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The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of

clinical presentations, with respiratory symptoms being common. However,

emerging evidence suggests that the gastrointestinal (GI) tract is also affected,

with angiotensin-converting enzyme 2, a key receptor for SARS-CoV-2,

abundantly expressed in the ileum and colon. The virus has been detected

in GI tissues and fecal samples, even in cases with negative results of the

reverse transcription polymerase chain reaction in the respiratory tract. GI

symptoms have been associated with an increased risk of ICU admission

and mortality. The gut microbiome, a complex ecosystem of around 40

trillion bacteria, plays a crucial role in immunological and metabolic pathways.

Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes

and decreased microbial diversity, has been observed in COVID-19 patients,

potentially contributing to disease severity. We conducted a comprehensive

gut microbiome study in 204 hospitalized COVID-19 patients using both

shallow and deep shotgun sequencing methods. We aimed to track microbiota

composition changes induced by hospitalization, link these alterations to clinical

procedures (antibiotics administration) and outcomes (ICU referral, survival),

and assess the predictive potential of the gut microbiome for COVID-19
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prognosis. Shallow shotgun sequencing was evaluated as a cost-effective

diagnostic alternative for clinical settings. Our study demonstrated the diverse

effects of various combinations of clinical parameters, microbiome profiles, and

patient metadata on the precision of outcome prognostication in patients. It

indicates that microbiological data possesses greater reliability in forecasting

patient outcomes when contrasted with clinical data or metadata. Furthermore,

we established that shallow shotgun sequencing presents a viable and cost-

effective diagnostic alternative to deep sequencing within clinical environments.

KEYWORDS

gut microbiome, COVID-19 patients, shallow shotgun sequencing, deep shotgun
sequencing, machine learning, COVID-19 prognosis

1 Introduction

The World Health Organization declared the Coronavirus
Disease 2019 (COVID-19), caused by the SARS-CoV-2
coronavirus, to be a pandemic on March 11, 2020. COVID-
19 is a respiratory disease with a wide range of clinical appearances.
It may manifest as asymptomatic or mild infection with cough and
fever to severe pneumonia with multiple organ failure and acute
respiratory distress syndrome (Hu et al., 2020).

Besides common pulmonary symptoms of COVID-19, there
is data on the infection of the gastrointestinal tract. Angiotensin-
converting enzyme 2, a critical receptor mediating during viral
entry of SARS-CoV-2 to the host cells, is abundantly expressed
in the ileum and colon, especially in differentiated enterocytes
(Burgueño et al., 2020). Moreover, SARS-CoV-2 has been found
within the tissues of the entire gastrointestinal (GI) tract, and
even in cases when reverse transcription polymerase chain reaction
results from respiratory samples were negative, a large percentage
of patients still shed the virus in their feces (Chen et al., 2020).
Therefore, SARS-CoV-2 infection directly influences the GI tract,
presumably acting as an extrapulmonary location for virus activity
and reproduction (Wölfel et al., 2020; Zhou J. et al., 2020).
Interestingly, the GI symptoms were associated with a significantly
increased risk of intensive care unit (ICU) admission and mortality
(Woodruff et al., 2020).

In the gastrointestinal tract, it is estimated that there are about
40 trillion bacteria that, along with their genes, constitute the gut
microbiome (Sender et al., 2016; Thursby and Juge, 2017). Through
intricate pathways, the microbiome contributes significantly to
the immunological and metabolic pathways, affecting both the
etiology of illnesses and health maintenance (Durack and Lynch,
2019). This effect of the microbiome on the course of the disease
and health management was demonstrated in COVID-19 patients.
Dysbiosis of the gut microbiota, defined as the loss of beneficial
microbes, the proliferation of potentially harmful microbes,

Abbreviations: AUC-ROC, area under the receiver operating characteristic
curve; BMI, body mass index; COVID-19, coronavirus disease 2019; GI,
gastrointestinal; ICU, intensive care unit; MAG, metagenome-assembled
genome; OGU, operational genomic unit; PCoA, principal coordinates
analysis.

and decreased microbial diversity, raises levels of the SARS-
CoV-2 target angiotensin-converting enzyme 2, which causes
epithelial damage and inflammation (Thevaranjan et al., 2018).
Moreover, SARS-CoV-2 activates the NLRP3 inflammasome, which
triggers a cascade of pro-inflammatory mechanisms (Ratajczak
and Kucia, 2020). The gut microbiota can activate or inhibit the
NLRP3 inflammasome and thus can condition the strength of
inflammasome stimulation during SARS-CoV-2 virus infection
(Dang and Marsland, 2019). Gut microbiota has been found to be
altered in COVID-19 patients which manifests as common GI tract
symptoms, such as diarrhea, vomiting, nausea, or abdominal pain
(Cheung et al., 2020; Redd et al., 2020; Zhou Z. et al., 2020).

