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Analysis of microbial 
communities in wheat, alfalfa, 
and oat crops after Tilletia laevis 
Kühn infection
Yuyang Shen 1, Chen Delai 2,3, Taiguo Liu 2, Wanquan Chen 2, 
Guangkuo Li 1*, Haifeng Gao 1* and Li Gao 1,2*
1 Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Institute of Plant 
Protection, Xinjiang Academy of Agricultural Sciences, Ministry of P. R. China, Xinjiang, China, 2 State 
Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese 
Academy of Agricultural Sciences, Beijing, China, 3 College of Plant Protection, Gansu Agricultural 
University, Lanzhou, China

Common bunt caused by Tilletia laevis Kühn is one of the most serious fungal 
diseases of wheat. The root–microbial associations play key roles in protecting 
plants against biotic and abiotic factors. Managing these associations offers a 
platform for improving the sustainability and efficiency of agriculture production. 
Here, by using high throughput sequencing, we aimed to identify the bacterial 
and fungal associations in wheat, alfalfa, and oat crops cultivated in different years 
in the Gansu province of China. Soil samples (0–6  cm below the surface) from 
infected wheat by T. laevis had significantly more bacterial and fungal richness 
than control samples as per the Chao1 analysis. We  found some dominant 
fungi and bacterial phyla in infected wheat by T. laevis, such as Proteobacteria, 
Acidobacteria, Actinobacteria, Chloroflexi, Ascomycota, Basidiomycota, and 
Mortierello mycota. We also analyzed the chemical and enzymatic properties 
of soil samples after T. laevis inoculation. The total nitrogen, total kalium (TK), 
ammonium nitrogen, available kalium, organic carbon, invertase, phosphatase, 
and catalase were more in T. laevis-infected samples as compared to the control 
samples, while pH, total phosphorus, nitrate nitrogen, available phosphorus, and 
urease were more in control samples compared to T. laevis-infected samples. 
The results of this study will contribute to the control of wheat common bunt by 
candidate antagonistic microorganisms and adverse properties of soil.
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1 Introduction

Tilletia laevis Kühn is a threatening pathogen of wheat crops, which causes huge damage 
worldwide, and mostly sporulation occurs in the plant ovary with host tissues in the kernel 
slowly replaced by masses of black teliospores (Nguyen et al., 2019). Losses in wheat crops 
reached 75–80% in many wheat-growing areas of the world (Qin et al., 2020). The relationship 
between plant pathogens and soil microbes can be  either commensalistic, symbiotic, 
antagonistic, or parasitic (Ruby, 2008; Haegeman et al., 2009). For Tilletia, the characterization 
of the microbial communities in wheat tissues and rhizosphere soil (Din et al., 2021; Xu et al., 
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2021), characterization of rhizosphere microbial communities for 
disease incidence and optimized concentration of difenoconazole 
fungicide for controlling of wheat dwarf bunt (Jia et al., 2022), and 
microbiome signature of endophytes in wheat seed response to wheat 
dwarf bunt caused by Tilletia controversa Kühn were explored (Ren 
et al., 2020). The T. laevis, with a fishy smell, leads to the decreased 
quality and quantity of wheat crops (Lu et al., 2005). Some plants can 
alter soil biochemical properties (Hussain et al., 2011; Tang et al., 
2015), and some plant pathogens can change rhizosphere microbial 
communities (Zhou and Wu, 2012; She et al., 2017) and alter the 
relative abundance of other soil-borne pathogens (Din et al., 2021). 
Soil microbial diversity is not only important for the soil life but also 
important for soil nutrient cycling (Berendsen et  al., 2012). This 
microbial diversity plays an important role in the health of plants, 
increasing the soil fertility, and cycling of N, C, and many other 
nutrients (Berendsen et al., 2012; Miransari, 2013). Previous studies 
revealed that plant pathogens, such as T. laevis (Din et al., 2021), root 
know nematode (Zhou et al., 2019), and Erwinia spp. (She et al., 2017), 
changed rhizosphere microbial communities. Similarly Mendes et al. 
(2013) demonstrated that rhizosphere soil microbiome can alter the 
composition and structure of plant pathogenic and beneficial 
microorganisms (Mendes et al., 2013). Several studies have shown that 
soil microbial diversity is influenced by plant pathogens (Zhou et al., 
2019; Din et al., 2021). Additionally, environmental factors, like pH, 
influence soil microbial diversity (Kim et al., 2016; Zhang et al., 2016). 
Therefore, it is very important to analyze the relationship between 
environmental factors and soil microbial diversity. However, limited 
studies have concerns about fungal and bacterial communities under 
different conditions with different plants after pathogen infection.

