal plants with excellent antioxidant and 
immunity-boosting effects (Li et al., 2017; Paik et al., 2023), which have 
different qualities in Chinese medicine and can be used for different 
diseases (Liu et al., 2020). Its main medicinal components are saponins 
and polysaccharides (Xiong et  al., 2020; Qi et  al., 2021). American 
ginseng is currently widely planted globally, with huge production, with 
the United States, Canada, China, and South Korea among the main 
production areas (Punja, 2011). The most commonly reported biological 
functions of American ginseng polysaccharides involve modulation of 
the inflammatory response and improvement of immune function. 
Previous studies showed that neutral polysaccharides in American 
ginseng significantly reduced expression levels of the pro-inflammatory 
cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, and 
inhibited the massive recruitment of neutrophils in the neural thalamus 
of zebrafish, thus alleviating inflammation (Xie et al., 2023). Another 
oligopolysaccharide isolated from American ginseng, CVT-E002, acted 
on B-lymphocytes and stimulated the proliferation of splenocytes and 
the production of immunoglobulin (Ig) G in mice (Wang et al., 2001). 
Three acidic polysaccharides in American ginseng, PPQA2, PPQA4, and 
PPQA5, also showed immunostimulatory functions (Wang et al., 2015), 
while the polysaccharide WQP significantly ameliorated antibiotic-
induced diarrhea in rats by inhibiting the mitogen-activated protein 
kinase inflammatory signaling pathway, decreasing inflammatory 
cytokine levels and the infiltration of inflammatory cells in the ileum and 
colon, and increasing short-chain fatty acids by increasing the abundance 
of beneficial bacteria, such as Lactobacillus and Bacteroides intestinalis, 
which promote restoration of the intestinal barrier (Ren et al., 2022). In 
addition to saponins and polysaccharides, protopanaxadiol in American 
ginseng significantly inhibited the growth of cancer cells by acting on 
signaling pathways such as TRAIL (Zhang et al., 2015). Some small 

molecule oligopeptides in American ginseng were shown to increase the 
activity of oxide-producing dismutase and glutathione peroxidase, 
reduce malondialdehyde content, and increase expression levels of 
nuclear respiratory factor 1 and mitochondrial transcription factor A in 
mice, thus enhancing the body’s scavenging function of reactive oxygen 
species and relieving fatigue (Li D. et al., 2018). These results indicate that 
saponin-extracted American ginseng residue retains medicinal value.

Sika deer are an important component of China’s livestock industry, 
providing humans with high-quality medicinal and edible products 
such as antlers, blood, and meat; notably however, nutritional research 
in sika deer is lacking (Bao et al., 2021; Zhou Z. et al., 2022; Takeda et al., 
2023). The antler provide a traditional, valuable, and expensive 
medicinal product with a variety of effects, such as improving sexual 
performance in mice and boosting immunity (Zang et al., 2016; Xia 
et al., 2022). Antler production is thus one of the most important stages 
in the breeding of sika deer, with distinct economic impacts. Sika deer 
are sensitive and timid by nature and are thus susceptible to stress 
caused by frequent human interventions in captivity and the inability to 
change their living environment in response to changes in the natural 
environment (Zidon et al., 2009). During the antler-growth period, deer 
also need to cope with high energy and protein requirements, as well as 
adapting to rapid changes in hormone levels (Price and Allen, 2004; 
Bartos et al., 2009; Bao et al., 2021).

The effect of American ginseng residue in sika deer farming is 
unknown. We  therefore comprehensively assessed the effect of 
American ginseng residue on the production performance, 
digestibility of nutrients, serum biochemical indexes, and 
gastrointestinal bacteria and bacterial fermentation in antler-bearing 
sika deer, with the aim of providing a reference for the reuse of waste 
and the development of novel feed additives.

2 Materials and methods

2.1 Animal ethics statement

All animal procedures were approved and authorized by the 
Animal Ethics Committee of the Institute of Special Animal and Plant 
Sciences, Chinese Academy of Agricultural Sciences (NO. 
ISAPSAEC-2021-59D).

2.2 Experimental material

American ginseng residue is a by-product of ethanol extraction of 
saponins. The ginseng residue used in these experiments was 
purchased from Jilin Hongjiu Bio-technology Co. (Tongliao, Jilin, 
China). The average polysaccharide content of this batch of residue 
was 31.61%, and no total ginsenosides were detected in the laboratory.
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2.3 Experimental design and animal 
management

Twelve healthy 4-year-old male sika deer with similar body 
weights and antler-regeneration times were selected for this 
experiment. Each deer was housed in a separate enclosure and 
assigned randomly to one of three groups fed basal diets supplemented 
with 0, 1, and 3% American ginseng residue, respectively. The entire 
experiment lasted for 5 weeks, including a 1-week pre-experimental 
period to determine the maximum feed intake of the animals and 
acclimatize them to the diet, followed by a 4-week experimental 
period. Throughout the 5-week period, the animals were fed at 4 am 
and 5 pm each day with a total of 2.8 kg of diet (air-dried basis), during 
which time the animals had free access to water and the pens were 
cleaned regularly to ensure a clean environment. All the feed provided 
was consumed by the animals. The composition and nutrient content 
of the basal diet are shown in Table 1. The experiment was carried out 
in Shuangyang District, Changchun City, Jilin Province, China 
(longitude: 125.724, dimension: 43.539, temperature: 19–28°C, wind 
scale: <3).