Since the beginning of the pandemic researchers have carried
out sequencing experiments of fecal samples of patients with
COVID-19 to uncover a bilateral relationship between COVID-
19 and the gut microbiome. According to both alpha and beta
diversity indices, SARS-CoV-2 infection was linked to changes
in the microbiome community in patients as demonstrated in
multiple studies (Kim et al., 2021; Moreira-Rosário et al., 2021;
Newsome et al., 2021; Wu et al., 2021; Zhang et al., 2022).
Moreover, the Shannon diversity was identified as a risk variable
for severe COVID-19 being higher in mild COVID-19 individuals
compared to moderate and severe cases (Moreira-Rosário et al.,
2021). Patients hospitalized for COVID-19 have significant changes
in stool microbiota composition characterized by an increase in
opportunistic pathogens and a decrease in beneficial commensal
bacteria compared to controls (Zuo et al., 2020; Moreira-Rosário
et al., 2021; Yeoh et al., 2021; Zhang et al., 2022).

There is even more evidence of a change in the taxonomic
profile in severely ill patients with COVID-19 compared to
healthy or moderately sick patients, but observations might
differ in individual studies (Hazan et al., 2022; Sun et al.,
2022). Li et al. (2021) discovered that COVID-19 patients had
reduced microbial diversity compared to controls, as determined
through shotgun metagenomic sequencing and taxonomy indices.
Specific bacteria were unique to COVID-19 patients, such as
Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium
ulcerans, and Prevotella bivia. The researchers identified 15
species as microbiological markers for COVID-19 and found
relationships between clinical markers and taxonomy. Notably,
certain correlations were observed, such as Coprococcus catus being
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positively associated with alanine transaminase levels, red blood
cells, and hemoglobin.

A recent meta-analysis (Reuben et al., 2023) confirmed
previous findings indicating a reduced diversity in the gut
microbiome of individuals with COVID-19, a factor that may
contribute to disease severity and increased susceptibility to
opportunistic infections. The analysis identified specific bacterial
taxa that undergo proliferation during infection, including
Campylobacter, Corynebacterium, Staphylococcus, Clostridium,
Peptostreptococcus, Prevotella, Anaerococcus, Actinomyces,
Porphyromonas, and Bacteroides. Conversely, a depletion was
observed in potentially beneficial taxa such as Fusicatenibacter,
Lachnospiraceae NK4A316 group, Lachnoclostridium, Blautia,
and Roseburia. Notably, alterations in the microbiota persisted
long after recovery from the infection. The analyses conducted
by de Nies et al. (2023) revealed an enrichment of virulence
factors and antimicrobial resistance genes in individuals with
COVID-19. Notably, these genes were predominantly associated
with bacterial families exhibiting heightened abundance during
SARS-CoV-2 infection, specifically Acidaminococcaceae and
Erysipelatoclostridiaceae. Research has indicated diminished
biosynthesis of short-chain fatty acids in fecal specimens from
individuals afflicted with COVID-19 (Zuo et al., 2020; Zhang et al.,
2022; Lv et al., 2023).

Gut microbiome investigations among patients with COVID-
19 to date characterized the makeup and diversity of the microbiota
through one of two sequencing strategies. Either by targeted
amplicon sequencing of a 16S rRNA marker gene (Gu et al., 2020;
Tao et al., 2020; Kim et al., 2021; Moreira-Rosário et al., 2021;
Newsome et al., 2021; Ward et al., 2021; Wu et al., 2021) or by
using deep whole metagenomic (shotgun) strategy (Zuo et al., 2020;
Yeoh et al., 2021; Sun et al., 2022). While both strategies are widely
used in research, they have limitations in clinical applications
of the microbiome as a diagnostic, prognostic, and therapeutic
factor in patients with COVID-19. 16S rRNA gene sequencing is
a good choice for large sample sizes and cost-efficient analyses,
which makes it suitable for use in clinics, however, it has poor
taxonomical and functional resolution. On the other side, deep
shotgun metagenomics typically costs more but provides greater
resolution, allowing a more precise taxonomic and functional
classification of sequences (Jovel et al., 2016). The latter, however,
is still too costly for all but the most well-funded laboratories
and research consortia to implement, creating a potential barrier
for diagnostic and prognostic applications that could be adopted
by medical and diagnostic facilities. At depths as minimal as
0.5 million reads, sequencing costs remain below roughly half of
the total expenses incurred in data generation. Shallow shotgun
sequencing may be a more affordable option than deep shotgun
sequencing, if we set the cutoff between the two sequencing types
to roughly 2 million reads. Shallow shotgun sequencing offers
nearly the same accuracy at the species and functional level as deep
whole metagenome sequencing for known species and genes in
five crucial aspects of microbiome analysis—beta diversity, alpha
diversity, species composition, functional composition, and clinical
biomarker discovery (Hillmann et al., 2018).

We conducted an extensive gut microbiome study on 204
hospitalized COVID-19 patients in Poland, employing both
shallow and deep shotgun sequencing methods. Our primary
objectives were to observe shifts in microbiota composition due to

COVID-19 treatment-related hospitalization and associating these
changes with clinical factors (e.g., antibiotic use, ICU admission,
survival). In comparison to prior studies with smaller cohorts
(typically ≤ 70 subjects, with a maximum of 115), our study
featured a significantly larger sample size, allowing for potential
confirmation of previous findings (Gu et al., 2020; Zuo et al., 2020;
Kim et al., 2021; Moreira-Rosário et al., 2021; Newsome et al., 2021;
Wu et al., 2021; Yeoh et al., 2021; Sun et al., 2022).