Wheat crops is a staple food crop in many countries of the world. 
Owing to its high amino acid contents, high protein, deliciousness, 
and use in many products, wheat is used as a food crop throughout 
the world (Chen et al., 2021). Alfalfa (Medicago sativa L.) is a Fabaceae 
perennial herb and is an important legume crop used for forage 
worldwide. Moreover, alfalfa is a key source of pollen and nectar 
throughout the world (Taha, 2015). Oats (Avena sativa L.) is an 
important crop for their high content of functional substances such as 
phytochemicals, dietary fibers, and several other substances with high 
nutritional value (Havrlentová et  al., 2020). Because of the plant 
pathogens, the soil microbial community is influenced, which may 
increase or decrease the relative abundance of soil microorganisms 
(Din et al., 2021). Additionally, long-term continuous cropping alters 
the soil microbial community by increasing the relative abundance of 
soil-borne pathogens in the soil (Yang et al., 2012; Liu et al., 2014; 
Tang et  al., 2015; She et  al., 2017). Therefore, there is a need to 
investigate the effect of a plant pathogen on microbial diversity in 
different crops that have been growing continuously for a long period. 
It is known that plant species or soil environment influence the soil 
microbial diversity composition (Harrison and Bardgett, 2010; Huang 
et  al., 2014). The plants adapt to biotic stresses by modifying the 
chemistry of their root exudates to assemble a health-promoting 
microbiome, such as the “cry for help” hypothesis, which provides a 
mechanistic explanation for previously described soil feedback 
responses to plant diseases, such as the development of disease-
suppressive soils following continuous cultivation of take all-infected 
wheat (Rolfe et al., 2019). Din et al. (2021) revealed that the diversity 
and composition of the rhizosphere microbiome associated with 
wheat crops changed after T. laevis infection. However, issues 

associated with wheat, alfalfa, and oat crops are caused by alterations 
in the rhizosphere in response to diseases, the cultivation area of these 
crops has decreased sharply in recent years in Gansu province.

Here, to obtain an inclusive understanding of the rhizosphere soil 
microorganisms in wheat, alfalfa, and oat crops in Gansu province, 
China, after T. laevis infection, for comparatively exploring fungal and 
bacterial communities, we subjected fungal and bacterial communities 
from wheat, alfalfa, and oat cropping fields in Gansu province, China, 
to high-throughput sequencing, and we used redundancy analysis 
(RDA) to analyze relationships between soil microbial communities 
and soil properties with enzyme activities.

2 Results

2.1 Changes in physical and chemical 
properties of soil and its enzyme activities 
by Tilletia laevis

The basic chemical characteristics of soil from Gansu Province 
from the fields of wheat, alfalfa, and oat are listed in Table 1. The total 
nitrogen (TN), total phosphorus (TP), and total kalium (TK) of soil 
range from 0.46 to 1.28 g/kg, 0.66 to 0.94 g/kg, and 17.48 to 18.36 g/kg, 
respectively. Similarly, nitrate nitrogen (NO3(−)–N), ammonium 
nitrogen (NH4(+)–N), and available phosphorus (AP) ranged from 0.74 
to 54.48 mg/kg, 0.47 to 2.52 mg/kg, and 6.79 to 22.44 mg/kg, respectively. 
The range of available kalium (AK), organic carbon (OC), moisture 
content (MC), and pH varied from 109.40 to 352.20 mg/kg, 4.53 to 
11.18 g/kg, 0.77 to 15.30%, and 8.25 to 8.80, respectively (Table 1). The 
activities of various enzymes were investigated in topsoil and 
rhizosphere soil in various crops. The statistical analysis showed that 
invertase, phosphatase, urease, and catalase enzymes were significant in 
different treatments. The invertase was the highest in TFL2, with 46.29 
(mg/g), and the lowest in CK1, with 9.19 (mg/g). The phosphatase and 
urease were the highest in TFL2 and CK4, with 3.29 (mg/g) and 2.01 
(mg/g), respectively, and the lowest in CK and TFL1, with 1.32 (mg/g) 
and 0.14 (mg/g), respectively. Similarly, catalase was the highest in 
TFL2, with 1.53 (ml/g), and the lowest in CK5, with 1.57 mL/g (Table 2).

