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Aim: This study aimed to determine the kinetics of occult hepatitis B virus 
infections (OBI) among people with HIV (PWH).

Methods: The study used archived plasma samples from longitudinal HIV natural 
history studies. We identified new OBI cases and assessed risk factors for OBI 
using Cox proportional hazards regression analysis.

Results: At baseline, 8 of 382 [(2.1%) (95% CI: 1.06–4.1)] samples tested positive 
for hepatitis B surface antigen (HBsAg+). Of the 374 HBsAg-negative samples, 
76 had sufficient sample volume for HBV DNA screening. OBI positivity (OBI+) at 
baseline was reported in 11 of 76 [14.7 95% CI (8.3–24.1)] HBsAg-negative (HBsAg−) 
participants. Baseline HBsAg-negative samples with sufficient follow-up samples 
(n = 90) were used for analysis of newly identified OBI cases. Participants contributed 
129.74 person-years to the study and were followed for a median of 1.02 years 
(IQR: 1.00–2.00). Cumulatively, there were 34 newly identified OBI cases from the 
90 participants, at the rate of 26.2/100 person-years (95% CI: 18.7–36.7). Newly 
identified OBI cases were more common among men than women (61.1% vs. 31.9%) 
and among participants with CD4+ T-cell counts ≤450 cells/mL (p-value = 0.02). 
Most of the newly identified OBI cases [55.9% (19/34)] were possible reactivations as 
they were previously HBV core antibody positive.

Conclusion: There was a high rate of newly identified OBI among young PWH in 
Botswana, especially in men and in participants with lower CD4+ T-cell counts. 
OBI screening in PWH should be considered because of the risk of transmission, 
possible reactivation, and risk factors for the development of chronic liver 
disease, including hepatocellular carcinoma.
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1 Introduction

It is estimated that approximately 2.73 million people with human 
immunodeficiency virus (HIV) [PWH] worldwide are coinfected with 
hepatitis B virus (HBV), with 1.96 million residing in sub-Saharan 
Africa (71%) (WHO, 2023). HBV/HIV coinfection has been reported 
to have a worse disease outcome than either mono-infection (Pinchoff 
et al., 2016; Rajbhandari et al., 2016; Maponga et al., 2020). In a meta-
analysis, the prevalence of hepatitis B surface antigen (HBsAg) in 
PWH was reported as 5.3, 10, 6.7, and 11.4% in America, Europe, 
sub-Saharan Africa, and the World Health Organization (WHO) 
Western Pacific region, respectively (Leumi et al., 2020). In Botswana, 
HBsAg prevalence in PWH ranges between 3.1 and 10.6% (Wester 
et al., 2006; Matthews et al., 2015; Anderson et al., 2016; Mbangiwa 
et al., 2018; Phinius et al., 2023).

The detection of the hepatitis B surface antigen (HBsAg) is used 
for the routine screening of HBV (Raimondo et al., 2019). However, 
occult hepatitis B virus infections (OBI) are missed when only HBsAg 
is evaluated. OBI is described as the detection of replication-
competent HBV deoxyribonucleic acid (DNA) in the liver/blood in 
the absence of detectable HBsAg in the blood (Raimondo et al., 2019). 
OBI presents as either seropositive or negative (i.e., for hepatitis B core 
antibody [anti-HBc] and/or HBV surface antibody) (Ryan et al., 2017; 
Raimondo et al., 2019; Gherlan, 2022). Isolated anti-HBc is often used 
as a proxy for OBI (Raimondo et al., 2019; Gherlan, 2022). The clinical 
relevance of OBI has been demonstrated in several studies (Cheung 
et al., 2010; Candotti et al., 2019; Eilard et al., 2019; Lelie et al., 2021; 
Satake et  al., 2023). HBV from participants with OBI can 
be  transmitted through blood transfusions and solid organ 
transplantations (Cheung et al., 2010; Candotti et al., 2019; Eilard 
et al., 2019; Lelie et al., 2021; Satake et al., 2023). OBI is common 
among PWH (Ryan et al., 2017; Raimondo et al., 2019; Phinius et al., 
2023) and has also been detected in patients with serious clinical 
conditions such as hepatocellular carcinoma (HCC) and cirrhosis 
(Kew et  al., 2008; Coppola et  al., 2016; Ndow et  al., 2022). This 
highlights the importance of proper diagnosis of OBI in both 
symptomatic and asymptomatic individuals. OBI prevalence rates 
ranging from 0 to 89.5% have been reported across the world in 
different at-risk groups, although the rates cannot be  compared 
directly because of differences in the sensitivity of tests used and in the 
testing algorithms (Yuen et  al., 2010; Bell et  al., 2012; Escobedo-
Melendez et al., 2014; Vargas et al., 2016). Reactivation of OBI can 
result in acute HBV infection in immunocompromised participants 
(Zachou et  al., 2013). Additionally, in Botswana, work from our 
research group consistently reported more OBI positivity compared 
to HBsAg positivity. OBI prevalence in Botswana ranges between 6.6 
and 33%, whereas HBsAg prevalence ranges between 2.1 and 8% 
(Ryan et al., 2017; Mbangiwa et al., 2018; Phinius et al., 2023).

