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Background: Inflammation serves as a key pathologic mediator in the

progression of infections and various diseases, involving significant alterations

in the gut microbiome and metabolism. This study aims to probe into the

potential causal relationships between gut microbial taxa and human blood

metabolites with various serum inflammatory markers (CRP, SAA1, IL-6, TNF-α,

WBC, and GlycA) and the risks of seven common infections (gastrointestinal

infections, dysentery, pneumonia, bacterial pneumonia, bronchopneumonia and

lung abscess, pneumococcal pneumonia, and urinary tract infections).

Methods: Two-sample Mendelian randomization (MR) analysis was performed

using inverse varianceweighted (IVW), maximum likelihood, MR-Egger, weighted

median, and MR-PRESSO.

Results: After adding other MRmodels and sensitivity analyses, genus Roseburia

was simultaneously associated adversely with CRP (Beta IVW =−0.040) and SAA1

(Beta IVW = −0.280), and family Bifidobacteriaceae was negatively associated

with both CRP (Beta IVW = −0.034) and pneumonia risk (Beta IVW = −0.391).

After correction by FDR, only glutaroyl carnitine remained significantly associated

with elevated CRP levels (Beta IVW = 0.112). Additionally, threonine (Beta IVW

= 0.200) and 1-heptadecanoylglycerophosphocholine (Beta IVW = −0.246)

were found to be significantly associated with WBC levels. Three metabolites

showed similar causal e�ects on di�erent inflammatory markers or infectious

phenotypes, stearidonate (18:4n3) was negatively related to SAA1 and urinary

tract infections, and 5-oxoproline contributed to elevated IL-6 and SAA1 levels.

In addition, 7-methylguanine showed a positive correlation with dysentery and

bacterial pneumonia.

Conclusion: This study provides novel evidence confirming the causal e�ects

of the gut microbiome and the plasma metabolite profile on inflammation

and the risk of infection. These potential molecular alterations may aid in the

development of new targets for the intervention and management of disorders

associated with inflammation and infections.
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Introduction

The inflammatory response is a vital component of immunity
and acts as a critical mechanism against damage and infection.
However, inflammation will become harmful when it loses control,
spreads becomes systemic, or lasts for extended periods and
becomes chronic. Inflammation can cause cellular injury, tissue
destruction, cancer, organ failure, and death (Wang and Ma,
2008; Greten and Grivennikov, 2019), playing a key role in
the pathology of various diseases. Infection represents a local
tissue and systemic inflammatory response caused by pathogens
invading the human body. Gastrointestinal infections (GI),
pneumonia, and urinary tract infections (UTI) are common
infections causing hospitalization and death (Collaborators, 2017).
Therefore, it is essential to prevent and manage inflammation and
infectious disorders (including their subtypes) with appropriate
intervention strategies.

Systemic inflammation and infection are characterized by an
increased release of cytokines and acute-phase proteins (APPs),
as well as changes in the components of the blood (Slaats et al.,
2016; Liu et al., 2017). Some of the most routinely used markers
for inflammation and infection in clinical practice (Dos Anjos
and Grotto, 2010; Menzel et al., 2021; Yin and Mo, 2022) include
cytokines (e.g., interleukin-6 [IL-6] and tumor necrosis factor-
alpha [TNF-α]), APPs (e.g., C-reactive protein [CRP] and serum
amyloid a [SAA]), and blood cell counts (e.g., white blood cell count
[WBC]), representing several components of the inflammatory
process. Glycoprotein acetylation (GlycA) is a novel biomarker
of systemic inflammation and cardiovascular disease (Connelly
et al., 2017), reflecting both increased glycan complexity and
circulating APPs. Elevated levels of these markers in the blood
can be early signs of health effects (Qu et al., 2015; Zacho et al.,
2016; Yin and Mo, 2022) and are clinically useful in tracing and
detecting inflammatory severity and infectious risks, diagnosing,
and following-up on diseases (Ponti et al., 2020;Menzel et al., 2021).
However, most of the molecular mechanisms underlying inter-
individual variation in systemic inflammation and the infectious
risks remain to be illustrated.

It has been revealed that certain environmental and
lifestyle factors can promote systemic inflammation, thereby
contributing to disease development, severe disability, and
mortality (Furman et al., 2019). The metabolome defines metabolic
perturbations resulting from the interplay between the genome
and environmental factors, representing an immediate host
response to environmental exposures and pathological processes
(Kaddurah-Daouk and Krishnan, 2009). Prior metabolomic
studies have pinpointed specific metabolic changes associated
with the urea cycle and oxidative stress, which correlate with
inflammatory markers in healthy individuals (Pietzner et al., 2017)
and rheumatoid arthritis patients (Jutley et al., 2021). Importantly,
metabolomics was also widely applied to identify infection
biomarkers (Araújo et al., 2022). Moreover, microbiota balance has
a powerful regulatory effect on the human immune and metabolic
systems (Samuelson et al., 2015). The gut microbiota, including
its composition and metabolites such as lipopolysaccharides, bile
acids, and short-chain fatty acids, also play important roles in
inflammation development, significantly affecting host health
(Al Bander et al., 2020; Tilg et al., 2020). At present, probiotics

and micronutrients have been demonstrated to modulate some
immune and inflammatory biomarkers and reduce the risk and
severity of gastrointestinal and respiratory infections (Calder et al.,
2022). Thus, the gut microbiota and metabolic signature are closely
related to the host’s immune-inflammatory response, potentially
influencing the susceptibility to infections.