2.2 The influence of different types of soil 
on microbial diversity by Tilletia laevis

Across all (Garrett et al., 2018) rhizosphere soil samples, a total of 
4,551,828 original bacterial sequences were obtained and 4,415,176 high-
quality bacterial sequences were obtained from all samples. Similarly, 
4,178,521 original fungal sequences were obtained, of which 3,900,304 
were high-quality sequences. These bacterial and fungal sequences were 
on OTUs with 97% similarity levels. A total of 13,628 bacterial OTUs and 
3,606 fungal OTUs were left after leveling (Supplementary Table S1).

2.3 Diversity and species richness of 
bacterial and fungal community by Tilletia 
laevis

Alpha diversity was analyzed based on the Chao1 and Shannon 
diversity indexes to assess the robustness of the dataset (Figure 1). The 
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Chao1 index reflects species richness in samples, without considering 
the abundance of every species (Qiao et al., 2017). For bacteria, results 
showed that TFL2 and TFL3 soils have significantly higher species 
richness compared to CK1-5, TFL1, 4–5, TFL, and CK measured by 
Chao 1 index (Figure 1A). Additionally, for the Shannon diversity 
estimates, the CK5, TFL3 and TFL2 soils have significant higher 
diversity compared to TFL1, 4–5, CK1, 3–4, TFL, and CK (Figure 1B). 
For fungi, TFL1 and TFL rhizosphere soils have significant higher 
species richness than CK, CK1-5, and TFL2-5(Figure  1C). 
Additionally, for the Shannon diversity estimates, CK1 and TFL5 soils 
have significant higher diversity than CK, TFL, TFL1, 2–4, and CK2-5 
(Figure  1D). We  further conducted a comparison of the species 
diversity among different microbial communities. The principal 
coordinates analysis (PCoA) based on the Bray–Curtis distance 
between samples was visualized to analyze the differences in bacterial 
and fungal community diversity between groups. The samples of the 
same replicates clustered together indicated the level of significance. 
Additionally, samples formed distinct clusters, revealing that the 
largest source of variation was noted in the microbial community. The 
PCoA analysis bacterial OTUs showed the maximum variation of 
14.22% (PC1) and 12.31% (PC2), as shown in Figure 2A and fungal 
OTUs showed the maximum variation of 15.44% (PC1) and 13.1% 
(PC2), as shown in Figure 2B.

2.4 Dominant phyla and genera of bacterial 
and fungal communities

There were differences in the diversity indexes within the 12 
samples analyzed demonstrating specific trends within different soil 
samples. The sequences that could not be classified into any known 
group are allocated as other and unidentified. The relative abundance 
of bacterial and fungal communities of T. laevis infected and control 
samples were different from each other. For bacteria, a total of 12 were 
distributed at the phylum level. Results showed that the phylum 
Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and 
Gemmatimonadetes were the dominant phyla in above samples than 
other phylum (Figure 3A). Similarly, for the fungus, the dominant 
phyla were Ascomycota, Basidiomycota, and Mortierellomycota, as 
compared to other phyla (Figure 3B).

2.5 Correlation between microbial 
communities with soil properties and 
enzyme activities

In all samples, the bacterial and fungal OTUs were correlated with 
soil properties and enzyme activities using redundancy analysis (RDA). 
The RDA based on OTU reads, soil properties, and enzyme activities 
were carried out for the various soil samples in Gansu province, China. 
The relationship between bacterial communities and soil properties is 
illustrated in Figure  4A (RDA1 = 21.89%, RDA2 = 12.44%), the 
relationship between fungal communities and soil properties is illustrated 
in Figure 4B (RDA1 = 29.22%, RDA2 = 25.53%). Similarly, the relationship 
between bacterial communities and enzyme activity is illustrated in 
Figure 4C (RDA1 = 19.43%, RDA2 = 8.32%) and relationship between 
fungal communities and enzyme activity are illustrated in Figure 4D 
(RDA1 = 25.35% and RDA2 = 20.74%). The length of the arrow in the T
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TABLE 2 Summary of soil enzyme activities under different planting patterns.