Several factors may contribute to OBI. These include coinfections 
with HIV and/or hepatitis C virus, differences in host immune 
response in addition to epigenetic mechanisms, presence of HBsAg/

hepatitis B surface antibody (anti-HBs) complexes, methylation of the 
HBV DNA, viral mutations, resolved HBsAg-positive infections, and 
reactivations (Lada et al., 2006; Mphahlele et al., 2006; Vivekanandan 
et al., 2008; Mallet et al., 2011; Zachou et al., 2013; Powell et al., 2015, 
2016; Mardian et al., 2017; Raimondo et al., 2019; Wang et al., 2021, 
2023; Gherlan, 2022; Kramvis et al., 2022; Zhang et al., 2022).

HIV has been shown to accelerate HBV infection progression, but 
the impact of HBV on the natural course of HIV has not been fully 
elucidated (Corcorran and Kim, 2023). In people with HBV, HIV leads 
to increased mortality, increased HBV chronicity, high HBV DNA 
levels, and hepatitis B e antigen (HBeAg) positivity (Hoffmann and 
Thio, 2007; Pinchoff et al., 2016; Rajbhandari et al., 2016; Maponga 
et al., 2020). The impact of HBV on HIV is less clear as some studies 
have shown that coinfection with HBV has no impact on the 
immunological or virological response to antiretroviral therapy (ART) 
in PWH (Hoffmann et al., 2009; Demosthenes et al., 2019). Most of 
the studies on the impact of HBV/HIV coinfection in natural disease 
progression were carried out in the HBsAg-positive individuals as in 
the studies described above. In contrast, there is a paucity of data on 
OBI natural disease progression owing to the few longitudinal studies 
on OBI, especially in Africa, where different genotypes/subgenotypes 
of HBV and subtypes of HIV circulate (Amponsah-Dacosta et al., 
2018; Singh et al., 2019). A study in China followed seven OBI-positive 
blood donors, and all were HBV DNA negative at 1-year follow-up, 
without an intervention (Ye et  al., 2016). Another study in Italy 
followed HCV-positive individuals and showed an association 
between OBI/HCV coinfection and an increased risk of progression 
to cirrhosis, HCC, and decreased survival rates (Squadrito et  al., 
2013). Chen et al. did not observe any association between OBI and 
worse clinical outcomes (Chen et al., 2017). Ignoring OBI might make 
the goal of eliminating viral hepatitis unattainable as it is a potential 
source of HBV transmission, morbidity, and mortality (de Almeida 
and de Paula, 2022). Therefore, we aimed to determine the kinetics of 
OBI in treatment-naïve PWH in Botswana.

2 Methodology

2.1 Study design, population, and sample 
size

This was a retrospective longitudinal study of antiretroviral 
therapy (ART)-naïve adults with HIV from Botswana. Archived 
plasma samples from two HIV natural progression studies 
(Botsogo and Dikotlana)—which were conducted at the Botswana 
Harvard Health Partnership in Gaborone, Botswana—were utilized 
for this study. Botsogo enrolled 442 participants and followed them 
up for 4 years (2005–2009) to determine the natural HIV 
progression (Farahani et al., 2016). Dikotlana study enrolled 878 
(219 randomized to receive placebo, + 219 participants randomized 
to receive multivitamins alone, + 220 randomized to receive 
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Selenium alone, and +220 randomized to receive multivitamins 
plus selenium) and followed for at least 24 months from 2004 to 
2009 to evaluate the effect of micronutrient supplementation on 
disease progression (Baum et al., 2013). All available samples from 
the Botsogo and placebo group in Dikotlana study were used. A 
total of 382 samples from the two cohorts were screened. 
Participant selection was based on the availability of stored 
samples. The entire cohort was ART-naïve at baseline and at all 
subsequent visits as they did not qualify for ART according to the 
Botswana HIV treatment guidelines at that time that required 
PWH to have a certain CD4+ T-cell count threshold or an AIDS-
defining illness for them to qualify for ART. None of the 
participants had cancer during the entire study period.

2.1.1 Ethical approval and consent
The study was approved by the ethics review committee of the 

University of Botswana and the Health Research Development 
Committee (HRDC) at the Botswana Ministry of Health [Ethics 
permit number: PPME 13/1811V(318)]. The study participants 
provided written informed consent. This study was performed in 
line with the principles of the Declaration of Helsinki.