Additionally, we utilized machine learning techniques to assess
the microbiome’s predictive potential for COVID-19 prognosis,
comparing its predictive performance with traditional classifiers
such as sex, age, body mass index (BMI) and diagnostic findings
from laboratory analyses. Notably, we evaluated the utility of
shallow shotgun sequencing results as a more cost-effective
alternative for clinical diagnostics, benchmarking them against
deep shotgun sequencing analysis.

2 Materials and methods

2.1 Subject recruitment and sample
collection

The study group comprised 204 adult patients with confirmed
SARS-CoV-2 infection through molecular testing. These patients
were hospitalized at the Central Clinical Hospital of the Ministry
of Interior and Administration in Warsaw or Teaching Hospital
no. 1 Pomeranian Medical University in Szczecin from May 2020
to March 2022. Additional 147 healthy subjects of medical staff
working in the hospitals were included as a control group.

Patients were treated according to Evidence Based Medicine
and the Polish Ministry of Health treatment guidelines for persons
with COVID-19 disease. Exclusion criteria included: lack of
consent, a severe clinical condition requiring ICU treatment, and
major gastrointestinal and/or abdominal surgery within the last
6 weeks. Demographic, clinical and treatment data, as well as a
questionnaire on lifestyle, eating habits, co-morbidities and recent
antibiotic therapy, were obtained and managed using REDCap
electronic data capture tools (Harris et al., 2009). Stool samples
were collected with a swab from feces gathered on toilet paper
into a sterile Eppendorf tube with 2.5 mL ethyl alcohol as
preservative [recommended as the most effective method (Marotz
et al., 2021)] and stored at −20◦C until DNA extraction. Samples
from patients were collected only during hospitalization. A total
of 1365 stool samples were gathered, on average 4 (maximum 6)
per subject within average 8 days (maximum 70) (Supplementary
Table 1). The study conformed to the Declaration of Helsinki,
and all participants signed an informed consent document prior to
participation. The study was approved by the institutional review
board of the Central Clinical Hospital of the Ministry of Interior
and Administration, Warsaw, Poland, decision number 65/2020
from April 22, 2020 and 98/2021 from July 27, 2021.

2.2 Stool DNA extraction

Nucleic acid extraction was carried out on 942 out of
1365 fecal, which included samples from 213 patients and 145
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controls, swabs using the QIAmp PowerFecal Pro DNA kit
from Qiagen. Swabs retained for extraction were those that were
tightly sealed, ensuring they contained sufficient biological material
and preservative inside the tubes. In brief, material from the
swabs was transferred into PowerFecal Bead tubes containing
buffer C1, followed by homogenization using an Omni Bead
Ruptor 12 (with 3 cycles of 30 s each, with 30-s breaks in
between). Subsequent procedures were conducted following the
manufacturer’s instructions. Purified DNA was eluted using 70 µL
of the provided elution buffer and quantified using the Quantifluor
ONE dsDNA system from Promega.

2.3 Shallow shotgun metagenomics
sequencing

Sequencing libraries were generated from 942 samples (213
patients, 145 controls) after prior extraction, using a reduced
volume of KAPA Hyper Plus kit reagent (ROCHE), as described by
Sanders et al. (2019). All steps were carried out in accordance with
the manufacturer’s instructions to produce libraries containing
metagenomic DNA fragments of approximately 300 bp in size.
Initially, metagenomic DNA samples were normalized to a
concentration of 10 ng input, followed by a 10-min enzymatic
digestion, indexing with KAPA Unique Dual Indexes (ROCHE),
and subjected to 9 cycles of polymerase chain reaction (PCR)
library amplification. Subsequently, libraries were purified and size-
selected using electrophoretic techniques. The size, quantity, and
quality of the selected libraries were assessed using fluorometry
with Quantus (Promega) and chip electrophoresis with MultiNA
(Shimadzu).

These libraries were further normalized to 2 nM, pooled,
denatured with NaOH, and diluted to a final concentration of
8 pM with HT1 buffer (Illumina). These prepared libraries were
supplemented with 1% PhiX control v3 (Illumina) and then
sequenced on an Illumina MiSeq System using a 2x150-cycles
paired-end sequencing strategy, although only the forward reads
were used in the subsequent analysis. Our investigation revealed
that paired-end analysis led to a significant reduction in the number
of reads, coupled with a decline in overall quality. The Illumina
bcl2fastq2 Conversion Software (version 2.20) was employed for
demultiplexing sequencing data and converting base call files into
FASTQ files using default parameters. On average, 326,385 reads
per sample were obtained, with a standard deviation of 93,142.

We then selected a subset of 892 samples (204 patients, 143
controls), ensuring they each contained a minimum of 200,000 R1
(forward) reads to standardize sequencing depth. These samples
were used in the subsequent shallow shotgun data profiling
(section 3.2), machine learning predictions (section 3.3), and
technology comparisons (section 3.4).

2.4 Deep shotgun metagenomics
sequencing and quality control

Of the samples collected from patients, a subset of 384 samples
(218 patients) were selected for deep shotgun sequencing. The
same sequencing libraries employed for shallow sequencing were

also utilized for deep whole-genome shotgun sequencing of fecal
samples, conducted on the Illumina Novaseq6000 platform with
a paired-end configuration and a read length of 150 bp. Reads
preprocessing was executed using BBTools (BBMap and BBDuk,
version 38.961), following the Reads QC Workflow version 1.0.1.
This preprocessing involved quality trimming, adapter trimming,
and spike-in removal, all carried out using BBDuk. Additionally,
human DNA contamination was eliminated using BBMap. The
number of sequences per sample was not considered during
quality control as the minimum number of reads per sample was
25,174,454. All samples after quality control were retained.