While research on the gut microbiome and blood metabolites
is growing, the causal relationships between these factors and
inflammation as well as the risk of infection remain poorly
understood. Mendelian randomization (MR) is a powerful tool
for inferring causal effects between exposures and outcomes
(Davies et al., 2018). By leveraging genetic variants associated
with the exposure, MR helps overcome the limitations of
traditional observational studies, such as confounding and
reverse causation. Therefore, we employed a two-sample MR
approach to investigate the causal effects of 195 gut bacterial
traits and 529 (290 annotated) human blood metabolites on
inflammation and the risk of infections, aiming to gain deeper
molecular insights. Our findings shed new light on the intricate
relationships between the gut microbiome, blood metabolites, and
inflammation and the risk of infections, which may have significant
implications for preventing and treating inflammatory symptoms
and infectious diseases.

Materials and methods

The study flow is depicted in Figure 1. A two-sample MR
analysis was employed to assess the potential causal relationship
between gut microbiota composition, blood metabolite levels, and
nine outcomes. The MR analysis is based on the following three
assumptions to avoid the causal estimates from being biased:
(1) instrumental variables (IVs) are strongly associated with the
exposure; (2) IVs are not correlated with the confounders; and (3)
IVs can only affect the outcome through the exposure.

Data source

The genetic predictors of human gut microbiome composition
were obtained from a large-scale, multi-ethnic meta-analysis of
microbiome-based GWAS, the MiBioGen study (Kurilshikov et al.,
2021). This meta-analysis included 18,340 participants from 24
cohorts. Microbial abundance was based on 16S rRNA gene
data, and the use of the direct taxonomic classification of reads,
along with an up-to-date reference database, allowed for good
concordance of taxonomic composition across domains and a
higher mapping rate. After quality control (including duplication
of the family Bifidobacteriaceae with the order Bifidobacteriales in
the results of the GWAS, and deletion of larger taxonomic units of
bacteria), a total of 195 microbial genera (119 genera, 32 families,
19 orders, 16 classes, and 9 phyla) were retained. Supplementary
Table S1 provides a comprehensive list of all datasets used.

The metabolite GWAS dataset used in this study includes
the largest meta-GWAS data to date, as published in Nature
Genetics in 2014 by Shin et al. (2014). The dataset consists of a
meta-analysis of seven European populations, comprising a total
of 7,824 individuals of European ancestry. Following rigorous
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FIGURE 1

Flowchart of the MR analysis.

quality control procedures, 290 annotated blood metabolites
(Supplementary Table S2) were included in the genome-wide
association analysis.

CRP: The GWAS result of serum CRP levels was conducted
within a large, population-based cohort of half a million individuals
in the United Kingdom, aged between 40 and 69 years (Bycroft
et al., 2018). Han et al. (2020) accessed serumCRP levels for 469,881
individuals from the 2019 serum biochemistry data release. The
researchers calculated the mean serum CRP levels for individuals
who had undergone two assessments. Prior to the GWAS analysis,
a rank-based inverse normal transformation was applied to serum
CRP levels to ensure a normal data distribution.

SAA1: A study integrates large-scale genomic and aptamer-
based plasma proteomic data from 10,708 individuals prior to any
SARS-CoV-2 infection or COVID-19 (Pietzner et al., 2020).

IL-6: The GWAS data for IL-6 is obtained from a study
encompassing 90 cardiovascular proteins, involving more than
30,000 individuals from 15 distinct studies (Folkersen et al., 2020).

TNF-α: The TNF-αGWAS results were obtained from aGWAS
meta-analysis that investigated the circulating concentrations of 41
cytokines, involving up to 8,293 Finnish individuals from three
independent population cohorts (Ahola-Olli et al., 2017).

WBC: The WBC data are sourced from an extensive
study providing genetic insights into blood cells across diverse
populations, including 184,535 individuals of non-European
ancestry, from a total of 746,667 individuals across five global
populations (Chen et al., 2020).

GlycA: The GlycA GWAS meta-analysis was based on data
from 249 metabolites quantified using nuclear magnetic resonance
spectroscopy (NMR) in the UKB by Nightingale Health in 2020.
Data can be accessed at https://gwas.mrcieu.ac.uk/datasets/met-d-
GlycA/.

GWAS meta-analyses for GI (Phecode:008), pneumonia
(Phecode:480), bacterial pneumonia (BP) (Phecode:480.1),
bronchopneumonia, and lung abscess (BLA) (Phecode:480.5),
pneumococcal pneumonia (PP) (Phecode:480.11), and UTI
(Phecode:591) were derived using the GLMM-based GWA tool,
fastGWA-GLMM. Application to UKB data included 456,348
individuals, 11,842,647 variants, and 2,989 binary traits (Jiang
et al., 2021a). The meta-GWAS data for dysentery (Phecode:008.5)
comes from meta-analysis across populations in three cohorts,
namely, UKB, BioBank Japan, and FinnGen (Sakaue et al., 2021).
All patients’ diseases are systematically defined using the phecode
framework; each phenotype (“phecode”) has defined case, control,
and exclusion criteria (Denny et al., 2013).