2.4 Sample collection and measurement

Approximately 200 g of fresh feces were collected from the deer 
each day before morning feeding for 4 days prior to the end of the 
experiment. Hair and grit were removed from the collected feces and 
the feces were sprayed with 10% dilute hydrochloric acid for nitrogen 
fixation. The samples were then divided into two parts and processed 
immediately. One part was dried at 65°C to constant weight, 
pulverized, and passed through a 40-mesh sieve to produce air-dried 
samples to detect crude protein and so on (Yang L. et al., 2022), and 

the other was sterilized at 85°C for 2 h, dried at 65°C to constant 
weight, and sieved through an 18-mesh sieve for fiber determination.

On the last day of the experiment, the deer were anesthetized 
using an anesthesia gun (xylazine hydrochloride injection, 
2 mL/100 kg) prior to the morning feeding, the antlers were cut off 
completely using a sterilized saw and weighed, and approximately 
30 mL of blood was obtained. The blood was centrifuged (1,200 × g) 
and the serum was aspirated and stored at −80°C for later use. A 
special hose is inserted through the mouth to reach the rumen, and 
then the rumen fluid is extracted by means of negative pressure. 
Approximately 200 mL of rumen fluid was obtained from each deer 
via the rumen, of which the first 100 mL was discarded to avoid 
salivary contamination (Chang et al., 2022). Approximately 20 g of 
fresh feces were obtained from the rectum of the deer using sterile 
disposable gloves. The rumen fluid and feces were transferred quickly 
to liquid nitrogen and stored at −80°C for further analysis.

2.4.1 Digestibility of nutrients
Crude protein, ether extract, and dry matter were determined as 

described previously [Association of Official Analytical Chemists 
(AOAC), 2006] using a fully automated Kjeldahl nitrogen analyzer 
KDN-520 (Hangzhou Lvbo Instrument Co., Hangzhou, Zhejiang, 
China) and Soxhlet fat extraction B-811 (Büchi Labortechnik AG., 
Flawil, Switzerland). Neutral detergent fiber and acid detergent fiber 
(ADF) were determined using a fiber analyzer ANKOM A2000i 
(Ankom Technology Co., Macedon, NY, USA) according to the 
methods (Raffrenato and Van Amburgh, 2011; Barbosa et al., 2015). 
Acid-insoluble ash was used as an indicator and determined as 
described by the reference (Prawirodigdo et  al., 2021). Apparent 
digestibility of a nutrient = 100 − (100 × A/A1 × B1/B), where A is the 
percentage of 2 mol/L hydrochloric acid-insoluble ash in the sample, 
A1 is the percentage of 2 mol/L hydrochloric acid-insoluble ash in the 
feces, B1 is the percentage of that nutrient in the feces, and B is the 
percentage of that nutrient in the sample.

2.4.2 Serum biochemical, antioxidant, and 
immunological indicators

The concentrations of serum triglycerides, total cholesterol, high-
density lipoprotein cholesterol, low-density lipoprotein cholesterol, 
glucose, total protein, albumin, globulin, alkaline phosphatase, and 
aspartate aminotransferase were analyzed using commercial 
colorimetric kits (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, Jiangsu, China) with a Beckman AU480 automatic 
biochemistry analyzer (Vitalab Selectra E, Spankeren, The 
Netherlands). Serum concentrations of IgA, IgM, and IgG were 
quantified using enzyme-linked immunoassay kits (MLBIO, Shanghai, 
China). Serum antioxidant levels of total superoxide dismutase, 
glutathione peroxidase, catalase, and total antioxidant capacity were 
measured using kits (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, Jiangsu, China), in accordance with the 
manufacturer’s instructions.

2.4.3 Volatile fatty acids and rumen fermentation
Rumen fluid samples were centrifuged at 5000 × g for 10 min at 

4°C, and the supernatant was added to 25% metaphosphoric acid 
solution containing an internal standard at a ratio of 5:1 (supernatant: 
internal standard), mixed well, frozen at −20°C overnight, centrifuged 
at 10,000 × g for 10 min at 4°C, and the supernatant was prepared. 

TABLE 1 Basic dietary composition and nutrient levels (dry-matter basis).

Ingredients (g/100  g) Nutrient levels (%)