Both the shallow and deep shotgun sequenced data for this
study were submitted to the European Nucleotide Archive (ENA) at
EMBL-EBI and are accessible under the entry number PRJEB64515.

2.5 Shallow shotgun data profiling

Quality control procedures, including the removal of poor-
quality reads and adapter trimming (using the adapter sequence
′AGATCGGAAGAGCACACGTCTGAACTCCAGTCA′), were
carried out using fastp (version 0.20.1). The criteria for base
qualification were set at a quality value of 15, allowing for a
maximum of 40% of unqualified bases. Additionally, a low
complexity filter was enabled (Chen et al., 2018). Following
quality control, the elimination of human DNA contamination
was initially performed by aligning reads to the human reference
genome (GRCh38) using minimap2 (version 2.17). Subsequently,
reads that did not align were extracted using samtools (version
1.17) (Li, 2018; Danecek et al., 2021). The sequences, now
free of contaminants, were aligned to the indexed reference
bacterial genome (RefSeq release 82; O’Leary et al., 2016), using
Bowtie2. Additional parameters for Bowtie2 were applied: ‘–
very-sensitive –no-head –no-unal -k 16 –np 1 –mp "1,1" –rdg
"0,1" –rfg "0,1" –score-min "L,0,-0.05"’. These parameters have been
specifically tailored for the purpose of shallow metagenomics, as
demonstrated by benchmarking experiments conducted as part of
the SHOGUN framework (Hillmann et al., 2020) and subsequently
validated by Zhu et al. (2022). Next, we performed operational
genomic unit (OGU) profiling using Woltka,2 obtaining BIOM
tables later employed in statistical analyses of shallow shotgun
data and machine learning predictions. OGU, a concept similar
to the extensively utilized operational taxonomic unit, refers
to the smallest unit of microbiome composition that shotgun
metagenomic data will permit (Zhu et al., 2022). A Github
repository for our custom Snakemake (Mölder et al., 2021)
pipeline, which implements the methodology described for shallow
shotgun sequencing from quality control to classification.3

1 https://sourceforge.net/projects/bbmap/

2 https://github.com/qiyunzhu/woltka

3 https://github.com/bioinf-mcb/polish-microbiome-project/tree/main/
shallow-shotgun-analysis-workflow
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2.6 Statistical analysis of shallow shotgun
data

For shallow shotgun data after rarefying the read count to
100,000 per sample, which left 682 samples (176 patients, 109
controls), we used QIIME 2 (version 2020.6; Bolyen et al., 2019)
packages to calculate the alpha diversity (Shannon’s evenness)
and beta diversity (weighted UniFrac distance). Weighted UniFrac
was selected as our metric because it accounts for both sequence
abundance and the relationships among evolutionarily related
sequences. To assess the significance of microbial alpha and
beta diversities, we employed the Kruskal-Wallis H test and
permutational multivariate analysis of variance (PERMANOVA).
To examine beta diversity findings, we conducted a principal
coordinates analysis (PCoA) on the weighted UniFrac distances
within the QIIME 2 framework. To highlight the features (OGUs)
with significant effects on the principal component axis, we
represented them as arrows in PCoA biplots. To account for
changes in the microbiome over time, we conducted pairwise
comparisons of beta diversity for samples collected at different
time points from the same patient. To further analyze these results
in terms of distances from the initial time point and day-to-day
changes, we performed linear regressions.

2.7 Machine learning predictions

Shallow shotgun data after rarefaction (682 samples, 176
patients, 109 controls) was used for predictions. The dataset used to
evaluate whether the microbiome can predict COVID-19 outcomes
included three types of information: OGUs (obtained from OGU
BIOM tables created in Woltka out of shallow sequencing) referred
to as microbiome data, patient demographic details (like age,
sex, and BMI) referred to as metadata, clinical test results and
baseline. Baseline is introduced as a benchmark or reference point
against which the performance of our classifier will be assessed.
Specifically, the baseline classifies outcomes with a fixed probability
of 50%. We chose this approach to provide the classifier with as
much useful information as possible, while minimizing the risk
of leaving out important traits. However, including irrelevant or
duplicate characteristics could make the classifier overly complex
and less able to make accurate predictions for new data. To reduce
this risk, we assessed how well the classifier could make accurate
predictions by repeatedly testing it with different subsets of the
dataset in 51 iterations. To train and evaluate the Random Forest
algorithm (Ho, 1995) for disease prediction using microbiota data,
we employed a structured approach. We grouped samples by
patients to ensure each patient’s data was exclusive to either the
training or testing set. In the training set, all available samples
from each patient were utilized to enable the algorithm to learn
from their microbiota data across different time points, potentially
enhancing prediction accuracy.

For the test set, only the initial sample from each patient was
used to assess the algorithm’s capability to predict disease based on
the patient’s initial microbiome data. The Random Forest algorithm
autonomously conducted feature selection by evaluating the
importance of each feature in predicting the target variable (ICU
admission/death). Feature importance scores were determined

using the mean decrease impurity measure, which quantifies a
feature’s contribution to reducing impurity, as measured by the
Gini index, in the decision trees of the Random Forest.