Selection of IVs

Additional quality control steps were implemented to select
candidate IVs. Candidate IVs from the GWAS meta-results of gut
microbiota and metabolites were included using a relatively relaxed
standard of P < 1e−5 (Sanna et al., 2019). Considering that single
nucleotide polymorphism (SNP) variations may affect several
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metabolites in the same pathway, thus violating the assumptions of
theMR, a restrictive SNP selection is applied tometabolite research,
excluding those that are significantly associated with more than
two metabolites (Hwang et al., 2019). Genomic samples from the
1,000 Genomes Project (EUR) served as a linkage disequilibrium
(LD) reference panel, and independent SNPs for gut bacteria
and metabolites were retained using standards of R2

< 0.001,
window size = 10,000 kb and R2

< 0.01, window size = 500 kb,
respectively. The F-statistic, typically used to assess the strength
of the correlation between IV and exposure, was calculated using
the formula 1: F = R2 (n-k-1)/k(1-R2), where R2 is the variance
of exposure explained by the selected SNP, n is the sample size,
and k is the number of IVs included. IVs with an F-statistic of
<10 were considered weak and were excluded (Pierce et al., 2011).
For metabolites, we used formula 2: F = (PVE(n-k-1))/(1-PVE) k,
where PVE is the proportion of exposure variance for the selected
IV. By setting k equal to 1, the PVE for each IV was calculated using
the formula 3:

PVE = (2∗β2∗MAF∗(1-MAF))/[(2∗β2∗MAF∗(1-MAF)+2∗Se2∗

n∗MAF∗(1-MAF)].
Since the gut microbiota SNPs did not provide minor allele

frequencies, R2 was estimated directly using the “get_r_from_pn”
function from the “TwoSampleMR” package (Hemani et al., 2017,
2018) and then using formula 1 to calculate the F-statistic. Finally,
horizontal pleiotropic effects, i.e., confounding effects caused by
other diseases, may violate the second assumption in MR analysis
(SNP is unrelated to outcome). Once these were detected, the
associated IVs were removed. The MR-PRESSO test was used
to detect potential horizontal pleiotropy (Verbanck et al., 2018).
We mitigated the influence of pleiotropy by removing outliers,
specifically SNPs with a global test P-value of < 0.05 in the MR-
PRESSO test. After removing these outliers, we performed a re-
analysis to ensure the accuracy of our results.

Removing confounders

In adherence to the independence assumption of MR, we
utilized PhenoScanner V2 to identify potential confounders for
each outcome (Kamat et al., 2019). Our search parameters
were the following. CRP (Luan and Yao, 2018): coronary heart
disease, diabetes, Alzheimer’s, Parkinson’s, stroke, and macular
degeneration. SAA1 (Sack, 2018): lipid profiles, atherosclerosis,
cholesterol, and cancer. IL-6 (Tanaka et al., 2014): autoimmunity,
chronic inflammatory diseases, inflammatory myopathies, juvenile
idiopathic arthritis, rheumatoid arthritis, systemic sclerosis, and
Castleman disease. TNF-α (Locksley et al., 2001; Brynskov et al.,
2002; Swardfager et al., 2010): Alzheimer’s, diabetes mellitus,
inflammatory bowel disease, major depression, obesity, and
psoriasis. WBC (Hasegawa et al., 2002): CAD and leukemia. GlycA
(Connelly et al., 2017): bodymass index, colorectal cancer, coronary
artery disease, psoriasis, and rheumatoid arthritis. GI, dysentery
(Lamps, 2009): salmonella, E. coli, giardiasis, cryptosporidiosis,
viruses. Pneumonia, BP, BLA, PP (https://www.nhlbi.nih.gov/
health/pneumonia/causes, accessed August 30, 2023): COPD,
dementia, diabetes, heart failure, HIV, kidney diseases, Parkinson’s,
pregnancy, smoking, and stroke. UTI (Medina and Castillo-Pino,
2019): diabetes mellitus and viral infections. Potential confounders
were subsequently excluded from the main MR analysis.