Corn 15.8 GE (MJ/kg) 16.94

Soybean meal 28 DM% 89.62

Wheat bran 6.5 CP% 22.42

Corn gluten feed 4.5 EE% 3.07

DDGS 2.3 NDF% 52.42

Sunflower seed meal 4.6 ADF% 16.71

Expanded urea 0.5

Soybean oil 0.5

Bone meal 0.6

NaCl 0.7

Premix1 1

Corn yellow silage 35

Total 100

DM, dry matter; CP, crude protein; ME, metabolic energy; EE, ether extract; NDF, neutral 
detergent fiber; ADF, acid detergent fiber. ME was calculated and other values were 
measured. Premix1: 1 kg of premix contained the following: MgO, 0.076 g; ZnSO4.H2O, 
0.036 g; MnSO4.H2O, 0.043 g; FeSO4.H2O, 0.053 g; NaSeO3, 0.031 g; vitamin A, 2484 IU; 
vitamin D, 3496.8 IU; vitamin E, 0.828 IU; vitamin K, 0.23 mg; vitamin B1, 0.092 mg; vitamin 
B2, 0.69 mg; vitamin B12, 0.00138 mg; folic acid, 0.023 mg; nicotinic acid, 1.62 mg; calcium 
pantothenate, 1.15 mg; CaHPO4, 5.17 g; CaCO3, 4.57 g.
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Fecal samples (30 mg) were placed in a glass tube and 900 μL of 0.5% 
phosphoric acid was added, mixed well, centrifuged at 14,000 × g for 
10 min at 4°C. An equal amount of ethyl acetate was added to 800 μL 
of supernatant for extraction, mixed well, and centrifuged at 14,000 × g 
for 10 min at 4°C. The upper layer of the organic phase was mixed with 
4-methylglutaric acid and prepared for use. The prepared samples 
were analyzed by mass spectrometry using an Agilent 7890A/5975C 
gas-mass spectrometer (Agilent Technologies Inc., Santa Clara, CA, 
USA). The chromatographic peak areas and retention times were 
extracted using MSD ChemStation software (Version B.08.00, Agilent 
Technologies Inc., Santa Clara, CA, USA). Standardized curves were 
plotted to calculate the contents of volatile fatty acids in the samples 
(Wang M. et al., 2016; Zhang et al., 2017).

The concentrations of ammoniacal nitrogen and microbial 
proteins in the rumen fluid were determined using appropriate kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) 
(Shahinian and Reinhold, 1971; Liu S. et al., 2023) and the pH of the 
rumen fluid was determined using a PHS-3C pH meter (Shanghai 
INESA Scientific Institute Co., Shanghai, China) (Kong et al., 2020).

2.4.4 16S rRNA amplicon sequencing
DNA was extracted from the samples using the CTAB method 

(Minas et al., 2011), tested for purity and concentration, and then 
diluted to 1 ng/μL using sterile water and used as a template for 
polymerase chain reaction (PCR) amplification using the following 
primers: 338 F (5′-ACTCCTACGGGGAGGCAGCA-3′) and 806 R 
(5′-GGACTACHVGGGTWTCTAAT-3′). PCR products were purified 
by magnetic beads, and detected by electrophoresis using a 2% agarose 
gel after mixing in equal amounts according to the PCR product 
concentration. A TruSeq DNA PCR-Free sample preparation kit 
(Illumina Inc., San Diego, CA, USA) was used for library construction, 
and the constructed libraries were quantified by Qubit and Q-PCR, 
qualified, and analyzed by NovaSeq6000 (Illumina Inc.) for on-line 
sequencing (Li et al., 2015; Zhang et al., 2023).

2.5 Data analysis

The Shannon index, Simpson index, abundance-based coverage 
estimator index, Chao1 index, and UniFrac distance were calculated 
using Qiime software (Version 1.9.1). Principal coordinates analysis 
(PCoA) plots were plotted using R software (Version 2.15.3). PCoA 
analysis was performed using the WGCNA, stats, and ggplot2 
packages in R. Linear discriminant analysis effect size (LEfSe) was 
performed using the LEfSe package with a default setting of linear 
discriminant analysis (LDA) score of 3. Adonis analysis was performed 
using the adonis function in the R vegan package.

Data were analyzed using SPSS software (IBM SPSS Statistics 26; 
IBM-SPSS Inc., Chicago, IL, USA). The Shapiro–Wilk test was used to 
determine if the data conformed to a normal distribution, the 
Kruskal–Wallis test was used to determine non-conformity, and the 
Bonferroni method was used for multiple comparisons if p < 0.05. 
Normally distributed data were analyzed using parametric tests and 
the F-test was used to determine variance alignment. One-way 
ANOVA was used and post hoc multiple comparisons were made 
using Tukey’s test if variance alignment was met, and the t-test was 
used if variance alignment was not met. Values were expressed as 
mean ± standard error, with a significance value of p < 0.05.

3 Results

3.1 Effect of American ginseng residue on 
antler production and apparent digestibility 
of nutrients in sika deer

The addition of American ginseng residue to the diet significantly 
increased antler production by sika deer during the antler-bearing 
period (Table 2), with significantly greater production in the HGR 
group compared with the CON group (p < 0.05). Antler production 
was also increased in the LGR group, but the difference was not 
significant. The apparent digestibility of the ADF was significantly 
increased in the LGR and HGR groups compared with the CON group 
(p < 0.05), but there was no significant difference in the apparent 
digestibility of other nutrients among the groups.

3.2 Serum biochemical indexes in the three 
groups of sika deer

The addition of American ginseng residue to the diet had no 
significant effect on any of the measured serum biochemical indexes 
(Table 3), and no effect on glycolipid metabolism, protein metabolism, 
or enzymes related to liver and kidney metabolism (p > 0.05). Serum 
globulin levels tended to increase linearly with increasing ginseng 
residue concentration, but the difference was not significant (p < 0.1).

3.3 Effects of American ginseng residue on 
antioxidants and immune status of sika 
deer

Supplementation with American ginseng residue improved the 
immune and antioxidant statuses of sika deer during the antler-
bearing period (Table 4). Serum IgA levels increased significantly 
(p < 0.05) and linearly in the LGR and HGR groups compared with the 
CON group. In addition, catalase and glutathione peroxidase activities 
increased significantly (p < 0.05) in the HGR group and glutathione 
peroxidase activity increased significantly (p < 0.05) in the LGR group 
compared with the CON group, but there were no significant 
differences in the other indexes among the three groups.

TABLE 2 Antler weight and apparent fecal digestibility of nutrients.