We employed AUC-ROC as an evaluation metric to gauge the
random forest classifier’s performance. It illustrates the classifier’s
ability to discriminate between positive and negative samples by
plotting sensitivity against 1-specificity at different thresholds. The
AUC-ROC score ranges from 0.5 (random guessing) to 1 (perfect
classification), with higher values denoting better performance.

2.8 Deep shotgun data profiling

The dataset for this section comprised sequenced samples from
COVID-19 patients that had undergone quality control procedures,
as previously described, and represented the intersection of data
obtained through both shallow and deep whole metagenome
approaches (193 samples). Control samples were deliberately
omitted from the dataset, as the objective of the analysis centered
on the assessment of employing shallow sequencing in lieu of
deep sequencing for discerning COVID-19-associated microbiome
modifications. To maintain consistency, all samples in the dataset
were profiled using Metaphlan4 (Blanco-Míguez et al., 2023) with
default settings.

2.9 Comparison of shallow and deep
shotgun data

The comparison of shallow and deep sequencing, using 193
samples from shallow and deep data intersection, was performed
using QIIME 2 (Bolyen et al., 2019) or custom Python scripts.
Alpha and beta diversities were compared using QIIME 2 diversity
modules, and the metrics used were Shannon entropy, observed
features (alpha diversity) and Bray-Curtis dissimilarity (beta
diversity).

3 Results

3.1 Demographic and clinical
characteristics of the study’s subjects

Table 1 lists the demographic and clinical characteristics of
patients (n = 204). All patients were Polish residents. Out of 204
patients, men made up 125 (61.3%), and women 79 (38.7%). The
mean ± standard error of the mean age in years was 61.2 ± 1.3
(range, 17–96) for patients. A large majority of patients overall (202
or 99.0%) were White. One patient was Latino and one patient was
mixed-race. Antibiotics were administered to 57.4% of the SARS-
CoV-2-infected patients. In terms of the outcome, 170 patients
(83.3%) were released from the hospital, and 34 (16.7%) died
because of COVID-19 while they were in the hospital. Additionally,
50 patients (24.5%) were admitted to the ICU, and 154 (75.5%)
patients were continuously hospitalized in the dedicated COVID-
19 unit. Demographic data of the control group (n = 143) is
presented in Supplementary Table 2.
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TABLE 1 Summary of the COVID-19 patients from the study cohort.

COVID-19 patients

Before
rarefaction

After rarefaction
to 100, 000
features per

sample

Number of participants 204 176

Age, mean years 61.2 61.2

Sex

Male (%) 125 (61.3) 103 (58.5)

Female (%) 79 (38.7) 68 (41.5)

Ethnicity

White (%) 202 (99.0) 174 (98.8)

Latino (%) 1 (0.5) 1 (0.6)

Mixed (%) 1 (0.5) 1 (0.6)

Hospitalization outcome

Death (%) 34 (16.7) 28 (15.9)

Survival (%) 170 (83.3) 148 (84.1)

Antibiotics treatment during hospitalization

Yes (%) 117 (57.4) 98 (55.7)

No (%) 87 (42.6) 78 (44.3)

ICU referral

Yes (%) 50 (24.5) 41 (23.3)

No (%) 154 (75.5) 134 (76.7)

3.2 The gut microbiome of COVID-19
patients differs from that of
non-COVID-19 controls

To compare how gut microbiome of COVID-19 patients differs
from that of non-COVID-19 controls we used 682 samples (176
patients, 109 controls) from shallow shotgun data after rarefaction.
We examined changes in the fecal microbial composition of actively
infected SARS-CoV-2 patients over time by comparing weighted
UniFrac distances between a patient’s (case) initial and subsequent
sample points, in contrast to the control group. Interestingly, the
distance between control samples remained relatively stable over
time, while the distance between patient samples increased as
time progressed (Figure 1A). Furthermore, in our comparison of
samples on a day-to-day basis, we observed that the distances were
more substantial for the patient group and exhibited a slower rate
of decrease compared to the control group (Figure 1B).

We compared the microbiome diversity of patients based on
their hospitalization outcomes (survival or death), ICU referral
status (yes or no), and antibiotic treatment (treated or untreated)
using their earliest or post-antibiotic introduction samples, while
also including control samples as a separate category. According
to Shannon’s evenness analysis, patients who passed away due
to COVID-19 differed significantly from those who recovered
(p ≤ 0.05). The difference was more pronounced when comparing
surviving patients to controls (p≤ 0.01), and most significant when
contrasting deceased patients with healthy controls (p ≤ 0.001).

While no statistically significant difference in weighted UniFrac
was observed between surviving and non-surviving patients in
pairwise comparisons of beta diversity distances based on hospital
outcomes, a level of significance was detected when comparing
patients to controls (p-value for surviving patients vs. controls,
p ≤ 0.01; dead patients vs. controls, p ≤ 0.001) (Figure 1C).

In terms of ICU admission, the most significant beta diversity
variations were observed between patients referred to the ICU
and those solely in the COVID unit, as well as between ICU-
referred patients and controls (p ≤ 0.0001 to 0.001). Regardless
of hospitalization type, ICU referral consistently led to statistically
significant differences in weighted UniFrac distances, particularly
when compared to controls (Figure 1C).