MR analysis

The focus was on two relationships: between gut bacteria and
serum inflammatory factors and the risks of infections and between
blood metabolites and serum inflammatory factors and the risks
of infections. This study is reported following the Strengthening
the Reporting of Observational Studies in Epidemiology Using
Mendelian Randomization guidelines (STROBE-MR, S1 Checklist)
(Supplementary material 1). First, following the criteria mentioned
earlier, we sequentially excluded the IVs with LD and confounders.
Second, IVs with F-statistics <10 were excluded. Third, after
rigorously screening quality IVs, we explored potential causal
relationships using two-sample MR with at least three IVs. Fourth,
the following five methods were used to assess these associations:
the inverse variance weighted (IVW) test (Burgess et al., 2013),
the weighted median estimator (WME) (Pierce and Burgess, 2013),
the maximum likelihood estimator (MLE) (Pierce and Burgess,
2013), the weighted mode-based estimator (Hartwig et al., 2017),
and MR-Egger regression (Bowden et al., 2015). For multiple
hypothesis testing, the false discovery rate (FDR) calculation
for gut microbiota was performed at different taxonomic levels,
while for metabolites, it was performed among the 290 annotated
metabolites. A relationship was considered potentially causal if
it was statistically significant in at least three of these methods,
including the IVW method (Liu et al., 2022; Guo et al., 2023).
Special attention was given to the IVW method because of its
robustness to MR analysis. Fifth, a series of sensitivity analyses
were used to ensure the robustness of our results. Finally, we
performed bidirectional MR analysis on significant results to
ensure the validity of the results and to avoid confusion in the
causal interpretation.

Sensitivity analysis

We used sensitivity analysis to ensure the robustness of
our results and to identify potential biases such as pleiotropy
and data heterogeneity. We also tested whether a particular
instrumental variable significantly influenced the outcome variable.
Our sensitivity analysis included a pleiotropy test, a heterogeneity
test, and a leave-one-out method. For the pleiotropy test, we
used the MR-PRESSO method and assumed that the horizontal
pleiotropy of the IVs would not significantly affect the causal
inference if the absolute value of the intercept was <0.1 and
the corresponding P-value was > 0.05. The heterogeneity test
was used to identify differences between different IVs. P-value =

0.05 is the threshold value. The leave-one-out method allowed
us to assess whether the MR estimate was driven or biased by
a single SNP with a particularly large pleiotropic effect. This
effect was re-estimated by sequentially removing one SNP at
a time.

Software

For data cleaning and structuring, we used Jupyter Notebook
in Python (version 3.0). To perform the MR analysis, we used R
(version 4.2.1) and the “TwoSampleMR” package.
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Results

Selection of IVs

The characteristics of the selected IVs for each gut microbiota
are listed in Supplementary Table S3. After conducting LD
analyses and eliminating confounding variables, the ultimate
counts of IVs for CRP, SAA1, IL-6, TNF-α, WBC, GlycA, GI,
dysentery, pneumonia, BP, BLA, PP, and UTI are 1,594, 1,959,
1,021, 1,911, 1,597, 1,871, 1,870, 1,965, 1,876, 1,875, 1,864,
1,877, and 1,888, respectively. These IVs will be employed for
subsequent MR analyses. Bacterial traits with fewer than three IVs
were excluded.

Supplementary Table S4 provides the details of the selected IVs
for each metabolite. Of the 56,147 SNPs significantly correlated
with 290 blood metabolites (P < 1 × 10−5), 23,198 SNPs linked
to at least two metabolites were excluded. After performing LD
analyses and accounting for confounding factors, the instrumental
variable counts for CRP, SAA1, IL-6, TNF-α, WBC, GlycA,
GI, dysentery, pneumonia, BP, BLA, PP, and UTI are 2,879,
3,517, 2,619, 4,416, 3,031, 4,857, 5,095, 5,125, 5,066, 5,042, 5,068,
5,056, and 5,025, respectively. These instruments will be used
in subsequent MR analyses, with the exclusion of metabolites
having <3 IVs.

In all analyses of serum inflammatory markers, the F-
statistics of the IVs were >10, indicating less possibility of weak
instrument bias.

Two-sample MR analysis of gut microbiota
on inflammation and risk of infections

We first used the IVW method as the primary analysis to
evaluate the causal relationships between gut microbiota, serum
inflammatorymarkers, and seven risks of infection (Supplementary
Table S5). A total of 23 (including 14 genera), 9 (6 genera),
3 (2 genera), 8 (2 genera), 27 (16 genera), and 9 (6 genera)
bacterial traits were suggested as significant for CRP, SAA1,
IL-6, TNF-α, WBC, and GlycA (PIVW < 0.05). Besides, 9
(3 genera), 6 (3 genera), 7 (2 genera), 9 (2 genera), 12 (6
genera), 5 (4 genera), and 8 (3 genera) bacterial traits were
associated with risks of GI, dysentery, pneumonia, BP, BLA,
PP, and UTI. Then, the other four MR methods, namely, MR-
Egger, maximum likelihood, weighted mode-based estimator, and
weighted median-based estimator, were added to further evaluate
the causal estimates. The full results of all MR methods are
presented in Supplementary Table S6. There are 7, 3, 1, 2, 9,
and 1 suggestive causal associations detected for CRP, SAA1, IL-
6, TNF-α, WBC, and GlycA across at least three MR methods
(including IVW, P < 0.05). Additionally, 3, 2, 1, 4, 0, 1, and
1 associations were confirmed for the risks of GI, dysentery,
pneumonia, BP, BLA, PP, and UTI using at least three MRmethods.
We next performed a heterogeneity and horizontal pleiotropy
test to assess the robustness of the above suggestive associations
(Supplementary Table S7). The above suggestive associations,
where the intercept of the MR-Egger regression approached 0
and the p-values of both the MR-Egger and MR-PRESSO global

tests were >0.05, indicating no evidence of horizontal pleiotropy,
were retained.