Item (%) CON LGR HGR p-
value

Antler 

weight (g)

931.50a ± 34.77 1115.00ab ± 58.38 1276.30b ± 114.73 0.03

Crude 

protein

78.64 ± 0.65 80.11 ± 0.88 77.34 ± 0.87 0.13

Ether 

extract

89.52 ± 3.82 87.66 ± 3.69 86.32 ± 1.20 0.77

Dry matter 73.44 ± 1.12 75.41 ± 2.77 74.81 ± 1.08 0.75

NDF 75.08 ± 0.97 78.70 ± 2.03 76.80 ± 0.74 0.25

ADF 59.54a ± 0.96 67.12b ± 1.33 64.70b ± 1.17 0.01

ADF, acid detergent fiber; NDF, neutral detergent fiber. Means with different lowercase 
superscript letters significantly different at p < 0.05.
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3.4 Supplementation of American ginseng 
residue altered rumen fermentation and 
bacterial communities in sika deer

We compared the rumen fermentation parameters among the 
three groups of sika deer (Table 5), and found that the acetate content 
was significantly higher in the LGR group compared with the CON 

group, and the propionate content was significantly higher in the LGR 
and HGR groups (p < 0.05). In addition, the total volatile fatty acid 
content was also significantly higher in the LGR group than in the 
CON group. The ammonia nitrogen and microbial protein contents 
of the rumen fluid were similar in all three groups of sika deer 
(p > 0.05), but the rumen fluid pH was significantly lower in the HGR 
group compared with the CON group (p < 0.05).

TABLE 3 Serum biochemical indicators.

Item CON LGR HGR P-value

TG (mmol/L) 0.17 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.55

CHO (mmol/L) 1.95 ± 0.03 1.91 ± 0.08 1.93 ± 0.06 0.87

HDL-C (mmol/L) 1.62 ± 0.08 1.55 ± 0.05 1.60 ± 0.06 0.72

LDL-C (mmol/L) 0.27 ± 0.02 0.25 ± 0.02 0.28 ± 0.02 0.66

Glucose (mmol/L) 8.01 ± 0.09 8.38 ± 0.39 8.31 ± 0.44 0.72

TP (g/L) 63.61 ± 0.64 63.55 ± 1.35 63.75 ± 0.87 0.98

ALB (g/L) 35.60 ± 0.54 33.80 ± 1.08 33.75 ± 1.42 0.42

GLB (g/L) 28.01 ± 0.61 29.75 ± 0.45 30.25 ± 0.76 0.07

Urea (mmol/L) 11.65 ± 0.12 10.79 ± 0.70 10.27 ± 0.48 0.20

ALP (U/L) 393.18 ± 4.43 385.35 ± 10.13 388.24 ± 10.44 0.81

AST (U/L) 51.77 ± 2.75 51.17 ± 2.85 52.41 ± 1.69 0.94

TG, triglycerides; CHO, cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TP, total protein; ALB, albumin; GLB, globulin; AST, aspartate 
aminotransferase; ALP, alkaline phosphatase.

TABLE 4 Immune and antioxidant indicators.

Item CON LGR HGR P-value

IgA (ug/mL) 490.20a ± 13.74 543.45b ± 18.08 557.70b ± 4.99 0.01

IgG (mg/mL) 3.92 ± 0.06 4.24 ± 0.08 4.12 ± 0.19 0.26

IgM (ug/mL) 103.51 ± 2.43 105.66 ± 3.19 105.59 ± 2.25 0.81

CAT (U/mL) 2.72a ± 0.05 2.93ab ± 0.09 3.18b ± 0.14 0.04

GSH-PX (U/mL) 168.17a ± 3.64 182.26b ± 2.19 182.42b ± 4.47 0.03

T-SOD (U/mL) 101.10 ± 2.46 103.94 ± 4.06 104.18 ± 6.57 0.77

T-AOC (U/mL) 1.13 ± 0.10 1.23 ± 0.12 1.15 ± 0.11 0.82

Ig, immunoglobulin; CAT, catalase; GSH-PX, glutathione peroxidase; T-SOD, total superoxide dismutase; T-AOC, total antioxidant capacity. Means with different lowercase superscript letters 
were significantly different at p < 0.05.

TABLE 5 Indicators of rumen fermentation and volatile fatty acids in rumen fluid.