In contrast, patients not treated with antibiotics showed
similar diversity levels as the control group, while those receiving
antibiotics exhibited higher Shannon diversity (p≤ 0.0001 to 0.001)
compared to both untreated patients and controls. The difference
was most pronounced in patients who received antibiotics
(p ≤ 0.001). However, there were no significant variations in beta
diversity between treated and untreated patients (Figure 1C).

We employed weighted UniFrac-based principal coordinate
analysis and looked for any demographic or clinical metadata
variables that could explain the behavior of the data points on the
PCoA plot (Figure 1D). 80.48% of the total variation in the SARS-
CoV-2 patients was described by the first three PCoA components
(i.e., PC1-PC3). We were unable to identify a single demographic
or clinical variable that would explain the distribution, but by
creating a PCoA biplot, we were able to determine which taxa
contribute the most to the PCoA axes (Figure 1D). The presence
of Enterococcus faecium in the patient samples accounts for the
major variation. The remaining four OGUs—Bacteroides uniformis,
Klebsiella pneuomoniae, Bacteroides doreii CAG:222, and Prevotella
copri, are also largely responsible for the divergence.

3.3 Machine learning predictions

Our objective was to ascertain the most critical information
for accurately predicting patient outcomes. To accomplish this,
we used the same data as in the previous section and devised six
distinct classifiers, each designed to analyze different sets of input
data: baseline, clinical, patient metadata (basic demographic data),
microbiome, microbiome combined with clinical, and microbiome
combined with metadata.

Regarding the prognosis of ICU admission, all classifiers
significantly outperformed the naive baseline (assigning outcome
randomly based on the prevalence of classes) based on the
ROC-AUC score (Figure 2A). To further assess and compare
these classifiers, we conducted ANOVA analysis, revealing that
their performance was strongly influenced by the availability of
features. Microbiome-based classifiers demonstrated the highest
performance, and the inclusion of additional data, whether clinical
or metadata, did not provide a substantial advantage. In contrast,
classifiers that did not utilize microbiome data performed notably
worse, with metadata-based classifiers showing only marginal
improvement over the baseline.

In Figure 2B, the ROC curves of the four main classifier
types (clinical, metadata, microbiome, and baseline) are compared,
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FIGURE 1

The gut microbiome of COVID patients. (A) Subject’s weighted UniFrac distances to subject’s first sample after rarefaction, showing how the
composition of fecal microbes in SARS-CoV-2 patients change over time compared to the control group. Linear regression models the relationship
between distance and time. (B) Subject’s day-to-day change of weighted UniFrac distance. Linear regression shows the correlation between the
distance and time point. (C) Microbiome diversity measures—Shannon’s entropy and weighted UniFrac for survivability, Intensive Care Unit referral
and antibiotics usage measured for subject’s first sample after rarefaction (death, icu) or first sample collected after antibiotic introduction
(antibiotics) (ns, not significant; *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***0.0001 < p ≤ 0.001; ****p ≤ 0.0001). (D) PCoA biplot of weighted UniFrac
of subject’s oldest sample after rarefaction colored by survivability with taxa contributing to the PCoA axes.

highlighting that the microbiome classifier’s enhanced AUC is
primarily attributed to its ability to achieve a significantly higher
True Positive Rate for small False Positive Rates compared to other
classifiers.

Remarkably, only four features (taxa) are necessary to
achieve optimal performance for the microbiome-based classifier
(Figure 2C). The assessment of feature importance revealed
that high concentrations of Orrella dioscoreae and Klebsiella
pneumoniae correlated with worse outcomes, while the presence
of Lachnospiraceae bacterium 3-2 was associated with improved
patient prognosis (Figure 2D).

A comparable analysis of the life/death outcome is available in
Supplementary Figure 1.

3.4 Shallow vs. deep shotgun comparison

To validate the suitability of using shallow sequencing instead
of deep shotgun sequencing in COVID-19 patients, we conducted a
comparative analysis of matched samples from our study. Shallow
and deep sequencing samples exhibited no significant differences
in fundamental quality parameters such as read length or GC
content. The relatively higher rate of quality control failures in

deep sequencing reads could be attributed, in part, to a greater
duplication rate compared to shallow sequencing (Supplementary
Figure 2). While alpha diversity and some observed features were
higher in deep sequencing, there was no distinct separation between
the two sequencing types when performing beta diversity clustering
(Figure 3A; Supplementary Figure 3).

A high degree of overlap of species identified in shallow
and deep sequencing was observed (Figure 3B). While
substantially more species were found in deep sequencing,
all but five species identified in shallow sequencing were
discovered in deep sequencing. The five species unique to shallow
sequencing were CAG-269_sp900554175, Faeciplasma gallinarum,
Klebsiella pneumoniae, Mediterraneibacter glycyrrhizinilyticus
A, Parafannyhessea umbonate and Scatacola A faecigallinarum.
They rarely appear in bioinformatics analyses, and Klebsiella
pneumoniae is known to be frequently misclassified (Arnold et al.,
2011). Species identified in both shallow and deep sequencing had
an abundance of at least 0.2% in deep sequencing. In addition
to that, we showed that while the abundance of species was not
perfectly matched between shallow and deep sequencing, the
hierarchy of species abundance, even at low abundances below 1%,
was well maintained (Figure 3D).
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FIGURE 2

Insights into what influences the predictive power of patients’ outcomes (ICU vs. non-ICU) classifier. (A) Impact of different types of data on the
predictive power of the classifiers. This plot shows that access to microbiome data immensely increases the performance of the classifiers. (B) ROC
curve of classifiers grouped by access to data. (C) Increasing the number of metagenomic features doesn’t improve ROC-AUC beyond the 7 most
important. (D) Shapley values of the most important features for classification.