Overall, after multiple-testing correction, nine associations
exceeded the strict threshold ([FDR]< 0.05, Figure 2). A genetically
predicted increase in family Bifidobacteriaceae (Beta[95%CI] IVW

=−0.034 [−0.055,−0.012]) and Christensenellaceae (Beta[95%CI]

IVW =−0.038 [−0.062,−0.013]) demonstrated a suggestive inverse
association with CRP levels. Genus Lachnospiraceae (Beta[95%CI]

IVW =−0.033 [−0.052,−0.015]) and order Bacillales (Beta[95%CI]

IVW = −0.016 [−0.027, −0.006]) were related to decreased WBC;
genera Eggerthella (Beta[95%CI] IVW = −0.024 [0.009, 0.038])
and Sutterella (Beta[95%CI] IVW = 0.098 [0.052, 0.143]) were
related to increased WBC and GlycA levels, respectively. As for
the infectious risks, family Bifidobacteriaceae (Beta[95%CI] IVW =

−0.391 [−0.621, −0.161]) and order Lactobacillales (Beta[95%CI]

IVW = −0.374 [−0.597, −0.151]) were respectively linked to
reduced pneumonia and gastrointestinal infection risk, while
order Burkholderiales (Beta[95%CI] IVW = 0.533 [0.216, 0.850])
were linked to elevated GI risk. Importantly, we also observed
three bacterial traits were common to two different inflammatory
markers or infectious risks, such as family Bifidobacteriaceae,
which was negatively associated with both CRP and pneumonia
risk, and genus Roseburia, which was simultaneously associated
adversely with CRP [Beta (95%CI) IVW =−0.040 (−0.066,−0.013),
PIVW = 0.004] and SAA1 [Beta (95%CI) IVW = −0.280 (−0.465,
−0.095), PIVW = 0.003] levels. Interestingly, the Bifidobacteriaceae
family was associated with an increased risk of pneumonia
subtype BP [Beta (95%CI) IVW = 0.718 (0.160, 1.276), PIVW
= 0.117]. The scatterplots of the SNP effect sizes for the MR
results are displayed in Figure 3 and Supplementary Figure 2. The
sensitivity estimators were relatively consistent across different
MR tests, with similar directions and comparable magnitudes
of effect.

Finally, a leave-one-out sensitivity analysis was further
employed to confirm the reliability and stability of these results
(Supplementary Figures 1, 2). The identified causal associations
(Figure 4) include four taxa (genus Roseburia and family XIII

UCG001, families Bifidobacteriaceae, and Christensenellaceae)
for CRP, genus Roseburia for SAA1, genus Lachnospira for
TNF-α, four taxa (genera Eggerthella, Lachnospiraceae, and
Ruminococcustorques, order Bacillales) for WBC, and genus
Sutterella for GlycA remains displayed no sensitivity with any single
IVs, indicating robust causal links from the identified taxa to the
corresponding outcomes. In addition, orders Burkholderiales and
Lactobacillales for GI, family Bifidobacteriaceae for pneumonia,
family Bifidobacteriaceae and genus Bifidobacterium both for
BP, and family Rikenellaceae for PP also passed the leave-one-
out analysis.

Two-sample MR analysis of blood
metabolites on inflammation and risk of
infections

Utilizing the IVW method, we identified 27, 10, 11, 13,
41, and 18 significant annotated metabolites for CRP, SAA1,
IL-6, TNF-α, WBC, and GlycA (PIVW < 0.05, Supplementary
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FIGURE 2

Heatmaps of significant potential causal associations in at least three MR methods including IVW. (A) Heatmap of Odds Ratios (ORs) between gut

microbiota and all inflammatory factors and risks of seven infections under IVW analysis. The color intensity represents the magnitude of ORs. An

asterisk (*) indicates cases where the false discovery rate (FDR) value for the IVW method is less than 0.05. (B) Heatmap of causal relationship ORs

between metabolites and all inflammatory factors and risks of seven infections under the IVW method. CRP, C-reactive protein; SAA1, serum amyloid

A1; IL6, interleukin 6; TNF-α, tumor necrosis factor-alpha; WBC, white blood cells; GlycA, glycoprotein acetylation; GI, gastrointestinal infections; BP,

bacterial pneumonia; BLA, bronchopneumonia and lung abscess; PP, pneumococcal pneumonia; UTI, urinary tract infections.

Table S8). There are 11, 11, 16, 14, 22, 10, and 20 significant
annotated metabolites for risk of GI, dysentery, pneumonia,
BP, BLA, PP, and UTI. The above associations were further
validated by MR-Egger, MR-PRESSO, maximum likelihood, and
weighted median methods. The results of all MR methods are
shown in Supplementary Table S9. Then, 9, 3, 4, 1, 21, and 7
annotated metabolites displayed significant associations with CRP,
SAA1, IL-6, TNF-α, WBC, and GlycA, and 3, 2, 1, 4, 6, 2,
and 6 metabolites were significant for the risk of GI, dysentery,
pneumonia, BP, BLA, PP, and UTI in at least three MR methods

(P < 0.05) and demonstrated no heterogeneity or pleiotropy effects
(Supplementary Table S10).