2.2 Laboratory methods

2.2.1 HBV screening
Participant plasma samples were screened for HBsAg using the 

enzyme-linked immunosorbent assay (ELISA) Murex HBsAg 
version 3 kits (Murex Biotech, Dartford, UK) with a lower limit of 
detection of 0.13 IU/mL according to the manufacturer’s data 
(WHO, 2014). The QIAsymphony DSP Virus/Pathogen Kit was 
used to extract total nucleic acids in 600 μl of all samples with 
sufficient sample volume using an automated platform—
QIAsymphony—according to the manufacturer’s instructions and 
eluted in 60 μl of buffer (Qiagen, Hilden, Germany). All HBsAg-
negative samples were screened for OBI using an in-house HBV 
qualitative real-time polymerase chain reaction (qPCR) assay 
adapted from Kramvis’s research group with a lower limit of 
detection (LoD) of ∼20 IU mL (Bell et al., 2012). The real-time 
assay was performed in duplicate, and discordant results were 
repeated. This lower LoD is comparable to commercial platforms 
at 10–20 IU/mL and other in-house assays (Motta et al., 2010). 
These laboratory tests were performed at 12-month (1-year) 
intervals. The samples were also screened for anti-HBc using 
MONOLISA Anti-HBc PLUS (Bio-Rad, Marnes-la-Coquette, 
Paris, France) according to the manufacturer’s instructions at 
yearly intervals. HBV-positive samples (HBsAg and/or OBI 
positive) were screened yearly for HBeAg and anti-HBc 
immunoglobulin M (IgM) using MONOLISA HBeAg-Ab PLUS Kit 
(Bio-Rad, Hercules, CA) and MONOLISA Anti-HBc PLUS (Bio-
Rad, Marnes-la-Coquette, Paris, France) respectively according to 
manufacturer’s instructions. Botsogo HBsAg screening and first 
time point anti-HBc screening were done in a separate study also 
using Murex HBsAg version 3 kits (Murex Biotech, Dartford, UK) 
and MONOLISA Anti-HBc PLUS (Bio-Rad, Marnes-la-Coquette, 
Paris, France), respectively, according to manufacturer’s 
instructions as outlined above (Phinius et al., 2020). The remaining 
Botsogo screening tests were performed with the Dikotlana 

samples; hence, the two cohorts were screened for similar HBV 
markers using similar methods. We assessed liver injury using the 
non-invasive markers, aspartate aminotransferase (AST)-to-
platelet ratio index (APRI), and FIB-4.1 The APRI score is equal to 
100 × (AST/40)/platelet, whereas the FIB-4 value is calculated as 
age [years] × AST [IU/L]/√ [PLT [109/L] × (ALT [IU/L])].

2.2.2 Data analysis
We estimated the rate of newly identified OBI cases with a 95% 

confidence interval (CI). Follow-up time for each patient was 
calculated from the baseline date of enrollment to the exact visit date 
of the first OBI result for OBI-positive cases and to the last date of an 
available sample for those that remained OBI-negative. The Cox 
proportional regression method was used to estimate hazard ratios 
(sex, age, HIV viral load suppression [≤400 or > 400] copies/mL, 
CD4+ T-cell count [≤450 or > 450] cells/mL) as prior studies have 
suggested a cutoff of 450 cells/mL for ART initiation for an increased 
survival rate as compared with lower CD4+ T-cell counts (Jain and 
Deeks, 2010; Ntekim and Folasire, 2010; Stohr et al., 2013; Assoumou 
et al., 2015). Fisher’s exact or chi-squared tests were used to compare 
categorical data where appropriate, whereas Wilcoxon rank sum or 
Kruskal–Wallis tests were used to compare continuous variables. Stata 
version 18.0 (StataCorp LLC, College Station, Texas, USA) was used 
to conduct all statistical analysis. p-values less than 0.05 were 
considered statistically significant.

3 Results

3.1 HBsAg and HBV DNA screening results

At baseline, 8 of 382 [(2.1%) (95% CI: 1.06–4.1)] samples of PWH 
tested positive for HBsAg (HBsAg+). Of the 374 HBsAg-negative 
samples, only 76 had sufficient sample volume for HBV DNA 
screening. OBI positivity (OBI+) was reported in 11 of 76 [(14.7%) 
(95% CI: 8.3–24.1)] HBsAg-negative (HBsAg−) participants at 
baseline. At year 1, 340 participants were screened for HBsAg of which 
306 were also screened at baseline; 24 of 340 [(7.1%) (95% CI: 
4.8–10.3)] were HBsAg positive at year 1. Of the 340 participants, 122 
[10 HBsAg+ + 111 HBsAg− + 1 HBsAg not tested (NT)] had samples 
with sufficient volume for HBV DNA screening of which 67 were also 
screened at baseline. A total of 37 (5 HBsAg+ + 32 OBI+) samples were 
HBV DNA+, which gives HBV DNA+/ HBsAg− (OBI+) rate of 32/111 
[(28.8%) (95% CI: 21.2–37.9)] at year 1. Of the 122 participants 
screened for HBV DNA at year 1, there were 10 HBsAg+ and 32 OBI+ 
participants; hence, 32 of 42 (76%) cases with markers of active HBV 
infection were OBI. At year 2, 14 of 280 [(5%) (95% CI: 3–8.2)] 
participants who had available/sufficient sample tested positive for 
HBsAg, of which 248 and 273 were also screened at baseline and year 
1, respectively. Of the 280 participants, 107 (9 HBsAg+ + 97 HBsAg− + 1 
HBsAg NT) had samples with sufficient volume for HBV DNA 
screening of which 56 and 92 were also screened at baseline and year 
1, respectively. A total of 40 (8 HBsAg+ + 32 OBI+) samples were HBV 

1 https://iris.who.int/bitstream/handle/10665/376353/9789240090903-eng.

pdf?sequence=1
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DNA+, which gives OBI+ rate of 32 of 97 [(33%) (95% CI: 24.4–42.8)] 
at year 2. Of the 107 participants screened for HBV DNA at year 2, 
there were 9 HBsAg+ and 32 OBI+ participants; hence, 32 of 41 (78%) 
cases with markers of active HBV infection were OBI 
(Supplementary Figure S1; Figure 1A,B). There was no statistically 
significant difference between HBV-negative (HBsAg negative and 
OBI negative), HBsAg-positive, and OBI-positive participants for all 
variables tested at baseline except ALT. Participants with positive 
HBsAg serology had a significantly higher ALT level at baseline, 
although it should be noted that only four HBsAg+ participants had 
ALT data, Table 1.