Item CON LGR HGR P-value

Acetate (mmol/L) 54.87a ± 1.75 61.62b ± 0.65 57.94ab ± 1.85 0.03

Propionate (mmol/L) 13.93a ± 0.48 17.16b ± 0.45 17.46b ± 1.04 0.01

Isobutyrate (mmol/L) 1.56 ± 0.15 1.32 ± 0.10 1.51 ± 0.17 0.50

Butyrate (mmol/L) 6.18 ± 0.29 6.24 ± 0.51 7.13 ± 0.51 0.30

Isovalerate (mmol/L) 1.71 ± 0.07 1.29 ± 0.20 1.70 ± 0.19 0.19

Valerate (mmol/L) 0.40 ± 0.02 0.48 ± 0.01 0.47 ± 0.05 0.31

TVFAs (mmol/L) 78.65a ± 2.23 88.11b ± 1.16 86.21ab ± 3.09 0.04

Ammonia (mg/dL) 10.99 ± 0.41 10.34 ± 0.30 10.15 ± 0.50 0.37

Microbial proteins (mg/mL) 1.88 ± 0.08 1.96 ± 0.10 1.98 ± 0.08 0.72

Rumen fluid pH 7.03b ± 0.07 6.86ab ± 0.06 6.78a ± 0.01 0.04

TVFAs, total volatile fatty acids. Means with different lowercase superscript letters were significantly different at p < 0.05.
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Illumina Nova sequencing, construction of PCR-free libraries, 
followed by paired-end sequencing. After splicing the reads, an 
average of 85,245 tags were measured per sample, and an average of 
84,552 valid data were obtained after quality control, with the amount 
of valid data for quality control amounting to 65,081, and the effective 
quality control rate of 76.42%. The sequences were clustered into 
operational taxonomic units (OTUs) with 97% concordance. A total 
of 4,869 OTUs were obtained, and 3,289 OTUs were filtered after 
removing data for Archaea, unknown, and no blast hits. Among these, 
1,928 OTUs were common to all three groups of Figure  1C. The 

sequences of the OTUs were then annotated for species using the 
Silva138 database. At the phylum level, Bacillota and Bacteroidota 
were the dominant rumen bacteria in sika deer, accounting for 47.5 
and 35.5% of the total bacterial abundance, respectively (Figure 1A). 
At the genus level, Prevotella, Ruminococcus, Rikenellaceae_RC9_gut_
group, Pseudomonas, Christensenellaceae_R-7_group, and 
Succiniclasticum were the dominant genera (Figure 1B), accounting 
for about half of all genera. We plotted a curve by randomly selecting 
the amount of sequencing data for the sample and its corresponding 
number of species to obtain the dilution curve of the sample 

FIGURE 1

Abundances of top 10 bacteria at phylum level (A) and top 20 at genus level (B) in the rumen. Venn diagrams (C) and dilution curves (D) of rumen 
bacteria.
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(Figure 1D); the curve gradually flattened out and the sequencing data 
were reasonable.

We investigated the effect of American ginseng residue on the 
abundance and diversity of rumen bacterial communities by comparing 
the alpha diversities among the three groups. There were no significant 
differences (p > 0.05) in the Shannon index, Simpson index, Chao1 index, 
and ACE index of the rumen bacteria (Figure 2). Based on the Bray–
Curtis, binary-Jaccard, weighted UniFrac, and unweighted UniFrac 
distances, PCoA (Figure 3) and adonis analysis (Table 6) showed that the 
bacterial compositions of the CON and LGR groups were significantly 
separate (binary-Jaccard distances: p < 0.05, [CON vs. LGR]). We further 
compared bacteria with significantly different abundances at the phylum 
and genus levels. At the phylum level, Bacteroidota were significantly 
more abundant in the HGR group than in the LGR group (Figure 4A) 
and Fibrobacterota were significantly more abundant in the LGR group 
compared with the CON group (Figure  4B). At the genus level, 
Oscillospiraceae_UCG-005 were significantly less abundant in the LGR 
group (Figure 4C) and Fibrobacter were significantly more abundant in 
the LGR group compared with the CON group (Figure  4D). LDA 
showed that 11 bacterial species differed significantly from phylum level 
to genus level in the rumen fluid of the three groups (Figure  5A), 
Fibrobacteria, Fibrobacterales, and Fibrobacteraceae were significantly 
enriched under the same branch of the developmental tree in the LGR 
group, and Aeromonadales and Succinivibrionaceae were enriched in 
the HGR group under the same branch, while Oscillospirales__UCG-010 
and Bacteroidales in the CON group were enriched on different branches 
(Figure 5B).

3.5 Effect of American ginseng residue on 
fecal volatile fatty acids and bacterial 
communities in sika deer

Fecal volatile fatty acids can reflect bacterial fermentation in the 
intestine. The feces contents of acetate, propionate, isobutyrate, 

butyrate, isovalerate, valerate, caproate, and total volatile fatty acids 
were similar in the three groups of deer (p > 0.05) (Table 7).

The fecal samples were sequenced and an average of 73,449 tags 
were measured for each sample. 73,020 data were obtained on average 
after quality control, and the amount of valid data for quality control 
amounted to 55,270, and the effective rate of quality control was 
75.25%. A total of 5,981 OTUs were obtained after clustering with 97% 
concordance, and 4,794 OTUs were obtained after screening, of which 
2,058 OTUs were common to all three groups (Figure  6C). The 
dominant bacteria in feces at the phylum level were Bacillota and 
Bacteroidota, which accounted for 48.6 and 29.2% of the total 
abundance, respectively (Figure 6A). The dominant bacteria at the 
genus level were Oscillospiraceae_UCG-005 (16.1%), Treponema 
(5.7%), Rikenellaceae_RC9_gut_group (5.7%), and Bacteroides (4.3%) 
(Figure 6B). The dilution curve gradually flattened out (Figure 6D) 
and the data were reasonable.

The fecal alpha diversity results were similar for all three groups 
(p > 0.05) (Figure 7).