As shown in Figure 2, only five associations remained
significant after correction for FDR ([FDR] < 0.05). Glutaroyl
carnitine is correlated with elevated CRP levels (Beta [95%CI]

IVW = 0.112 [0.057, 0.166]), threonine (Beta [95%CI] IVW

= 0.200 [0.093, −0.307]) is correlated with increased WBC,
and 1-heptadecanoylglycerophosphocholine (Beta [95%CI] IVW

= −0.246 [−0.363, −0.128]) is correlated with decreased WBC.
Notably, we observed that two metabolites that were common to
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FIGURE 3

Scatterplots of five MR results. (A–L) Scatterplots of the five MR models for 9 gut microbes on CRP, SAA1, WBC, GlycA, GI, pneumonia, and bacterial

pneumonia (BP). (M–O) Scatterplots of the five MR models for three metabolites on CRP and WBC.

two different inflammatory markers or infectious risk, such as 5-
oxoproline positively associated with both IL-6 (Beta[95%CI] IVW

= 0.697 [0.065, 1.329], PIVW = 0.031) and SAA1 (Beta [95%CI] IVW
= 0.912 [0.254, 1.569], PIVW = 0.007), 7-methylguanine positively
related to dysentery (Beta [95%CI] IVW = 0.813 [0.012, 1.614],
PIVW = 0.047) and BP (Beta [95%CI] IVW = 2.099 [0.051, 4.147],
PIVW = 0.045), and stearidonate (18:4n3) negatively related to
SAA1 (Beta [95%CI] IVW = −0.468 [−0.930, −0.007], PIVW =

0.047) and UTI (Beta [95%CI] IVW = −1.025 [−1.666, −0.385],
PIVW = 0.002). The scatterplots of the SNP effect sizes for the above
associations are shown in Figure 3 and Supplementary Figure 3,
demonstrating relatively consistent effect direction and magnitude
across methods.

Subsequently, the leave-one-out sensitivity analysis
confirmed these identified causal associations (Figure 5),
including six metabolites [glycerate, glycerol 3-phosphate,
glutaroyl carnitine, kynurenine, cyclo (leu-pro), and 3-
dehydrocarnitine] to CRP, oleate (18:1n9) to IL-6, nine
metabolites [threonine, pentadecanoate (15:0), benzoate, gamma-
glutamylleucine, phenyllactate, ADSGEGDFXAEGGGVR,

isovalerylcarnitine, 4-androsten-3beta, 17beta-diol disulfate
2, and 1-heptadecanoylglycerophosphocholine] to WBC, and
phenylacetylglutamine to GlycA, with no individual SNPs
significantly affecting these associations (Supplementary Figures 1,
4). Besides, quinate to GI, undecanoate (11:0) to dysentery,
taurodeoxycholate to pneumonia, lathosterol to BP, two
metabolites (hippurate and ursodeoxycholate) to BLA, citrulline
to PP, 3-(cysteine-S-yl) acetaminophen, stearidonate (18:4n3), and
metoprolol acid metabolite to UTI showed no sensitivity to any
single IVs.

Reverse MR

The results of the reverse MR analysis are shown in
Supplementary Tables S11, S12. Causal associations involving fewer
than three IVs were not analyzed, using a threshold of P-value< 5e-
8 for IV selection. Here, WBC has causal effects on order Bacillales
abundance. Except for this, no significant causal estimates were
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FIGURE 4

Forest Plots of MR Results for the Identified Causal Relationship between Gut Microbiota and Inflammation and Risks of Infection. 95% CI: 95%

confidence interval; P Heterogeneity: P-value of heterogeneity test; P Pleiotropy: P-value of the intercept of MR Egger; P MR-PRESSO Global test:

P-value of the MR-PRESSO global test. CRP, C-reactive protein; SAA1, serum amyloid A1; TNF-α, tumor necrosis factor-alpha; WBC, white blood

cells; GlycA, glycoprotein acetylation; GI, gastrointestinal infections; BP, bacterial pneumonia; PP, pneumococcal pneumonia.

detected by the five MR methods, suggesting a lack of evidence
for a causal effect from the changes in inflammatory markers or
infectious risks to identified gut bacterial taxa or blood metabolites.

Discussion

Systemic inflammation is often accompanied by metabolic
alterations and gut microbiota dysbiosis; hence, a comprehensive
study to investigate the causal effects of blood metabolomics
and the gut microbiome on inflammation and infection risk
is of considerable scientific interest. This MR study suggested
a potential role of increasing genus Roseburia and family
Bifidobacteriaceae abundance, as well as stearidonate (18:4n3),
in mitigating inflammation or infectious risks, which could
reduce CRP, SAA1, or GlycA levels, pneumonia, or UTI
risk. Conversely, elevating 5-oxoproline levels may enhance
inflammatory markers of IL-6 and SAA1 levels. Collectively, these
results underscore the importance of elucidating the causal effects
between gut microbiota, blood metabolites, inflammatory markers,
and infection risk in understanding the biological mechanisms
underlying systemic inflammation, whichmight provide promising
targets to ease the monitoring and therapy of inflammation-
associated diseases and infectious risks.

