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The presented study protocol outlines a comprehensive investigation into the 
interplay among the human microbiota, volatilome, and disease biomarkers, 
with a specific focus on Behçet’s disease (BD) using methods based on 
explainable artificial intelligence. The protocol is structured in three phases. 
During the initial three-month clinical study, participants will be  divided into 
control and experimental groups. The experimental groups will receive a soluble 
fiber-based dietary supplement alongside standard therapy. Data collection will 
encompass oral and fecal microbiota, breath samples, clinical characteristics, 
laboratory parameters, and dietary habits. The subsequent biological data 
analysis will involve gas chromatography, mass spectrometry, and metagenetic 
analysis to examine the volatilome and microbiota composition of salivary and 
fecal samples. Additionally, chemical characterization of breath samples will 
be  performed. The third phase introduces Explainable Artificial Intelligence 
(XAI) for the analysis of the collected data. This novel approach aims to evaluate 
eubiosis and dysbiosis conditions, identify markers associated with BD, dietary 
habits, and the supplement. Primary objectives include establishing correlations 
between microbiota, volatilome, phenotypic BD characteristics, and identifying 
patient groups with shared features. The study aims to identify taxonomic units 
and metabolic markers predicting clinical outcomes, assess the supplement’s 
impact, and investigate the relationship between dietary habits and patient 
outcomes. This protocol contributes to understanding the microbiome’s role 
in health and disease and pioneers an XAI-driven approach for personalized BD 
management. With 70 recruited BD patients, XAI algorithms will analyze multi-
modal clinical data, potentially revolutionizing BD management and paving the 
way for improved patient outcomes.
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1 Introduction

Human microbiome is the set of all the microorganisms that live 
in symbiosis with the human body, including bacteria, fungi, viruses 
and archaea. It has been found that, in a standard 70 kg male, bacteria 
are as numerous as somatic cells (Sender et al., 2016), but, due to their 
small dimensions, they contribute only 3% of the whole human body 
weight (Flint, 2012). Nevertheless, microbial communities are 
essential to keep the human body healthy. They synthesize some 
vitamins that our genes are not able to LeBlanc et al. (2013), help in 
the digestive processes (McConnell et al., 2008), teach the immune 
system how to recognize pathogens or cancer cells and even produce 
anti-inflammatory or anti-cancer compounds to defeat them 
(Nakkarach et al., 2021). The study of the human microbiome has 
demonstrated that microbial cell gene number in the human body are 
150 times larger than our own genome (Zhu et al., 2010; Grice and 
Segre, 2012) and radically different collections of microbes have been 
found between different people. Scarce knowledge about what are the 
causes of these variations and what regulates them has been achieved. 
A very impactful issue is that no understanding on how the human 
microbiome modification has influence on wellness, conservation of 
health, starting and rise of diseases has been reached (Gilbert et al., 
2018; Mandrioli et al., 2019). However, a correlation between changes 
in the microbiome, its metabolome and interaction with the immune, 
endocrine and nervous systems and the appearance of a wide 
spectrum of diseases [e.g., inflammatory bowel disease (Frank et al., 
2007; Gevers et al., 2014; Ni et al., 2017), cancer (Kostic et al., 2013) 
or depressive disorders (Jiang et al., 2015; Zheng et al., 2016)] has been 
detected. This finding indicates the possibility of treating this kind of 
illness by manipulation of such a microbial community. Variations in 
human oral or intestinal microbiome and its volatilome can mirror 
host lifestyle and affect the levels of diseases biomarkers (Vernocchi 
et al., 2020). The comprehension of the relationships between host 
microbiome and phenotypes is of fundamental importance to 
understand health or disease states. Similarly, chemical 
characterization of human breath and the identification of volatile 
organic compounds (VOCs) patterns linked to a specific disease, can 
provide information on the health state of a patient and allow early 
diagnosis of chronic diseases or the monitoring of the patient’s health 
state along therapeutic follow-up. In fact, VOCs are final products of 
cellular metabolic processes and their nature and/or concentration in 
human breath change along with metabolic pathways when a 
pathologic state onsets (Mozdiak et al., 2019).