Treatments Inverting (INV) 
(mg/g)

Phosphatase (PHO) 
(mg/g)

Urease (URE) 
(mg/g)

Catalase (CAT) 
(ml/g)

CK 13.07 ± 0.125 b 1.32 ± 0.068 a 1.70 ± 0.028 h 1.61 ± 0.035 b

TFL 21.63 ± 0.162 f 1.75 ± 0.020 c 1.90 ± 0.077 i 1.98 ± 0.009 f

CK1 9.19 ± 0.120 a 1.58 ± 0.080 b 0.17 ± 0.017 a 1.73 ± 0.062 d

TFL1 17.82 ± 0.340 e 2.23 ± 0.069 e 0.14 ± 0.014 a 1.85 ± 0.039 e

CK2 14.22 ± 0.192 c 1.85 ± 0.064 cd 0.32 ± 0.027 b 1.75 ± 0.027 d

TFL2 46.29 ± 0.898 L 3.29 ± 0.055 h 0.73 ± 0.031 c 1.53 ± 0.016 a

CK3 38.29 ± 0.206 k 2.98 ± 0.040 g 1.15 ± 0.026 f 1.95 ± 0.046 f

TFL3 24.30 ± 0.722 g 1.97 ± 0.192 d 0.80 ± 0.020 d 1.88 ± 0.056 e

CK4 34.02 ± 1.112 i 3.10 ± 0.208 g 2.01 ± 0.091 j 1.88 ± 0.035 e

TFL4 27.83 ± 0.565 h 2.69 ± 0.135 f 0.16 ± 0.017 a 1.66 ± 0.023 c

CK5 15.61 ± 0.336 d 1.39 ± 0.063 a 1.06 ± 0.041 e 1.57 ± 0.026 ab

TFL5 35.84 ± 0.503 j 2.58 ± 0.109 f 1.53 ± 0.043 g 1.96 ± 0.019 f

Different letters indicate significant differences between different planting modes (ANOVA, p < 0.05) analysis.

FIGURE 1

Chao1 and Shannon diversity analysis in the top layer and rhizosphere soil of wheat, alfalfa, and oat crops from pathogen trials inoculated with T. laevis. 
(A) Chao1 analysis of bacterial community. (B) Shannon analysis of bacterial community. (C) Chao1 analysis of fungal community. (D) Shannon analysis 
of fungal community.
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RDA plot indicates the degree of correlation among sample distribution, 
soil properties, and enzymatic activity. The results demonstrated that TP, 
AP, pH, OC, and TN showed the most significant correlation with 
bacterial community, while AP, NO3-H, and WC showed the least 
correlation with bacterial community structure in all soil samples 
(Figure 4A). Similarly, organic carbon (OC), TN, TP, AP, pH and NH4+-N 
showed the most significant correlation with fungal community, while 
NO3–N and moisture content (MC) revealed the least correlation with 
fungal community structure in all soil samples (Figure 4B). Additionally, 
bacterial community and enzyme activity analysis revealed that URE, 

INV, and PHO exhibited the most significant correlation in all samples, 
except CAT, which revealed the least correlation (Figure 4C). Moreover, 
PHO, INV, and URE enzymes showed the most significant correlation 
with fungal community structures in all samples (Figure 4D).

3 Discussion

In this study, using high-throughput sequencing, we analyzed 
bacterial and fungal communities in wheat, alfalfa, and oat crop fields 

FIGURE 2

PCA of the OTUs detected major variations in the bacterial and fungal communities in three (wheat, alfalfa, and oat) crops. The OTUs differentiate 
based on the plant type and soil type. (A) PCAs analysis for bacterial community OTUs. (B) PCAs analysis for fungal community OTUs.