3.2 HBsAg persistence/clearance

At baseline, there were eight HBsAg+ participants, all of whom 
were anti-HBc positive (anti-HBc+). The eight participants were 
retested at years 1 and 2; four participants remained HBsAg+ at both 
years 1 and year 2. At year 1, there were 24 HBsAg+ participants 
including 4 from baseline. Of the 20 newly identified HBsAg+ cases, 
14 were incident cases as they were anti-HBc negative (anti-HBc−) at 
baseline. Only one was a possible reactivation as the participant was 
anti-HBc+ at baseline, whereas five participants could not be classified 
as they had no baseline anti-HBc results. Of the 24 HBsAg+ 

FIGURE 1

(A) Schematic flow chart of screening of HBV markers. (B) OBI kinetics. +, positive; −, negative; NT, not tested; anti-HBc, hepatitis B core antibody; 
HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; anti-HBc IgM, hepatitis B core antibody immunoglobulin M; OBI, occult hepatitis B 
infection; DNA, deoxyribonucleic acid; NB, some participants did not have available samples/sufficient volume for all tests. Some visits had more 
available samples than others.
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participants, 20 were tested again at year 2, and 7 (35%) remained 
HBsAg+. At year 2, 14 participants were HBsAg+ including 7 from year 
1. Of the 7 newly identified HBsAg+ cases, all were incident cases as 
six were anti-HBc− at baseline, whereas one participant was not tested 
for anti-HBc at baseline. However, that participant was anti-HBc− at 
year 1.”

3.3 Anti-HBc results for OBI-positive 
participants

Participants with enough sample volume were further screened 
for anti-HBc as shown in Supplementary Figure S1 and 
Figures 1A,B. At baseline, there were 11 OBI+ participants, of whom 
10 were tested for anti-HBc and 5/10 (50%) were anti-HBc+. At year 
1, there were 32 OBI+ participants, of whom 29 had sufficient samples 
for anti-HBc screening and 16 of 29 (55.2%) were anti-HBc+ OBI. Of 
the 77 participants who were screened at both baseline and year 1, two 
participants lost the anti-HBc, whereas two also became anti-HBc+ at 
year 1. At year 2, there were 32 OBI+ participants of whom only one 
participant had sufficient volume for anti-HBc screening, and the 
participant was OBI anti-HBc negative (anti-HBc-). Anti-HBc− OBI 
and anti-HBc+ OBI participants were compared. There was no 
difference in CD4+ T-cell count, HIV viral load, gender, age, AST, and 
ALT levels between anti-HBc− OBI and anti-HBc+ OBI participants at 
baseline and year 1 (results not shown).

3.4 DNA clearance/persistence in plasma

Over time, several OBI+ cases persisted (remained OBI+ over 
time), whereas others tested OBI− (HBV DNA-negative). This analysis 
was only possible for the OBI+ cases, who were tested at more than 1 
time point. At year 1, 10 participants who were OBI+ at baseline were 
tested and 5 of 10 (50%) remained OBI+. There were also 12 OBI+ 

incident cases (participants with samples who were previously 
HBsAg− and OBI−) and 15 OBI+ cases who were from participants 
being screened for OBI for the first time at year 1, resulting in a total 
of 32 OBI cases at year 1. At year 2, 19 participants who were OBI+ at 
year 1 were retested and 6 of 19 (31.6%) remained OBI+. Furthermore, 
26 participants tested OBI+, of whom 22 were OBI incident cases, two 
were OBI reversions (were OBI+ at baseline, became OBI− at year 1, 
and reverted to being OBI+ at year 2), one was due to HBsAg loss 
whereas another one was a participant being screened for the first time 
at year 2, giving a total of 32 OBI cases in year 2. Total new OBI cases 
over the 2-year period were 34, and one OBI case was because of 
HBsAg loss. Nineteen (55.9%) of the 34 new OBI cases were due to 
possible HBV reactivations as they were anti-HBc+ in previous visits. 
Two OBI+ participants, who had previously resolved OBI at year 1, 
reverted to OBI positivity at year 2, indicating intermittent OBI 
(Figure 1B).

3.5 Rate of newly identified OBI cases

The rate of newly identified OBI cases was subsequently analyzed, 
and only baseline HBsAg-negative samples with available follow-up 
samples were used for this analysis. This included HBsAg-negative 
samples, which did not have sufficient sample volume for DNA testing 
at baseline but had for subsequent visits. Testing was dependent on the 
availability of samples with sufficient volume for both HBsAg and 
HBV DNA screening. A total of 90 participants were followed up to 
estimate the rate of newly identified OBI cases over the entire 
follow-up period and approximately 80% (72/90) were women. 
Approximately 59% (43/73) of the participants had positive anti-HBc 
serology. Participant demographics were the same between those in 
the OBI estimation cohort and those who did not have available 
follow-up samples (Table 2). Participants contributed 129.74 person-
years to the study and were followed for a median of 1.02 years (IQR: 
1.00–2.00). Cumulatively, there were 34 newly identified OBI cases, 

TABLE 1 Participant demographics at baseline.