Data from human microbiome and breath are inherently complex, 
noisy and highly variable because several factors such as diet, sex, 
hormonal status, drugs, habits, etc. could affect them. So, non-standard 
analytical methodologies are needed to extract their clinical and 
scientific potential. Nowadays, a lot of Artificial Intelligence (AI) 
methods, such as Machine Learning (ML) or complex networks, are 
available to catch this complexity. In particular, AI methods use 
several layers of linear and/or non-linear calculating units to 

understand the data they manipulate and to learn “patterns” from the 
same data. This learning can be used to classify the observations or to 
make predictions on them (Hassabis et al., 2017; Amodeo et al., 2021). 
The specific AI model to be used is chosen according to its capability 
to maximize prediction accuracy but requires, on the other hand, an 
increased complexity of the model itself, that makes it less interpretable 
(Shaban-Nejad et al., 2021) (e.g., “black boxes”). To overcome these 
drawbacks, coming from more complex models, and to adapt ML 
utilization to clinical contexts, eXplainable Artificial Intelligence 
(XAI) techniques have been introduced, that provide explanations for 
decisions the algorithm takes and for the risk scores calculated for 
every subject studied. Such a gain in interpretability for the chosen 
model is converted in the possibility to understand the main reasons 
standing behind a prediction and to point out the factors that majorly 
affect clinical risk scores at individual level. This approach is perfectly 
placed in an innovative concept of Personalized Medicine that requires 
the help of AI techniques.

The target of the proposed study is the Behçet Disease (BD), also 
known as Silk Road disease, a rare, complex and multi-systemic 
chronic vasculitis, characterized by mucocutaneous, articular, vascular 
and ocular lesions and also by central nervous system (CNS) 
symptoms. The most recurring signs of this disease are relapsing 
genital and oral aphthae (that can also spread in the whole digestive 
tract), ocular pathologies (>50% of cases), arthralgia and/or arthritis 
(45% of cases), venous system vasculitis and thrombosis. If thromboses 
occur in the arterial system, they usually involve pulmonary vessels. 
Neurological signs (neuro-BD) are frequent (>20%); they often occur 
1–10 years after the first symptoms, and include headache, 
hemiparesis, behavior alterations and sphincter dysfunctions. 
Nowadays, BD etiology is still not clear and cannot be traced back to 
a single root cause: the overactivation of the innate immune system, 
typical of this disease, seems to be  caused by an altered T-cells 
homeostasis, but it is common thought that also some components of 
the human microbiome can promote an abnormal adaptive immune 
response, in presence of a favorable genetic background (Rodrìguez-
Carrio et  al., 2021). In fact, several studies have linked BD to an 
intestinal or oral microbiota dysbiosis: in particular, a decrease in 
number of butyrate-producing bacteria, associated to a lower level of 
butyrate in fecal samples of patients has been noted (Consolandi et al., 
2015). As concerning gut, butyrate is involved in regulatory T cells 
differentiation (Furusawa et al., 2013) and in the release inhibition of 
pro-inflammatory cytokines (Weng et al., 2007). Low production of 
butyrate in patients suffering from BD may cause both reduced T-reg 
responses and T-cells immune-pathological responses activation, as 
suggested by the prevalence of T helper cells Th1 and Th17 in patients 
affected by BD (Alpsoy, 2016). Influencing intestinal microbiota, with 
factors such as the diet, can have a role in correcting intestinal 
dysbiosis and in reducing the severity of BD active phases. The 
evidence collected in the last decade highlight that adhering to dietary 
patterns which include high content of fibers can be linked to a better 
intestinal microbiota equilibrium; such a condition is favorable for 
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short chain fatty acid (SCFA) producer bacteria and unfavorable for 
bacteria species associated to a pro-inflammatory pattern (Fu et al., 
2020). Microbiota associated with dietary patterns rich in fibers was 
found to be positively correlated with high levels of SCFA (acetate, 
propionate, butyrate). Intestinal microbiota produces SCFA during 
indigestible polysaccharides (fibers) fermentation; these acid 
compounds have a well-documented protective role against several 
pathologies (Ho et al., 2018). To the best of our knowledge, a well-
defined diet plan for BD does not exist, and the general advice is to 
follow a balanced diet and to maintain an ideal weight. Nevertheless, 
the just mentioned studies allow us to speculate that following a diet 
rich in fiber can correct intestinal dysbiosis, which is involved in the 
BD pathogenetic mechanism, and stimulate butyrate endogenous 
production from intestinal microbiota, bringing to a potential 
improvement of clinical manifestations.