4 Discussion

In the wake of the COVID-19 pandemic, the scientific
community has devoted significant effort towards investigating the
pathogenesis of SARS-CoV-2 infection and identifying the risk
factors that contribute to disease outcomes. As part of these efforts,
our study explored the potential role of gut microbiota as a risk
factor for ICU referral or mortality in individuals with COVID-19.
Using both shallow and deep sequencing techniques, we studied
the gut microbiomes of 204 COVID-19 patients at two reference
hospitals in Poland. We sought to learn how hospitalization
outcomes (survival, ICU referral) and procedures (antibiotics
usage) affected the makeup of the microbiota. The study employed
machine learning to see if microbiome data might predict COVID-
19 prognosis more accurately than conventional predictors like age,
sex, and BMI. Using both shallow and deep sequencing techniques
allowed us to contrast their precision, specifically to find out if
shallow sequencing can serve as a potential cost-effective substitute
with excellent taxonomic accuracy for COVID-19 patient clinical
outcomes prediction.

The fecal microbial beta diversity of the SARS-CoV-2 patients
who are actively infected increases over time as compared to that
of the hospital staff, whose distance almost remains constant over
time (Figure 1). Additionally, day-to-day comparisons revealed
that the distances are greater and are shrinking more slowly for
the patients than for the control group. This suggests that the
microbiome of COVID-19 hospitalized patients is less stable and
subject to greater qualitative and quantitative perturbations over
time compared to healthy controls. It’s challenging to guarantee
that the observed changes over time aren’t influenced by antibiotic
administration. Antibiotic use can notably diminish the diversity
and composition of gut microbiota, potentially reducing beneficial
symbionts and worsening gut dysbiosis (Lange et al., 2016; Zuo
et al., 2020; Mazzarelli et al., 2021). Also, for the control group, we
observed coefficient of determination of a lower power of predictive
ability compared to cases, which may affect the trends. Research
indicates that the microbiome in the collected fecal samples exhibits
fluctuations over time, with the magnitude of these fluctuations
intensifying as time progresses with healthy not equivalent to stable
(Han et al., 2022; Karwowska et al., 2023). Therefore, it is possible
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FIGURE 3

Comparison of shallow and deep shotgun sequencing methods. (A) Clustering of samples based on Bray-Curtis beta diversity. Blue: deep, red:
shallow sequencing. (B) Overlap of species identified in shallow and deep sequencing. (C) KDE plot of species abundance identified uniquely or
commonly in shallow and deep sequencing. (D) Correlation of species abundance in shallow and deep sequencing, restricted to abundance below
1% in an exemplary sample. Spearman = 0.75, p-value = 0.0, Mean squared error = 9.04, R-squared = 0.71.

that if we were to increase the number of samples collected for
control, we would achieve a greater change over time.

We were able to distinguish patients stratified by survivability
from healthy subjects when both alpha (Shannon’s evenness) and
beta (unweighted UniFrac) heterogeneity were compared, as the
differences between these groups were significant in both cases
(Figure 1). The highest significance was observed for deceased
patients matched against controls. Similarly, the metrics of both
diversities, alpha and beta, are most important for the patients
admitted to ICU paired with controls. It should be noted that
although the difference was smaller, we also observe a significant
difference between patients who only stayed in the COVID-19 ward
and those who were referred to ICU.

Insights into the influence of hospital food and hospital
environment on gut microbiome dynamics and healthcare-
associated infections could enhance the predictive value of
microbial changes in hospitalized COVID-19 patients. Hospital
food plays a crucial role in shaping the microbiome composition
of patients due to its direct influence on dietary intake and
nutrient availability. The microbiome is highly responsive to
dietary changes. Hospital diets, often standardized to meet specific
nutritional requirements and accommodate diverse medical
conditions, may vary in composition and quality compared to

home diets. These dietary changes may disrupt microbial balance,
leading to dysbiosis, characterized by a decrease in beneficial
bacteria and an increase in potentially harmful microbes (David
et al., 2014; Singh et al., 2017).

The hospital environment significantly influences microbiome
variations, impacting healthcare-associated infections and patient
outcomes. Studies show lower diversity in indoor hospital
microbiomes compared to outdoors, with varying bacterial
compositions in different areas like halls, patient rooms, and
restrooms. Hospital surfaces act as reservoirs for bacteria,
fungi, and viruses, increasing the risk of transmission and
persistence. Factors like temperature, ventilation, and building
design further affect microbiota composition, contributing to
the spread of antibiotic-resistant strains (Christoff et al., 2019;
Cruz-López et al., 2023).