HBV negative (HBsAg and 
OBI negative)

n  =  65/84 (77.4%)

HBsAg positive
n  =  8/382 (2.1%)

OBI positive
n  =  11/76 (14.5%)

p-value

Sex, n (%), n = 84

Female

Male

51 (78.5)

14 (21.5)

5 (62.5)

3 (37.5)

10 (90.9)

1 (9.1)

0.3

Age, years, median (IQR) n = 84 33 (29–40) 31 (26–36) 34 (27–37) 0.6

CD4+ T-cell count, cells/mm3, median (IQR), n = 81 410 (317–511) 435 (305–631) 361 (279–477) 0.5

Log10 HIV VL, copies/mL, median (IQR), n = 82 4.16 (3.80–4.70) 4.13 (2.81–4.43) 4.15 (4.00–4.46) 0.6

ALT baseline, U/L, median (IQR) n = 79 15.1 (12.8–19.6) 23.4 (21.3–33.1) 15.0 (12.2–17.6) 0.04*

AST, U/L, median (IQR), (IQR), n = 83 23.2 (19.3–30.2) 30.9 (21.2–42.8) 21.2 (17.9–28.4) 0.3

PLT x 109/L, median (IQR), n = 80 280 (244–327) 244 (212–332) 220 (214–303) 0.2

GGT baseline, IU/L, median (IQR), n = 69 16.2 (11.4–26.5) 24.3 (15.4–40.0) 17.2 (13.9–23.8) 0.6

APRI, median (IQR), n = 80 0.20 (0.17–0.27) 0.39 (0.15–0.42) 0.23 (0.19–0.32) 0.5

FIB4, median (IQR), n = 77 0.75 (0.58–0.90) 0.81 (0.50–1.41) 0.73 (0.61–0.96) 0.9

HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; OBI, occult hepatitis B infection; HIV, human immunodeficiency virus; VL, viral load; IQR, interquartile range; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; PLT, platelet; GGT, gamma-glutamyltransferase; APRI, AST-to-platelet ratio index; FIB-4, Fibrosis-4 index. NB, some participants have 
missing results; *Chi-squared p-values for categorical data and Kruskal–Wallis p-values for continuous variables.
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giving a rate of 26.2/100 person-years (95% CI: 18.7–36.7). The 
median time to newly identified OBI was 367 days (IQR: 364–372).

Newly identified OBI cases were more frequent among men 
compared to women (61.1% vs. 31.9%, p = 0.02). Being male and CD4+ 
T-cell counts ≤450 cells/mL were associated with a significantly higher 
risk of newly identified OBI [hazard ratio 3.2 (95% CI: 1.5–6.8), 
p-value <0.01] and [hazard ratio 0.4 (95% CI: 0.2–0.9), p-value <0.02, 
respectively] (Table 3). Smooth hazard estimate results indicated that 
participants were more likely to experience the event (test OBI 

positive) after 1.5 years (Supplementary Figure S2). At 1 year of 
follow-up, 71% of the population remained OBI-negative (Figure 2A). 
Furthermore, there was a 57% chance that an individual remained 
OBI negative for more than 2 years. At the beginning of 1-year 
follow-up, 45% of men versus 75% of women tested negative for OBI 
(Figure 2B) and a higher number of older participants (>35 years) 
were OBI-negative compared to the younger group (<35 years) 
(Figure 2C). The probability of being OBI negative was higher among 
participants with higher CD4+ T-cell counts (>450 cells/ml) than 
those with lower CD4+ T-cell counts (Figure 2D), and OBI negativity 
was higher in participants with low HIV VL (< 400 copies/mL) than 
those with high VL (Figure 2E).

3.6 Impact of OBI on HIV disease 
progression

The impact of OBI on CD4+ T-cell decline and HIV VL over time 
was determined. There was no statistically significant difference in 
CD4+ T-cell count between incident OBI participants and 
OBI-negative participants at baseline, year 1, and year 2. Table 4. 
Incident OBI participants had a higher HIV VL than OBI-negative 
participants at year 1 (p = 0.02), (Supplementary Figure S3a); however, 
this difference was not observed with prevalent OBI participants at 
baseline and incident OBI participants in year 2, Table 4. After 1 year 
of follow-up, OBI-positive participants had an increased CD4+ T-cell 
count compared to a decrease in CD4+ T-cell count in OBI-negative 
participants (p = 0.01), Table 5 and Supplementary Figure S3b.