FIGURE 3

The relative abundance of the dominant bacterial and fungal taxa in Gansu province in three (wheat, alfalfa, and oat) crops at the phylum and genus 
levels. (A) Relative abundance of bacterial community at the phylum level. (B) Relative abundance of fungal community at the phylum level. Sequences 
not classified into any known group were designated as “other”.
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in Gansu Province, China. According to the α-diversity analysis, the 
overall diversity of bacterial and fungal community compositions 
differed among the soil samples. The Chao1 α-diversity and Shannon 
analysis revealed that the diversity of microbial communities is 
different in different crops (Figure 1). This may be due to different 
soil characters and crops in different periods. For bacteria, the 
Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, 
Gemmatimonadetes, and Bacteroidetes, while for fungus, the 
Ascomycota, Basidiomycota, and Mortierellomycota were the 
dominant phyla (Figure 3), which was by the findings of previous 
studies (Zhou et al., 2019; Wang et al., 2020; Din et al., 2021). These 
phyla were also dominant in fields of soybean (Li et al., 2010), peanut 
(Li et al., 2014), and tobacco (She et al., 2017), as well as in T. laevis 
(Din et al., 2021) and root-knot nematode-infected (15)fields. The 
members of Proteobacteria play an important role in S, N, and C in 

soil (Nosheen et al., 2016). Previous studies revealed that there is 
greater abundance of Proteobacteria in fertile soil as compared to 
diseased soil (Wang et  al., 2017). However, in our results, the 
percentage of Proteobacteria was the highest in TFL2 (alfalfa 
rhizosphere soil infected with T. laevis) from different crops after 
T. laevis infection. The Acidobacteria and Actinobacteria are key 
players in the suppression of fungal pathogen F. oxysporum (Trivedi 
et al., 2017). The Bacillus is a genus of Firmicutes, which has the role 
of controlling soil-borne pathogens and can stimulate plant growth 
activities as a beneficial microbe (Jos et  al., 2008). For instance, 
Bacillus spp. inhibits R. solanacearum infection, which causes 
bacterial wilt (Guo et al., 2004; Tan et al., 2010; Muhae-ud-Din et al., 
2018). Additionally, application of Bacillus spp. as a fertilizer can 
increase the soil microbial diversity (Huang et al., 2012). Therefore, 
Firmicutes are the best options to improve the soil microbial 

FIGURE 4

Redundancy analysis (RDA) based on bacterial and fungal OUT data with chemical properties and enzyme activity in three (wheat, alfalfa, and oat) 
crops after T. laevis infection. (A) The relationship between bacterial community and chemical properties of soil. (B) The relationship between fungal 
community and chemical properties of soil. (C) The relationship between bacterial community and enzyme activity. (D) The relationship between 
fungal community and enzyme activity.
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community and are influenced by soil-borne pathogens (Wang et al., 
2020; Din et al., 2021). In our study, the relative abundance of fungal 
and bacterial rhizosphere microorganisms significantly changed in 
T. laevis-inoculated samples as compared to control samples with the 
increased abundance of Ascomycota, Basidiomycota, Proteobacteria, 
and Acidobacteria. These changes could be attributed to a change in 
the root exudation patterns in the presence of soil-borne pathogens, 
a higher prevalence of dead roots, and microbial competition (Jones 
et al., 2009; Berendsen et al., 2012; Zahar et al., 2014; Dudenhöffer 
et al., 2016; Gu et al., 2016). These rhizosphere soil microorganisms 
have a role in changing redox conditions, C flow, soil pH, and the 
production of rhizodeposits, including the release of root exudates of 
various natures (Hinsinger et al., 2003; Jones et al., 2009; Dennis 
et  al., 2010). In our results, Ascomycota, Basidiomycota, and 
Mortierellomycota were the dominant phyla, which were consistent 
with the findings of previous studies (Xu et al., 2018; Din et al., 2021). 
The Basidiomycota and Ascomycota are important groups of fungi in 
most types of soils (Wallenstein et al., 2007; Unterseher et al., 2013), 
and species of these phyla are involved in crop cycling by degrading 
organic substances (Unterseher et al., 2013; Purahong et al., 2016). 
We  observed significant changes in the relative abundance of 
Basidiomycota and Ascomycota in our samples, especially in CK-4, 
the relative abundance of Ascomycota was the highest compared to 
other soil samples.