Keeping all these evidence in mind, the proposed study is aimed 
to: (i) establish correlations between oral and intestinal microbiota, 
fecal and salivary volatilome, breath and phenotypic features of 
human hosts, affected by BD, active and/or in remission; (ii) identify, 
through cluster analysis methods of metabolites, different groups of 
patients affected by BD; (iii) identify some taxonomic units of oral and 
fecal microbiota and metabolic markers that majorly contribute to the 
prediction of different clinical outcomes (e.g., number of active 
mucosal lesions, remission following the Behçet Disease Current 
Activity Form (BDCAF)); (iv) identify, with XAI methods 
(Bellantuono et al., 2022), some personalized metabolic markers that, 
for each patient, contribute to the prediction of his/her clinical 
outcome (personalized medicine); (v) evaluate the effects of soluble 
fiber intake (inulin) on eubiosis/dysbiosis conditions of oral and 
intestinal microbiota and on endogenous production of butyrate; and 
(vi) establish correlations between eating habits and clinical outcome 
of patients.

2 Methods and analysis

2.1 Study design

The project we are going to propose will be performed in three 
different sub-activities. The first sub-activity includes a two-arm 
randomized study (duration: 3 months): patients in the control arm 
will keep on assuming the standard therapy while patients in the 
treatment arm will assume soluble inulin-type fructans (inulin 90% 
from Cichorium intybus L.; Farmalabor S.r.l., Canosa di Puglia, Italy), 
along with the standard therapy. At the starting of study and 3 months 
later, for each patient, the following samples and data will be collected:

 i samples for the assessment of oral/fecal microbiota;
 ii breath samples;
 iii clinical data such as Body Mass Index (BMI), disease duration, 

clinical phenotype and ocular, articular or 
mucocutaneous involvement;

 iv laboratory data such as Erythrocyte Sedimentation Rate (ESR) 
and C-reactive protein (CRP);

 v information on breath components;
 vi information about eating habits, inviting patients to keep a 

food diary that can provide detailed descriptions on type and 
quantity of food and beverages consumed.

Furthermore, the second sub-activity will consist of:

 i analysis of volatilome in breath samples and microbiota in 
saliva and fecal samples;

 ii analysis of bacterial community taxonomic composition in 
fecal and saliva samples;

 iii chemical characterization of breath samples.