The results of PCoA (Figure  8) and adonis analysis (Table  8) 
showed that the fecal bacterial composition differed significantly 
between the CON and HGR groups, especially in terms of binary-
Jaccard and unweighted-UniFrac distances (p < 0.05). Further analysis 
of the differential bacteria in the feces of the three groups (Figure 9) 
showed a significant decrease in Desulfobacterota abundance at the 
phylum level in the HGR group compared with the CON group 
(p < 0.05). At the genus level, the abundance of Rikenellaceae_RC9_
gut_group was highly significantly decreased in the HGR group 
compared with the CON group (p < 0.01), and the abundance of 
Ruminococcus was highly significantly increased in the HGR group 
compared with the CON and HGR groups (p < 0.01), while the 
abundance of Paeniclostridium declined linearly in line with increasing 
addition of ginseng residue, with significant differences among the 
groups (p < 0.05). LDA (Figure 10A) showed significant enrichment 
from the phylum to the genus level for 19 bacterial species in the three 
groups, with Fibrobacterota providing the greatest contribution to the 

FIGURE 2

Bacterial alpha diversity in the rumen of sika deer.
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FIGURE 3

Principal co-ordinates analysis of bacterial communities in the rumen of sika deer based on Bray–Curtis distance (A), binary-Jaccard distances (B), 
weighted-UniFrac distance (C), and unweighted-UniFrac distance (D).

TABLE 6 Adonis analysis of bacterial communities in the rumen.

Group Bray-Curtis Binary-Jaccard Weighted-UniFrac Unweighted-UniFrac

R2 P R2 P R2 P R2 P

CON VS. LGR 0.180 0.087 0.228 0.029 0.194 0.169 0.166 0.153

CON VS. HGR 0.172 0.193 0.140 0.502 0.130 0.556 0.142 0.443

LGR VS. HGR 0.181 0.053 0.166 0.146 0.209 0.087 0.151 0.410
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evolutionary tree (Figure  10B) in the LGR group. Fibrobacterota, 
Fibrobacteria, Fibrobacterales, Fibrobacteraceae, and Fibrobacter were 
enriched in the same branch, and Actinobacteriota, Actinobacteria, 

Bifidobacteriales, Bifidobacteriaceae, and Bifidobacterium were also 
equally enriched in the same branch, in addition to homology between 
Rikenellaceae and Rikenellaceae_RC9_gut_group in the CON group.

FIGURE 4

Differences in rumen bacteria at phylum level by t-test (A) and ANOVA (B). Differences in rumen bacteria at genus level (C,D). *p  <  0.05.

FIGURE 5

Linear discriminant analysis (LDA) effect size (LEfSe) analysis of rumen bacteria in sika deer. (A) LDA score of rumen microbiota (score  >  3 significant). 
(B) Cladogram of LEfSe showing nodes of significant bacteria on evolutionary branches. Yellow nodes, no difference; other colored nodes, significant 
differences.
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4 Discussion

American ginseng and sika deer are specific agricultural and 
animal husbandry industries, respectively, in Northeast China (Li 
et al., 2014), and the application of American ginseng by-products in 
sika deer breeding can thus maximize local advantages with mutual 
benefits. However, evidence for the role of American ginseng residue 
in the production of antler-bearing sika deer is currently lacking. 
Previous studies showed that animals experienced stress during 
specific physiological phases due to environmental changes or rapid 
changes in their own hormone levels, potentially leading to 
gastrointestinal tract damage, redox imbalance, and microflora 
dysbiosis, and ultimately affecting the performance and health of the 
animal (Campbell et al., 2013; Gresse et al., 2017; Deng et al., 2020). 
The current results showed that dietary supplementation with 
American ginseng residue significantly increased antler production as 
a direct result of improved utilization of cellulose in the feed, possibly 
related to the amelioration of gut damage and restoration of function. 
Previous studies found that American ginseng polysaccharides 
effectively treated intestinal mucosal injuries by up-regulating the 
ratio of villus height to crypt depth, increasing the number of 
cuprocytes and the expression of tight junction proteins (Zhou et al., 
2021; Ren et al., 2022). In a mouse model of dextran sodium sulfate-
induced enteritis, American ginseng extract reduced ileal 
inflammation and edema, increased villus length to alleviate diarrhea 
symptoms, and was effective in both prophylactic and therapeutic 
treatments (Jin et al., 2008; Wang C. Z. et al., 2016). Differences in 
serum activities and metabolite contents of various enzymes among 
the three subgroups in the present study demonstrated further the 
effects of ginseng residue in sika deer. Serum levels of various enzymes 
and transport products related to hepatic and renal metabolism were 
unaffected by the residue, indicating that the drug components in the 
residue did not affect hepatic and renal functions. Notably however, 
diet supplementation with American ginseng residue significantly 
enhanced the activities of catalase and glutathione peroxidase, which 
play key antioxidant roles in animals. Catalase is found widely in 
living organisms, and its main role is to scavenge the strongly cytotoxic 
hydrogen peroxide produced by the body’s metabolism (Alfonso-
Prieto et  al., 2009). Glutathione peroxidase exerts its antioxidant 
function by catalyzing the reduction of hydrogen peroxide by 
glutathione to achieve the scavenging of oxygen free radicals, and the 
oxidized glutathione generated can be reduced by other enzymes to 
play a role in the glutathione cycle (Arthur, 2000). In addition, serum 

IgA levels were significantly increased in the LGR and HGR groups, 
consistent with previous reports that American ginseng 
polysaccharides and other components exerted various effects to 
achieve immune-enhancing effects, such as activation of macrophages 
and enhanced phagocytosis (Yu et al., 2014), promotion of lymphocyte 
proliferation to increase Ig expression (Yu et al., 2017), and activation 
and inhibition of inflammatory responses (Jin et  al., 2008; Yang 
S. et al., 2022). It mainly acts through binding to Toll-like receptors 2 
ad 4 (Yin et al., 2019), to achieve the activation and recruitment of IL 
receptor-related kinases and phosphorylation of various immune-
response-related protein kinases, ultimately resulting in 
immunomodulatory effects (Hoshino et al., 1999; Liu et al., 2017). In 
addition, American ginseng polysaccharides bind to complement 
receptor CR3, C-type lectin receptor, and scavenger receptor to 
regulate the immune response (Loh et al., 2017; Prado et al., 2020; Su 
et al., 2020). Polysaccharides and other active ingredients in ginseng 
dregs thus have good antioxidant and immunomodulatory effects that 
may improve the utilization of nutrients and the overall health of 
sika deer.