3.7 HBeAg, anti-HBc IgM, and impact of 
anti-HBc on HIV disease progression

HBV-positive (HBsAg+ and/or DNA+) participants with enough 
sample volume were further screened for HBeAg and anti-HBc IgM 
at yearly time points. Anti-HBc IgM was performed to further confirm 
HBV incident cases and to explore its presence in OBI where it has not 
been extensively studied. At baseline, 12 (3 HBsAg+ + 9 OBI+) samples 
were screened for HBeAg, and 1/3 (33.3%) HBsAg+ participants were 
HBeAg positive (HBeAg+). At year 1, 39 (9 HBsAg+ + 30 OBI+) 
samples were screened for HBeAg and 2 of 9 (22.2%) HBsAg+ 
participants were HBeAg+. Of the 39 samples, 8 were also screened at 
baseline. At year 2, 9 (2 HBsAg+ + 7 OBI+) samples were screened for 
HBeAg, and none were HBeAg+. Of the nine samples, three were also 
screened at baseline and year 1.

At baseline, 13 (4 HBsAg+ + 9 OBI+) samples were screened for 
anti-HBc IgM and none were anti-HBc IgM positive (anti-HBc IgM +). 
At year 1, 39 (9 HBsAg+ + 30 OBI+) samples were screened for anti-HBc 
IgM and 1/30 (3.3%) OBI+ participant was anti-HBc IgM+. Of the 39 
samples, 9 were also screened at baseline. At year 2, 9 (2 HBsAg+ + 7 OBI+) 
samples were screened for anti-HBc IgM and none were anti-HBc IgM +. 
Of the nine samples, three were also screened at baseline and year 1.

The impact of anti-HBc on CD4+ T cell and HIV viral load 
change over time was determined. Anti-HBc did not have an impact 
on CD4+ T-cell decline and HIV viral load increase over time (results 
not shown). Anti-HBc-positive participants had significantly higher 
CD4+ T-cell counts at year 1 than anti-HBc-negative participants (p-
value = 0.03). Supplementary Table S1.

TABLE 2 Demographics of participants used for OBI incidence estimation 
vs. the rest of the cohort.

Rest of 
cohort
n  =  305

Used for OBI 
estimation

n  =  90

p-value

Sex

Female

Male

245 (80.3)

60 (19.7)

72 (80)

18 (20)

0.5

Age, years 32 (28–39) 32 (29–40) 0.7

CD4+ T-cell count 456 (350–593) 416 (344–547) 0.2

Log HIV VL (IQR) 4.14 (3.44–4.67) 4.11 (3.70–4.72) 0.2

ALT bU/L (IQR) 17 (12–22) 15 (12–20) 0.5

AST U/L (IQR) 22 (18–28) 24 (19–30) 0.3

PLT x 109/L (IQR) 255 (223–308) 276 (240–323) 0.05

GGT baseline, 

IU/L (IQR)

19 (14–33) 17 (13–26) 0.3

APRI (IQR) 0.21 (0.16–0.29) 0.20 (0.17–0.27) 0.9

FIB4 (IQR) 0.75 (0.61–0.93) 0.70 (0.56–0.88) 0.3

HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; OBI, occult hepatitis B infections; 
HIV, human immunodeficiency virus; VL, viral load; IQR, interquartile range; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; PLT, platelet; GGT, gamma-
glutamyltransferase; APRI, AST-to-platelet ratio index; FIB-4, Fibrosis-4 index. NB, some 
participants have missing results.

TABLE 3 Risk factors for OBI incidence.

Variable Incidence/100 
person-years

(95% CI)

Hazard 
ratio 

(95% CI)

p-value

Sex

Female

Male

21.7 (14.4–32.7)

48.0 (26.6–86.6)

Ref

3.2 (1.5–6.8)
<0.01

Age, years

≤35

>35

31.2 (20.9–46.6)

19.3 (10.4–35.8)

Ref

0.5 (0.2–1.1)
0.1

HIV VL, copies/

mL

≤400

>400

7.9 (1.1–56.0)

28.4 (20.2–40.0)

Ref

2.3 (0.3–17.1)
0.4

CD4+ T-cell 

count, cells/mm3

≤450

>450

35.1 (23.5–52.4)

15.9 (8.3–30.6)

Ref

0.4 (0.2–0.9)
0.02

HIV, human immunodeficiency virus; VL, viral load; CI, confidence intervals.
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4 Discussion

OBI is a common phenomenon, especially among PWH, and has 
clinical relevance as HBV can be transmitted, which can lead to the 
possible development of liver disease including HCC (Saitta et al., 
2022). Hence, neglecting OBI might compromise the goal of 
eliminating viral hepatitis by 2030 as OBI can be a reservoir for HBV 
transmission, morbidity, and mortality (de Almeida and de Paula, 
2022). There are sparse data on the natural progression of OBI, 
especially in sub-Saharan Africa, owing to few longitudinal studies in 
the area; therefore, this study sought to close this gap. Studying the 
natural progression of OBI among PWH, a group mostly affected by 
OBI, is currently quite challenging in the HIV test-and-treat era 
because most of the antivirals used act against both HIV and HBV 
(WHO, 2023). We report here, in a natural HIV cohort, a high rate of 
newly identified OBI, 26.2/100 person-years with most (55.9%) newly 
identified OBI cases being participants who were previously HBsAg-
negative and anti-HBc positive (possible reactivations) leading to 
seropositive OBI. We further report loss of anti-HBc leading to anti-
HBc-newly identified OBI cases. The study participants were recruited 
before the “test and treat era” (2004–2009) and did not qualify for 
treatment according to the Botswana National HIV guidelines at that 
time which required PWH to have a certain CD4+ T-cell count 
threshold or an AIDS-defining symptom to qualify for treatment.