Volatile metabolites (volatilome) chemical characterization in 
breath samples will be  determined through gas-chromatography 
coupled with mass spectrometry (GC–MS). For quality assurance in 
sampling phase and avoid any environmental contamination of breath 
samples, the end-tidal fraction of the exhaled breath will be collected 
by an automated device named Mistral (Predict srl) and directly 
transfer onto suitable adsorbent cartridges (Bio-monitoring steel tube, 
Markes International Ltd., UK) that will be preconditioned at 330°C 
for 30 min with pure helium (99.999%), analyzed to verify VOCs 
background level and properly stored at 4°C until use. Once collected 
onto the adsorbent cartridges, VOCs will thermally desorb and 
analyze by means a thermal desorber (UNITY-2, Markes International 
Ltd.) coupled with a gas chromatograph (GC 7890, Agilent 
Technologies) and a mass selective detector (MS 5975, Agilent 
Technologies). The analytical methodology for VOCs characterization 
in breath samples has been already optimized and validated in 
previously published studies (Di Gilio et  al., 2020a,b). With the 
purpose to emphasize the chemical information related to human 
metabolomics and identify the most part of endogenous VOCs of 
interest (not exclusively those included in standard mix) a semi-
quantitative analysis based on compound abundances will 
be performed. More specifically, the GC–MS chromatograms will 
be analyzed using the GC–MS post-run analysis software (Agilent 
Mass Hunter Qualitative Analysis-Agilent Technologies Ltd., Santa 
Clara, USA) integrating only the peaks with intensity higher than 5 
times than baseline and VOCs compounds will be identified through 
spectral library matching (Compounds library of the National 
Institute of Standards and Technology, Gaithersburg, MD 20899–
1070, USA) and through comparison with GC–MS chromatograms 
obtained by analysis of standard solutions of 44 VOCs (Ultra Scientific 
Cus-5997). Microbiota composition study will be performed through 
metagenetic analysis of rRNA16S gene (V3 and V4 regions). A 
negative control for sequencing will be included in the workflow of 
16S amplification and library preparation, consisting of all the reagents 
included in the sample processing and without the sample, to ensure 
that no contamination took place. Libraries will be quantified using a 
Qubit fluorometer (Invitrogen Co., Carlsbad, CA, USA) and pooled, 
including the Phix control library, to an equimolar amount (4 nM final 
concentration). FastQ file quality will be assessed by using FastQC 
software and analyzed by using the QIIME2 dedicated pipeline1 
microbiome platform (version 2020.8). Denoising will be computed 
with the q2-deblur QIIME plugin. Taxonomy will be inferred with the 
QIIME-compatible database Silva v.138 SSU, using an amplicon 
sequence variant (ASV) table based on error-corrected reads 
(Calabrese et  al., 2022; Vacca et  al., 2022, 2023). Finally, the last 
sub-activity is devoted to the implementation of XAI methods: the 

1 https://qiime2.org
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data obtained with the previous sub-activities will be analyzed with 
innovative AI methods. The aim will be to evaluate the conditions of 
eubiosis/dysbiosis and to identify potential microbial and metabolic 
markers linked to BD, to eating habits of patients and to a soluble fiber 
dietary supplement administration. The estimated project duration 
should be 18 months, including the enrollment time.

2.2 Study population

The study will be conducted on patients with BD, active or in 
remission according to BCDAF, aged from 18 to 65, after having 
signed the informed consent for participating in the study and for 
assuming inulin. Exclusion criteria will include pregnancy and 
breastfeeding, serious concomitant diseases or instability conditions 
(such as autoimmune diseases, chronic viral infections, malignant 
cancers), recent myocardial infarction (MI), chronic liver diseases and 
inflammatory bowel diseases (IBD) and recent (last 6 months) or 
current participation to slimming programs or assumption of weight 
loss drugs.

2.3 Interventional method

The fiber dietary supplement will be administered randomly to half 
of the study patients, in open-label mode. The BD patients will receive 
either inulin supplementation or placebo. The participants were 
recommended to consume the powder during the breakfast by mixing it 
to 150 mL of warm water and then stirring up the powder until dissolved.

At the starting point and 3 months later, for each BD patients will 
be collected: samples for the assessment of oral/fecal microbiota, breath 
samples, BMI, disease duration, clinical phenotype and ocular, articular 
or mucocutaneous involvement and information about eating habits. 
Patients in the treatment arm will assume 5 g per day of inulin in 
addition to their ordinary diet and in a randomized order. The 5 g dose 
was chosen after considering the amounts of prebiotics that would 
be  sufficient to induce positive and significant changes in the gut 
microbiota, but low enough to avoid adverse effects and minimize 
gastrointestinal discomfort (Bouhnik et al., 1999; Kolida et al., 2007).

All data obtained, will be analyzed with innovative AI methods, 
in order to evaluate the conditions of eubiosis/dysbiosis and to identify 
potential microbial and metabolic markers linked to BD, to eating 
habits of patients and to a soluble fiber dietary 
supplement administration.