The soil properties, including available N and soil pH, are 
influenced directly or indirectly by plant pathogens (Lazcano et al., 
2021). Soil properties play an important role in plant nutrient 
acquisition and resistance to biotic and abiotic stresses (Eaton et al., 
2012; Yu et al., 2022; Tiecher et al., 2023), such as adequate total 
nitrogen (TN) levels, vigorous plant growth, and higher yields. 
Phosphorus (TP) and total kalium deficiency can limit crop growth 
and yield, and low levels of NO3(−)-N can limit plant growth. 
NH4(+)-N can be influenced by soil pH and temperature, Adequate 
phosphorus (AP) levels are crucial for early root development and 
flowering. Available kalium (potassium) deficiency can increase 
susceptibility to diseases and stress. High organic carbon (OC) 
content, moisture content (MC), and pH can influence nutrient 
availability, microbial activity, and plant growth, excessive and low 
levels both will hinder nutrient uptake. Hence, we used RDA analysis 
for the relationship between environmental factors (including soil T, 
available K, soil pH, TN, and urease activity) and soil microbial 
composition. RDA results showed that environmental factors 
differentially affected the fungal and bacterial communities, which 
were proven by various previous studies (Zhang et  al., 2005; 
DeAngelis et  al., 2015; Zhou et  al., 2017). Urease catalyzes the 
breakdown of urea into NH3 and CO2, which may be good for soil 
quality (Jezierska-Tys and Rutkowska, 2014). The plants and 
rhizosphere soil microorganisms release urease enzymes 
(Follmer, 2008).

The plant pathogens cause a decline in the urease activity, and 
positive correlations between soil micro-organisms and urease have 
been previously found (Lazcano et al., 2021).

Soil microbial communities were altered in response to pathogen 
infection, leading to changes in soil enzymatic activities and nutrient 
availability (Mendes et  al., 2013). Pathogen-infected plants may 
exhibit altered nutrient uptake and cycling dynamics. For example, 
Phytophthora infestans infection in potato plants can lead to changes 

in phosphorus cycling and availability in the soil; pathogen infections 
can decrease crop yield globally, with significant variation depending 
on the pathogen and crop species (Garrett et al., 2018). Pathogen 
infections can alter the composition and function of soil microbial 
communities, which play crucial roles in nutrient cycling, disease 
suppression, and plant health. For example, Fusarium oxysporum 
infection in different common beans has been shown to reduce 
microbial diversity and alter soil bacterial community composition 
(Hollander, 2018). Similarly, in our results, the urease activity changed 
after T. laevis inoculation in different crops (Table 2). Previous studies 
revealed that N has a role in regulating the rhizosphere soil microbial 
community (Cleveland et al., 2007; Högberg et al., 2014), and urease 
activity increased by the N application from 247 to 433 mg/kg (Liang 
et al., 2016; Lei et al., 2018). Therefore, N provides a good means to 
increase the urease activity to increase the soil micro-biota. However, 
a high concentration of ammonia can reduce the activity of the urease 
enzyme (Piotrowska and Wilczewski, 2012). Additionally, TN has a 
major role in influencing the fungal and bacterial community (Wang 
et al., 2020).

In conclusion, according to the RDA analysis of rhizosphere 
microorganisms and environmental factors in Gansu province, a 
positive correlation was noted in the chemical properties and enzyme 
activity of rhizosphere and top-layer soil. We  explored some 
dominant fungi and bacterial phyla in the rhizosphere and top soil in 
infected wheat by T. laevis, such as Proteobacteria, Acidobacteria, 
Actinobacteria, Chloroflexi, Ascomycota, Basidiomycota and 
Mortierellomycota, which were related to T. laevis, we may reduce the 
content of this may contribute to the control of T. laevis shortly, and 
we may isolate these to explore the interaction with T. laevis (Jin et al., 
2023; Zhou et al., 2023). Even though some taxa belong to the same 
genus, they can have different functions in the control of different 
pathogens. Additionally, nitrogen, total kalium, ammonium nitrogen, 
available kalium, and organic carbon were increased after T. laevis 
infection, so, reducing these elements may also contribute to 
controlling wheat’s common bunt disease which is caused by T. laevis. 
Hope shortly, we can control the wheat’s common bunt disease with 
efficient and friendly microbiology and the elements 
mentioned above.