Most of the variation in the unweighted UniFrac PCoA plot
can be attributed to the presence of Enterococcus faecium in patient
samples. The plot’s divergence is also largely attributable to the
other four OGUs, Bacteroides uniformis, Klebsiella pneuomoniae,
Bacteroides dorei CAG:222, and Prevotella copri. Although
Enterococcus faecium has been recognized as human commensal
(Lee et al., 2019), there is a growing evidence on its involvement
in hospital-acquired infections (Zhou X. et al., 2020; Revtovich
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et al., 2021; Rohde et al., 2023). Strains were found to synthesize
membrane vesicles with virulence factors protein antimicrobials
(Wagner et al., 2018) which is linked to emerging phenotype of
antibiotic resistance od particular strains (Rohde et al., 2023).
In our study all patients who were included in the study were
hospitalized thus this species might have caused more detrimental
effects in severely immunocompromised patients.

Bacteroides uniformis, has been demonstrated to alleviate colitis
in animals via modulating intestinal barrier integrity A JCM5828
strain increased the abundance Bifidobacterium and Lactobacillus
vaginalis and decreased the counts of pathogenic Escherichia-
Shigella, along with an NF-κB and mitogen-activated protein
kinase signaling pathways (Yan et al., 2023). Bacteroides uniformis
strain F18-22 has been recently isolated from a healthy man
colon and presented efficacy as a probiotic in ulcerative colitis
(Dai et al., 2023).

Klebsiella pneuomoniae, is a well-known bacterium originally
isolated from lung of humans with pneumonia (Ashurst and
Dawson, 2024), but gut is a reservoir for infectious Klebsiella (Yang
et al., 2022; Vornhagen et al., 2023). The bacterium has been
demonstrated to be present in approximately 50% of long-term
acute care hospital patients (Shimasaki et al., 2019).

Prevotella genus in mainly represented by, among other,
Prevotella copri (Yeoh et al., 2022) which might cover as much as
50% of relative abundance. The species has been linked to high
fiber diet (De Filippis et al., 2016) and favored metabolic effects
(Asnicar et al., 2021). However, reports on its involvement in
hypertension, insulin resistance, and gut inflammation do exist
(Dillon et al., 2016; Pedersen et al., 2016; Li et al., 2017). Whether
the bacterium is beneficial of harmful to host is still under a debate
(Abdelsalam et al., 2023).

Using patient metadata, microbiome and clinical data, we
carried out an in-depth machine-learning analysis. Our findings
shed light on the varying impacts of different combinations
of clinical, microbiome, and patient metadata on the accuracy
of outcome prediction for patients and suggest that the AUC-
ROC of the classifiers is primarily influenced by their access to
microbiological data, indicating that microbiological data is a more
reliable predictor of patient outcomes compared to clinical or
metadata. Our analysis of feature importance additionally proves
that only a few of the taxa are important in the prediction of
patients’ outcomes.

However, our results do not allow us to conclude unequivocally
that the observed dysbiosis is a causal factor for the severe course
of the disease or a consequence of it. Gastrointestinal dysbiosis
in COVID-19 can occur due to antibiotic therapy, secondary
bacterial infections, and enteral nutrition (Langford et al., 2020;
Zaher, 2020). Altered microbiota can cause inflammation in the
gastrointestinal tract, malnutrition (Zaher, 2020), and viral and
bacterial infections (Zuo et al., 2020). COVID-19 patients can also
have an altered gut microbiota before the disease and/or hospital
admission (Alberca et al., 2021). In these patients, COVID-19 may
exacerbate dysbiosis leading to different health complications like
metabolic disturbances (Alberca et al., 2021).

To assess the viability of shallow sequencing as an alternative to
deep shotgun sequencing in COVID-19 patients, we conducted a
comparative analysis of matched samples from our investigation.
We opted to employ distinct tools for processing shallow
(SHOGUN) and deep (Metaphlan4) data, as each of them is

customized to suit the specific characteristics of the respective
data types (Hillmann et al., 2020; Blanco-Míguez et al., 2023).
We have proven that shallow shotgun sequencing is a valid
alternative to deep sequencing for predicting COVID-19. Although
deep sequencing detected more species and had higher alpha
diversity, there was no significant difference in beta diversity
clustering between the two methods. The range of species detected
by both methods was similar, and the abundance of species
was maintained in a proper hierarchy. Our findings suggest
that shallow sequencing may be a viable substitute for deep
sequencing in clinical settings. Shallow shotgun sequencing has
been demonstrated to yield quicker findings in a clinical context,
and it also offers better economic viability when used with popular
and widely accessible Illumina platforms like MiSeq. Shallow
shotgun sequencing, which is substantially less expensive than
deep shotgun sequencing, provided lower technical variation and
higher taxonomic resolution than 16S sequencing, according to
La Reau et al. (2023). On the other hand deep sequencing
offers unparalleled coverage depth, detecting rare microbial
taxa and genetic variants crucial for comprehensive analysis. It
provides robust alpha diversity analysis and genome assembly,
essential for identifying genetic elements such as virulence factors.
While shallow sequencing may be cost-effective, deep sequencing
remains indispensable for detailed microbiome studies and clinical
analyses requiring comprehensive taxonomic profiling and genome
assembly capabilities. As bioinformatics techniques are developed
and standardized and computational performance increases, the
use of in situ microbiome characterization in the therapeutic
context is becoming more and more accepted.
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