The gut microbiota can modulate the host’s immune-
inflammatory process, thus affecting the development of

inflammatory disorders and even infectious risks. This MR study
suggested that the genus Roseburia may help mitigate CRP and
GlycA-indicated inflammation, and the family Bifidobacteriaceae

may help control CRP levels and pneumonia risk. Consistent with
this study, previous studies have also noted an inverse correlation
between Roseburia and Bifidobacteriaceae abundance and CRP
levels (Malaguarnera et al., 2012; Groeger et al., 2013; Xu et al.,
2021; Bao et al., 2022), and their absence is commonly observed
in diverse diseases (Tamanai-Shacoori et al., 2017). Roseburia,
a major butyrate producer, is one of the most abundant species
in the gut microbiota of healthy humans (Aminov et al., 2006).
Both Roseburia and Bifidobacteria are vital for maintaining gut
homeostasis and anti-inflammatory effects by promoting butyrate
production (Kasahara et al., 2018; Seo et al., 2020). Notably,
Bifidobacteria show butyrogenic effects through cross-feeding
interactions with other butyrate-producing bacteria like Roseburia
(Riviere et al., 2016). Butyrate has anti-inflammatory properties,
can induce Treg cell differentiation, limits pro-inflammatory
cytokines by inhibiting the nuclear factor kappa-B (NF-kB)
pathway, releases anti-inflammatory molecules, and maintains
gut homeostasis by secreting antimicrobial peptides (Tamanai-
Shacoori et al., 2017; Singh et al., 2022). Interestingly, Roseburia
intestinalis interacts with dietary plant polysaccharides and
can further alleviate systemic inflammation and atherosclerotic
lesions via butyrate production (Kasahara et al., 2018). Therefore,
our results support the prospect of shifting the interest from
simply increasing Bifidobacterial concentrations to stimulating
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FIGURE 5

Forest plots of MR results for the identified causal relationship between metabolites and inflammation and risks of infection. The beta value for

undecanoate (11:0) exceeds the range of the plot. CRP, C-reactive protein; IL6, interleukin 6; WBC, white blood cells; GlycA, glycoprotein acetylation;

GI, gastrointestinal infections; BP, bacterial pneumonia; BLA, bronchopneumonia and lung abscess; PP, pneumococcal pneumonia; UTI, urinary tract

infections.

or supplementing butyrate-producing bacteria like Roseburia as
next-generation candidate probiotics for alleviating inflammation
magnitude (Zhang et al., 2022).

Bifidobacteria have been shown to interact with human
immune cells, involving innate and adaptive immune processes
(Ruiz et al., 2017). Bifidobacteriaceae, the sole family within
Bifidobacteriales, encompasses many species with demonstrated
multifaceted probiotic effects (Hidalgo-Cantabrana et al., 2017).
The typical genus, Bifidobacterium, has been widely used as a
probiotic to maintain gut flora balance and address gastrointestinal
disorders (Chen et al., 2021). Extensive research has confirmed
that some strains of Bifidobacteria could impart anti-inflammatory
benefits by inhibiting NF-κB activation and lipopolysaccharide
production, reducing IL-1β levels, regulating immune balance
and inflammatory response, and countering neutrophil migration
(Chen et al., 2021). Decreased Bifidobacteriaceae abundance was
also observed in children with mycoplasma pneumoniae (Shi et al.,
2022) and respiratory tract infection (Li et al., 2019). Existing
studies have revealed that intestinal probiotics enhance the host’s

resistance to pneumonia, and novel therapeutic strategies could
exploit the gut-lung axis in bacterial infections (Schuijt et al., 2016).
As known, multiple studies have demonstrated that long-term
use of probiotics such as Lactobacillus or Bifidobacterium could
significantly reduce the risk of infections, including respiratory and
GI (Hojsak et al., 2010; Wolvers et al., 2010; Ozen et al., 2015).
Similarly, our results also supported that order Lactobacillales were
linked to reduced GI risk.

In addition, several potentially harmful bacteria were found
to enhance inflammation or infectious risks. We found that order
Burkholderiales were linked to elevated GI risk. Burkholderia

are known as mammalian pathogens and consist mainly of
pathogenic bacteria (e.g., Bordetella, Ralstonia, and Oxalobacter).
It was already identified as an important pathogen for chronic
infections (Lewis and Torres, 2016), includingGI (Sanchez-Villamil
et al., 2022). Recent studies revealed that type 6 secretion system-
dependent blockage of TNF-α signaling and BicA as a Burkholderia
pseudomallei pathogenesis during GI (Sanchez-Villamil et al.,
2022). Besides, the genera Eggerthella and Sutterella were related to
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increased WBC and GlycA levels after multiple-testing correction,
respectively. It was reported that both genera Eggerthella (Chang
and Choi, 2023) and Sutterella (Hiippala et al., 2016; Kaakoush,
2020) have pro-inflammatory properties. An increasing number of
studies have shown that Eggerthella lenta could be an important
pathogen for humans, even causing life-threatening infection
under certain conditions (Jiang et al., 2021b), which can drive
Th17 activation in immune-related diseases (Alexander et al.,
2022). Although Sutterella may have an immunomodulatory role
and has been frequently identified as being associated with
autism and inflammatory bowel disease (Hiippala et al., 2016),
Sutterella is a controversial bacterium; whether Sutterella species
represents the cause or consequence of inflammation and infection
remains unclear.