The high rate of newly identified OBI in this study was expected 
as OBI has previously been reported in PWH elsewhere (Terrault 
et al., 2018; Saitta et al., 2022). Furthermore, OBI prevalence rates in 
PWH in Botswana are high, indicating that this is a frequent 
phenomenon in the country (Ryan et al., 2017; Mbangiwa et al., 2018; 
Phinius et  al., 2023). Indeed, high HBsAg incidence rates were 
reported by a previous study in Botswana (Phinius et  al., 2020). 
Additionally, there was an increase in HBsAg-positive participants 
from baseline to year 1. This result is concordant with literature such 
as the Botsogo study (Phinius et al., 2020) and a study in South Africa 
(Msomi et al., 2020). This may be the result of decreasing CD4+ T-cell 
counts as shown previously (Phinius et al., 2020). Approximately 75% 
of HBV active cases were OBI. This is consistent with literature 
reported from Botswana, where there are consistently more OBI cases 
compared to HBsAg-positive cases in both HIV/HBV coinfection and 
in HIV-negative individuals (Ryan et al., 2017; Mbangiwa et al., 2018; 
Phinius et  al., 2023). High OBI prevalence compared to HBsAg 
prevalence was also reported in South Africa (Amponsah-Dacosta 
et al., 2015) and India (Dinesha et al., 2018). In contrast, another 
Indian study reported more HBsAg compared to OBI (Saha et al., 
2017). Sequencing was not performed in the current study, but 
differences might be due to the different circulating genotypes where 
the predominant subgenotype in Botswana and South Africa is A1 
compared to D1 and D2 reported in the study from India. Mutations 

FIGURE 2

(A) Kaplan–Meier curve for the proportion of OBI survival (years). (B) OBI survival by sex. (C) OBI survival by age category. (D) OBI survival by CD4+ 
T-cell count category. (E) OBI survival by HIV viral load category.

TABLE 4 Cross-sectional CD4+ T-cell count and HIV viral load at baseline, years 1 and 2.

Outcome OBI negative OBI positive p-value

CD4+ T-cell count (baseline), n = 72 406 (328–510) 361 (279–477) 0.3

CD4+ T-cell count (year 1), n = 88 441 (320–575) 358 (284–474) 0.1

CD4+ T-cell count (year 2), n = 71 414 (336–563) 415 (278–542) 0.5

Log10 HIV VL (baseline), n = 73 4.1 (3.7–4.7) 4.1 (4.0–4.5) 1.0

Log10 HIV VL (year 1), n = 89 4.0 (3.5–4.6) 4.5 (4.2–5.0) 0.02

Log10 HIV VL (year 1), n = 89 4.1 (3.4–4.8) 4.2 (3.9–4.7) 0.3

OBI, occult hepatitis B infections; HIV, human immunodeficiency virus; VL, viral load.
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in the HBsAg may be responsible for the high OBI rate in Botswana 
(Powell et  al., 2016; Anderson et  al., 2018a,b). The role of HBV 
vaccination is assumed to be very minimal in this study as in Botswana 
HBV infant vaccination commenced approximately 2000 when the 
current study participants were at least adolescents (Patel et al., 2011). 
The varying sensitivity rate of assays used for OBI screening further 
leads to varying OBI frequency across studies making 
comparisons difficult.

In this study, most (55.9%) of the newly identified OBI cases 
had prior HBV exposure as shown by anti-HBc positivity and 
hence were possible HBV reactivations. HBV reactivations are a 
known cause of OBI (Terrault et al., 2018; Saitta et al., 2022). HBV 
reactivation is common following immunosuppression, and indeed 
in the present study, lower CD4+ T-cell counts were a risk factor for 
newly identified OBI. Only one newly identified OBI case was the 
result of HBsAg loss. This phenomenon is also supported by the 
literature (Saitta et al., 2022). A study in South Africa reported a 
higher percentage of HBsAg participants, who progressed to OBI 
during treatment (Amponsah-Dacosta et al., 2018). The kinetics of 
OBI in treatment-naive individuals may differ from those in 
treated individuals. Some anti-HBc-OBI cases were due to loss of 
anti-HBc, whereas others were anti-HBc-negative initially. This is 
also consistent with the literature (Saitta et al., 2022). Interestingly, 
of the newly identified HBsAg-positive cases, only one was due to 
possible reactivation indicating that in this study most possible 
reactivations resulted in OBI positivity and not HBsAg positivity, 
which is consistent with data from Botswana (Phinius et al., 2020). 
A study in Ethiopia reported a 14% prevalence of mutations 
associated with HBV reactivations in an OBI cohort (Patel et al., 
2020). Such studies are warranted in Botswana as they might 
explain some of the possible reactivation seen in this study. 
Anti-HBc has been and is still used as a proxy for OBI. Our results 
which agree with the literature show that this screening algorithm 
misses OBI cases that are anti-HBc negative (Ryan et al., 2017; 
Kramvis et al., 2022; Saitta et al., 2022). DNA remains the only 
reliable marker for OBI diagnosis indicating a need in investing in 
serum markers that bridge the gap between the OBI as defined by 
anti-HBc vs. HBV DNA to simplify HBV diagnosis and improve 
patient care.