2.4 Sample size estimation

To evaluate the differences, in terms of beta-diversity, in the whole 
microbial population, calculating the mean presence of operative 
taxonomic units (OTUs) between two groups with α = 0.05, 1-β = 0.80, 
final effect size = 0.80, the enrollment of 26 patients is needed. Taking 
into account a 20% dropout rate, an amount of 35 patients for each 
group is needed, with a total number of 70 patients for the whole 
study. For the univariate logistic regression with significance level 
1-β = 0.80 and α = 0.05, the target is to detect a shift of the probability 
(P0) (Y = 1) from the value of 0.10 regarding the mean value of X to the 

value of 0.30 when X is increased by a standard deviation above its 
mean value. This outcome corresponds to an Odd Ratio (OR) of about 
3.80, which requires a total sample size of 90 patients to provide a 
two-tail significance test. In the end, a total of 70 patients has been 
taken into account as the minimum number necessary for the study, 
because it will be needed to implement multivariate models for the 
adjustments. In fact, considering an expected squared multiple 
correlation coefficient between the covariates of about 0.30, to 
be  included into the multivariate models, the minimum sample 
dimension increases to 70 patients for the two-tail significance test. 
Finally, a group of 70 patients with BD, classified according to ISG 
and/or ICBD criteria, will be selected for this study. The features of 
this cohort are the following: 15/70 patients with mucocutaneous 
involvement (active or in remission, according to Behçet’s Disease 
Current Activity Form criteria) and 55/70 patients with articular 
involvement (active or in remission).

2.5 Outcome measure

In the initial phase of our study, our primary focus lies in a data-
driven analysis designed to distinguish, at the 3-month period, two 
distinct patient groups based on microbiota and volatilome profiles. 
The first group undergoes traditional treatment with soluble fiber 
intake (inulin), while the other receives only traditional treatment. 
This outcome is propelled by the application of Explainable Artificial 
Intelligence (XAI) techniques, aiming to uncover the pivotal features 
contributing to the differentiation between the two groups. Our 
investigation extends to understanding the global and local 
importance of these features, providing insights into the personalized 
metabolic responses to treatment.

The outcome measures considered are summarized in Table 1. 
Integrating these biological and clinical parameters using a data-
driven approach, our objective is to paint a comprehensive picture of 
the personalized metabolic markers associated with Behçet’s disease. 
This dual-phase evaluation not only enriches our understanding of 
microbiome and metabolome nexus with the disease but also lays the 
groundwork for targeted interventions and more detailed 
treatment strategies.

2.6 Adverse events

Symptoms relating to gastrointestinal discomfort (abdominal 
discomfort, diarrhea, constipation, bloating, and flatulence) are 

TABLE 1 Biological and clinical outcome measures considered in the 
presented protocol study.

Biological 
outcome 
measures

Erythrocyte sedimentation rate (ESR)

C-reactive protein (CRP)

Clinical 

outcome 

measures

Behçet’s Disease Current Activity Form (BDCAF) – measure 

of disease activity

Krause Total Severity Score – measure of disease severity

Short-form (SF)-36 quality of life (QoL) scale – measure of 

disease QoL
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widely reported in human prebiotic feeding studies, but they 
remain very mild at recommended intakes (Rumessen et al., 1990; 
Gibson et al., 1995). Based on the literature, 16 g of inulin-type 
fructans per day induces no or only minor gastrointestinal 
symptoms in healthy or diseased adults (Cani et al., 2009; Birkeland 
et al., 2020). Taking potential side effects into consideration, 5 g 
dose was preferred over higher doses due to a 
precautionary principle.

2.7 Data recording and data monitoring

Follow-up assessments and data collection will be undertaken at 
the U.O.C. Reumatologia Universitaria of the Policlinico Hospital, 
Bari, Italy, by trial personnel.

2.8 Data analysis

Data collected by investigators will include volatilome, oral/fecal 
microbiota, body mass index (BMI), disease duration, clinical 
phenotype and ocular, articular or mucocutaneous involvement.