4 Materials and methods

4.1 Site description and sample collection

The experimental site was located in Gansu Province, 32°11′ - 42 
°57″ N and 92 °13 ′-108 ° 46″ (E). The soil samples were collected from 
a depth of 6 cm with a stainless-steel cylindrical driller and 
immediately stored in a portable refrigerator at −20°C for further use. 
The samples were passed out from a 2 mm sieve to remove the debris 
and stored at −20°C for next use. We collected samples from topsoil 
and rhizosphere soil from five plants and pooled them into one 
sample. A total of 12 soil samples from wheat, alfalfa, and oat crops 
were collected and stored in plastic bags and shifted on ice to the 
laboratory. One-half of each soil sample was stored at −20°C for 
biochemical and biological analyses, and the remaining were used for 
chemical analysis. Every sample was investigated in triplicate. Detailed 
information about samples is illustrated in Table  3. The T. laevis 
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culture was collected from the Institute of Plant Protection, Chinese 
Academy of Agricultural Sciences, Beijing, China. With the teliospores 
from infected wheat tassels and the concentration of T. laevis, 
infectious hyphae were adjusted to 106 cfu/mL with an OD600 of 0.15. 
Five inoculations of T. laevis infectious hyphae were inoculated into 
the root zone of all the above-mentioned crop varieties, with three 
biological replicates as described (Din et al., 2021), and three sets of 
each variety were used as controls.

4.2 Analysis of soil basic properties and 
enzymatic properties

Soil basic properties, including TP, AP, pH, NO3(−)-N, NH4(+)-N, 
OC, and TN were analyzed by using redundancy analysis (RDA) with 
CANOCO 4.5 (Biometrics, Wageningen, The Netherlands). These 
basic properties of soil were analyzed by following the method of 
previous reports (Xu et  al., 2018; Wang et  al., 2020). The sodium 
phenate and sodium hypochlorite colorimetric methods were used to 
determine soil urease and other enzyme activities (Vlek et al., 1980).

4.3 DNA extraction and PCR amplification

DNA extraction was performed from 5 gm of each homogenized 
soil sample as previously described (DeSantis et al., 2005) and purified 
using the PowerSoil® DNA isolation kit (MO BIO, Carlsbad, CA, 
United States), according to the manufacturer’s instructions. DNA 
concentration was quantified on a NanoDrop spectrophotometer 
(Thermo Scientific). The primer sequences for T. laevis were ITS1F 
(5- CTTGGTCATTTAGAGGAAGTAA −3) and ITS2 (5- 
TGCGTTCTTCATCGATGC -3). PCR amplification was performed 
by using 25 μL mixture, including 12.5 μL KAPA 2G robust hot start 
ready mix, 1 μL forward primer (5 μM), 1 μL reverse primer (5 μM), 
5 μL DNA (30 ng), and 5.5 μL ddH2O. Following an initial denaturation 
at 95°C for 5 min, PCR was cycled 28 times at 95°C for 45 s, 55°C for 
50 s, and a final extension at 72°C for 10 min. PCR products were 
purified using the AMPure XP kit (Beckman Coulter, Life Sciences).

4.4 High-throughput sequencing and data 
analysis

Deep sequencing was performed on MiSeq platform allergens 
Technology Inc. (Biotechnology, Beijing). After the run, image 
analysis, base calling, and error estimation were performed using 
Illumina analysis pipeline version 2.6. The samples were sequenced 
based on the following bases: (1) the sequence with precise primers 
and bar codes; (2) quality score ˃20; and (3) the sequences >230 bp in 
length. The data analysis was done by following the method of 
published procedures (Wang et al., 2020; Din et al., 2021). Additionally, 
visualization of beta-diversity information was achieved via ordination 
plotting with non-metric multidimensional scaling (NMDS) (Tian 
et al., 2018).
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