Ruminant diets contain a large proportion of crude feed 
components that are difficult to digest, and they thus rely on 
microorganisms in the rumen to ferment and degrade the cellulose 
and hemicellulose, which can produce large amounts of short-chain 
fatty acids (Wang et al., 2018; Liang et al., 2022), which then enter 
the animal’s body via the gastrointestinal tract epithelial cells and 
serve as an important source of energy. The composition of rumen 
microorganisms thus has an important impact on the animal 
(Baldwin and Connor, 2017). The current results showed that 
Bacillota and Bacteroidota dominated the rumen in sika deer at the 
phylum level, while Prevotella, Ruminococcus, and Rikenellaceae_
RC9_gut_group were the dominant bacteria at the genus level, in 
agreement with previous studies of rumen bacteria in sika deer (Li 
et al., 2013, 2015; Si et al., 2021). The results of β-diversity analysis 
indicated that dietary supplementation with American ginseng 
residue resulted in significant differences in rumen bacterial 
composition between the LGR and CON groups, with significant 
differences at the phylum and genus levels for Fibrobacterota, 
Oscillospiraceae_UCG-005, and Fibrobacter. Fibrobacterota is an 
important bacterial phylum that degrades cellulose in the 
gastrointestinal tract of herbivores and provides an important 
physiological basis for the adaptation of animals to harsh dietary 
conditions (Ransom-Jones et  al., 2012; Jewell et  al., 2013). In 
addition to being present in ruminants, this group of bacteria is also 

TABLE 7 Fecal volatile fatty acids.

Item (ug/g) CON LGR HGR P-value

Acetate 1187.36 ± 103.95 1120.14 ± 103.22 1166.37 ± 105.28 0.89

Propionate 404.54 ± 18.81 387.03 ± 15.04 433.68 ± 21.46 0.25

Isobutyrate 29.93 ± 1.29 27.67 ± 2.75 25.85 ± 2.73 0.50

Butyrate 341.07 ± 23.15 327.42 ± 18.43 331.36 ± 18.29 0.88

Isovalerate 17.67 ± 1.48 18.03 ± 3.14 14.68 ± 1.73 0.53

Valerate 56.34 ± 3.96 52.87 ± 3.39 57.69 ± 5.66 0.74

Caproate 3.54 ± 0.16 3.40 ± 0.23 4.06 ± 0.44 0.31

TVFAs 2040.47 ± 137.26 1936.58 ± 105.39 2033.71 ± 137.90 0.81

TVFAs, total volatile fatty acids.
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widely present in the intestinal tracts of termites, camels, and other 
animals that rely heavily on cellulose-based diets (König et al., 2013; 
Gharechahi et al., 2022; Zhao et al., 2023). Fibrobacter, a genus of 
Fibrobacterota, has likewise been reported as an important 
cellulose-degrading bacterium (Béra-Maillet et  al., 2004). The 
current results thus explain the significantly higher apparent 
digestibility of ADF in the LGR group compared with the CON 
group, as well as the differentially increased levels of acetic acid and 
propionic acid in the rumen fluid in the LGR and HGR groups. In 
the same way, red ginseng polysaccharides have a positive effect on 

the production of short-chain fatty acids in the cattle rumen (Ju 
et al., 2024). Oscillospiraceae_UCG-005 is also a class of cellulose-
degrading bacteria in the rumen (Li et al., 2021), but is also thought 
to play a role in the catabolism and utilization of dietary lipids, with 
significant increases in abundance, especially in animals exposed to 
high-fat diets (Liu Y. et  al., 2023; Wu Z. L. et  al., 2023). This is 
consistent with the results of a decrease in apparent digestibility of 
ether extracts in the three groups of deer, although the difference 
was not significant. In addition, deer in the HGR group showed a 
significant decrease in rumen fluid pH, which may imply an effect 

FIGURE 6

Abundance of top 10 bacteria in feces at phylum level (A) and top 20 at genus level (B). Venn diagrams (C) and dilution curves (D) of fecal bacteria.
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on the homeostasis of the rumen internal environment. However, 
it remained within the healthy range according to previous reports 
(Zhou X. et al., 2022), and the decrease in rumen fluid pH within 
the appropriate range was more favorable for the transport of short-
chain fatty acids (Yan et al., 2014). Although American ginseng 
residue reduced the abundance of some beneficial bacteria in the 
rumen of sika deer, the overall effect on rumen function 
was positive.