Furthermore, metabolic balance is closely related to immune-
inflammatory processes. Specifically, glutaroyl carnitine (C5DC)
was the only metabolite that remained significant on elevated
CRP levels after FDR correction in the IVW analysis. In
line with us, C5DC levels were positively correlated with the
inflammatory marker IL-1β (Guerreiro et al., 2021). Increased
C5DC levels are linked to cardiovascular risks (Zhao et al.,
2020) and aging (Carlsson et al., 2021), both of which are
commonly accompanied by prolonged chronic inflammation (Shi
et al., 2021). Notably, C5DC elevations caused by glutaryl-CoA
dehydrogenase deficiency are generally seen in the inborn glutaric
aciduria type I disorder, leading to neurological dysfunction and
high inflammatory states (Zhao et al., 2014). In addition, after
FDR correction, 1-heptadecanoyglycerophosphocholine decreased
WBC levels, and threonine increased WBC levels, still statistically
significant. The results in aged mice showed that ingestion of
α-glycerophosphocholine (GPC) decreased the expression levels
of aging-related long-term enhancement genes associated with
long-term enhancement of gene expression levels (Narukawa
et al., 2020). There is growing evidence that there is a strong
association between leukocyte levels of telomeres and aging (Aviv,
2004). Threonine is used by lymphocytes to increase antibody
secretion to maintain immune function (Tang et al., 2021). The
other three metabolites are also worth mentioning, which showed
similar causal effects on two inflammatory makers or infectious
phenotypes. 5-oxoproline is a well-known mediator inducing
inflammation and oxidative stress (Pederzolli et al., 2010; Van Der
Pol et al., 2018), which could be biomarkers for early diagnosis
of sepsis, reflecting an imbalance in glutamine and glutathione
metabolism (Lu et al., 2022). 7-methylguanine increases the risk
of both dysentery and hypertension. Stearidonate (18:4n3) is
a specific omega-3 polyunsaturated fatty acid (PUFA) that is
abundant in seafood and is related to reduced SAA1 levels and
the risk of urinary tract infection. In the past few decades, many
epidemiological studies have been reported on the myriad health
benefits of omega-3 PUFAs (Shahidi and Ambigaipalan, 2018),
including preventing and resolving inflammation disorders (Yates
et al., 2014). Collectively, these findings indicate the potential for
interventions modulating the levels of these metabolites to impact
the body’s immune inflammatory response, further highlighting the
therapeutic potential of metabolic modulation.

This study used the largest publicly available GWAS statistics
on the gut microbiome and blood metabolome to conduct MR
analysis, which can minimize the effects of potential confounders

and enhance the causal inference in the associations (Davies
et al., 2018). Strict quality control procedures and sensitivity
analysis approaches were used to ensure the robustness of the MR
estimates. Hence, the associations identified in this study could
help guide further exploration into the mechanisms linking the gut
microbiome, metabolic signature, and inflammatory and infectious
phenotypes. Importantly, our results provide new insights into
the potential of supplementing probiotics like Roseburia and
Bifidobacteriaceae and metabolic reprogramming strategies for
alleviating inflammation and infectious risks. Furthermore, we
could extend the potential benefits of gut microbiota to systemic
inflammatory diseases beyond the gut. Although current research is
still limited, this study could help us improve our knowledge on the
molecular mechanism behind systemic inflammation, suggesting
potential therapeutic targets. Nonetheless, this study has certain
limitations. First, though MR methods enable causal inference
from exposure to the outcome, the magnitude of the effects is
hard to estimate accurately. Further large-scale clinical trials and
mechanistic research are required. Second, this study focused
on populations of European descent without extrapolating the
results to other ethnic groups. Thirdly, data on bacterial taxa
at the species level was unavailable; further study is needed to
illustrate the causal links between the specific species or strains
and inflammatory phenotypes. Additionally, it is important to note
that the GWAS data on gut microbiota did not take into account
the potential impact of medication treatments, such as antibiotics,
on an individual’s gut microbiota balance. This highlights the
necessity for further experimental validation. Furthermore, our
study does not account for the duration of inflammation or the
timing of blood sample collection, which could significantly affect
biomarker levels.

Conclusion

This study provides novel evidence for a causal association
between metabolites, gut microbiota, inflammation, and the risk
of infection. Our MR study suggests a potentially protective
effect of the genus Roseburia, family Bifidobacteriaceae, and
stearidonate (18:4n3) against inflammation or infectious risks.
In contrast, 5-oxoproline showed a possible pro-inflammatory
role. These findings shed light on new insights into metabolic
and microbially mediated alterations in inflammatory extent,
suggesting their potential implications in the prevention and
treatment of inflammation and infections.
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