Newly identified OBI cases were more frequent in men than in 
women, which is in agreement with the findings of Saha et al. in India 
(Saha et al., 2017). Differences in disease susceptibility between men 
and women have been reported in other diseases as well and might 
be attributed to differences in behavior and biology. For example, 
women have been shown to possess a stronger immune response 
against HBV (Brown et al., 2022) and renal cancer patients (Ning 
et al., 2023). In the current study, there was no difference in CD4+ 
T-cell counts or HIV viral load between OBI+ and OBI− participants 

at baseline. These findings align with the results reported previously 
(Ryan et al., 2017; Phinius et al., 2023). Newly identified OBI cases, 
however, had higher HIV viral loads at year 1 than OBI-negative 
participants. After 1 year of follow-up, OBI-positive participants had 
an increased CD4+ T-cell count compared to a decrease in CD4+ 
T-cell count in OBI-negative participants (p = 0.01), Table  5 and 
Supplementary Figure S3b. This trend was also seen in anti-HBc-
positive cases compared to anti-HBc-negative cases. These latter 
results were unexpected as a previous study associated anti-HBc with 
poor HIV control during HIV treatment (Malagnino et al., 2023). 
However, the relatively low numbers make it difficult to reach any 
firm conclusions.

There was no statistically significant difference between 
HBV-negative, HBsAg-positive, and OBI-positive participants for all 
variables tested at baseline except ALT. These results should 
be interpreted with caution as ALT results were available for only four 
of the eight HBsAg-positive participants. Other studies including one 
in Botswana also reported no difference between HBV-negative, 
HBsAg-positive, and OBI-positive participants, including in the 
non-invasive markers of liver damage, APRI and FIB-4 (Ryan et al., 
2017; Mbangiwa et al., 2018; Phinius et al., 2020).

The 2024 HBV guidelines recommend that newly diagnosed 
PWH should be screened for HBsAg, anti-HBs, and anti-HBc. It also 
mentions OBI under management considerations for special 
populations. It further recommends pre-emptive therapy if there is a 
risk for HBV reactivation such as during immunosuppressive therapy 
(see footnote 2). Data from this study can be  used to guide the 
identification of participants at risk of HBV reactivation. HBV DNA 
screening should be considered in PWH before initiating therapy with 
no anti-HBV active drugs, especially in anti-HBc-positive participants. 
Further research on the kinetics of new biomarkers such as HBV RNA 
levels, and HBV-related antigens should be  explored in OBI 
participants as biomarker profiles in OBI are still not clear.

The limitations of this study are that participants in the natural 
HIV cohort had relatively high CD4+ T-cell counts; thus, the 
cohort does not represent OBI dynamics in PWH with low CD4+ 
T-cell counts. Furthermore, HIV duration of infection was 
unknown as HIV recency was not tested for in this study. Some 
participants did not have available/sufficient samples for the 
various tests conducted at all time points, resulting in 90 
participants with OBI results for at least two time points being 
used to estimate the newly identified OBI rate. However, 
participant demographics were the same between those in the OBI 
estimation cohort and the rest of the cohort. In addition, because 
of insufficient sample volumes, anti-HB titers were not measured. 
The short duration of follow-up may explain the lack of significant 
differences in several of the analyses performed in this study. This 
study included only young participants (younger than 40 years 

TABLE 5 HIV VL and CD4+ T-cell count change after 1  year of follow-up.

Outcome OBI negative OBI positive p-value

CD4+ T-cell count change (baseline to year 1), n = 72 −1 (−75–52) 72 (23–121) 0.01

CD4+ T-cell count change (year 1 to year 2), n = 70 −18 (−102–78) 32 (−101–6) 0.3

Log10 HIV VL change (baseline to year 1), n = 73 0.10 (−0.33–0.46) 0.13 (−0.04–0.26) 0.9

Log10 HIV VL change (year 1 to year 2), n = 89 0.00 (−0.40–0.57) 0.03 (−0.34–0.26) 0.6

OBI, occult hepatitis B infections; HIV, human immunodeficiency virus; VL, viral load.
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old); however, other studies in Botswana which included both 
young and old participants also reported high OBI prevalence, 
which was nevertheless not significantly associated with age (Ryan 
et al., 2017; Phinius et al., 2023). However, this study is invaluable 
in that it provides OBI natural disease dynamics in a population, 
which cannot be replicated easily in the HIV test-and-treat era.

5 Conclusion

This study reported a high prevalence of possible reactivations 
and persistence of OBI among treatment-naive young PWH in 
Botswana. Newly identified OBI was more common in men and in 
participants with lower CD4+ T-cell counts. There were possible 
HBV reactivations with the majority of cases being anti-HBc 
seropositive OBIs. A proportion of anti-HBc− OBIs was due to 
possible reactivations with loss of anti-HBc. There were minimal 
OBIs resulting from HBsAg loss and minimal possible reactivations 
resulting in HBsAg positivity. OBI screening in PWH should 
be  considered because of the risk of transmission and possible 
reactivation of HBV from these individuals.
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