Unlike the rumen microbiome, gut microbes are essential for 
the survival of all animals. Gut microbes are involved in the 
digestion and absorption of nutrients in the host (Zhao et  al., 
2019), influence host growth and development (Sommer and 
Bäckhed, 2013), participate in the onset and progression of disease 
(Hsu and Schnabl, 2023), can even affect the host’s mood and sleep 
(Li Y. et  al., 2018). Microorganisms interact with the host via 
mediators, including metabolites such as short-chain fatty acids, 
bile acids, and endogenous cannabinoids (de Vos et al., 2022). The 
dominant bacteria at the phylum level in the intestine in sika deer 
were Bacillota and Bacteroidota, and the most abundant genera 
were Oscillospiraceae_UCG-005, followed by Treponema and 
Rikenellaceae_RC9_gut_group, with clear inconsistency between 
the dominant bacteria in the intestines and rumen, in agreement 
with previous reports (Wu Y. et al., 2023). Diversity analysis and 
adonis analysis showed that the composition of gut bacteria in the 
HGR group was significantly different from the other two groups, 
specifically in terms of Desulfobacterota at the phylum level, and 
Rikenellaceae_RC9_gut_group, Ruminococcus, and Paeniclostridium 
at the genus level. Previous studies demonstrated that 
Desulfobacterota were mainly concentrated in the hindgut of 
animals and were significantly enriched in a wide range of diet-
induced intestinal inflammation conditions in mice (Panah et al., 
2023; Ruan et al., 2023). They have also been suggested to be a 
marker of intestinal barrier damage (Rao et al., 2021), largely due 
to the fact that Desulfobacterota lipopolysaccharides are severe 

inflammatory stimulants for the host (Huang et  al., 2021). 
Rikenellaceae_RC9_gut_group is a beneficial bacterium in the 
gastrointestinal tract of animals, involved in the fermentation of 
cellulose and capable of producing short-chain fatty acids (Xi et al., 
2023). Ruminococcus is a common bacterium in the feces of 
ruminants, mainly colonizing the jejunum and ileum of the 
intestinal lumen (Guerra et al., 2022; Zhang et al., 2022), and is 
involved in the degradation of starch and other complex 
polysaccharides (Rangarajan et al., 2022). Ruminococcus has also 
been well-documented as an inducer of active inflammation in 
animals (Hall et al., 2017; Henke et al., 2021), and has been shown 
to play a role in the maintenance of homeostasis by acting as a key 
symbiotic component of the intestinal ecosystem (La Reau and 
Suen, 2018; Crost et al., 2023; Juge, 2023). Paeniclostridium is a 
pathogenic bacterium (DeCandia et  al., 2023) that induces 
inflammation in the intestinal tract and in various tissues in 
animals (Nyaoke et al., 2020; Gryaznova et al., 2021), via its ability 
to produce cytotoxic endotoxins (Watts et al., 2019; Li et al., 2022). 
Consistent with our results, these studies demonstrated that 
polysaccharide components contained in American ginseng and 
red ginseng can effectively regulate the bacterial composition of 
the intestinal tract of animal animals, significantly increase the 
abundance of beneficial bacteria and reduce the level of pathogenic 
bacteria, which is beneficial to the improvement of diarrhea in 
animals (Sha et  al., 2023; Song et  al., 2023; Min et  al., 2024). 
We also detected Fibrobacterota in the intestine, and although its 
abundance did not differ not significantly among the groups, LEfSe 
analysis revealed that Fibrobacterota and its subordinate multiple 
bacteria, from the class to the genus level, were significantly 
enriched, with the highest contribution in the LGR group. This 
may facilitate the digestion of cellulose in the hindgut, and also 
suggests that, despite differences in microbial composition between 
the rumen and intestine (Zou et al., 2020), like communication 
between the upper and lower intestinal tracts, the effects of changes 

FIGURE 7

Bacterial alpha diversity in the feces of sika deer.
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FIGURE 8

Principal co-ordinates analysis of bacterial communities in the feces of sika deer based on Bray–Curtis distance (A), binary-Jaccard distances (B), 
weighted-UniFrac distance (C), and unweighted-UniFrac distance (D).

TABLE 8 Adonis analysis of bacterial communities in feces.

Group Bray-Curtis Binary-Jaccard Weighted-UniFrac Unweighted-UniFrac

R2 P R2 P R2 P R2 P

CON VS. LGR 0.132 0.738 0.167 0.062 0.131 0.558 0.166 0.056

CON VS. HGR 0.199 0.07 0.157 0.024 0.237 0.093 0.154 0.029

LGR VS. HGR 0.163 0.208 0.165 0.066 0.222 0.107 0.162 0.095
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in the dominant bacteria in the rumen are transmitted to the 
intestinal tract (Steele et  al., 2016); however, it is not known 
whether this microbial migration and crosstalk can occur in the 
reverse direction.

5 Conclusion

Overall, dietary supplementation with American ginseng residue 
increased the apparent digestibility of nutrients, improved the immune 

FIGURE 9

Differences in feces bacteria at phylum level (A) and genus level (B–D). *p  <  0.05; **p  <  0.01.

FIGURE 10

Linear discriminant analysis (LDA) effect size (LEfSe) analysis of fecal bacteria in three groups of sika deer. (A) LDA score of fecal microbiota (score  >  3 
significant). (B) Cladogram of LEfSe showing nodes of significant bacteria on evolutionary branches. Yellow nodes, no significant difference; other 
colored nodes, significant differences.
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and antioxidant statuses, and promoted antler production in sika deer 
during the antler-bearing period, as well as positively regulating the 
gastrointestinal flora and bacterial fermentation. These results suggest 
that American ginseng residue may be a suitable feed additive for the 
production of sika deer.
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