The microbiota can be characterized in three different ways: 
alpha diversity metrics, relative abundance of phylotypes for each 
specimen and community state types (CST). Alpha diversity 
metrics, which represent the variety and richness of organisms in a 
specimen, and relative abundance of microbes will be  analyzed 
through supervised machine learning algorithms as Random Forest 
or XGBoost classifiers. Supervised machine learning is a category 
of machine learning where the algorithm is trained on a labeled 
dataset, which means that each example in the training data is 
associated with the correct output or target. The algorithm learns to 
make predictions or decisions based on input data by generalizing 
from the labeled examples it has seen during training. Moreover, 
the XAI algorithm “SHapley Additive exPlanations” (SHAP) will 
be  used to detect for each patient, which features are more 
important for the ML algorithm in its classification (Bellantuono 
et al., 2023; Novielli et al., 2023). SHAP is an algorithm used in 
machine learning to explain the predictions made by complex 
models, particularly for models like XGBoost, Random Forest, 
neural networks, and others. It provides interpretable explanations 
for individual predictions, helping users understand why a 
particular prediction was made. The third characterization, i.e., 
CST, which groups samples according to the composition of the 
microbiota, will be analyzed through the application of complex 
networks (CN). This mathematical method, also known as complex 
systems or complex networks theory, is a branch of network science 
that studies systems characterized by a large number of 
interconnected components or nodes, and the patterns and 
properties that emerge from these connections. In our case, 
interactions between microbiome and its host are complex 
phenomena, and to better understand this kind of complex 
interactions and to map microbiome behavior is of fundamental 
importance to have the possibility to model these interactions 
through CN. Modules of this complex biological network are key 
organizational elements for the network itself. To detect modular 
organizational structures of a complex network, community 
detection unsupervised algorithms will be used.

2.9 Comprehensive methodology for data 
challenges

To ensure a robust evaluation of our models, we will implement a 
cross-validation strategy. Cross-validation involves partitioning the 
dataset into subsets, training the model on some of these subsets, and 
testing it on the remaining subset. This process will be  repeated 
multiple times, and the performance metrics will be averaged. This 
approach ensures that our models generalize well and helps 
prevent overfitting.

To handle the possible presence of missing values, we will adopt a 
two-fold approach:

 1 Variable Selection: Variables with a relatively low percentage of 
missing values (below a defined threshold, e.g., 30%) will 
be considered to maintain data quality.

 2 Imputation Techniques: For variables exceeding the threshold, 
established imputation techniques will be  employed. 
Additionally, we will use imputation methods such as replacing 
missing values with the mean or maximum of the respective 
variable. Importantly, these techniques will be  applied 
separately to the training and testing datasets to prevent data 
leakage and ensure model generalization to unseen data.

We would also like to highlight the utility of the XGBoost 
algorithm, which inherently handles missing values in tree algorithms 
by learning branch directions during training.

To handle the potential limitation in the number of available 
patterns compared to the number of features considered, which could 
lead to overfitting, we  will address the issue through the 
implementation of two robust techniques: data augmentation and 
feature reduction.

 1 Data Augmentation: The data augmentation strategy aims to 
artificially amplify the quantity of training samples for deep 
learning models, emulating the distribution of the original 
dataset. This becomes especially advantageous when 
confronted with the constraint of a limited size in the training 
dataset. By introducing more diverse instances, it facilitates the 
model in generalizing more effectively, tackling the challenge 
posed by smaller training datasets. Essentially, it functions as a 
preprocessing technique and a type of regularization, 
significantly enhancing model performance and mitigating the 
risk of overfitting. Furthermore, the integration of Generative 
Adversarial Networks (GANs) into data augmentation further 
expands its capabilities. GANs can be employed to simulate 
data, generating synthetic instances that closely resemble real 
data. This innovative use of GANs not only augments the 
dataset but also introduces a layer of complexity and realism, 
ultimately contributing to the model’s ability to generalize and 
perform effectively across diverse scenarios (Creswell 
et al., 2018).

 2 Feature Reduction: Feature reduction is a crucial aspect of our 
approach. Techniques such as Principal Component Analysis 
(PCA) (Song et al., 2010) and wrapper methods like Boruta 
(Kursa et al., 2010; Bellantuono et al., 2023) will be employed. 
These methods effectively reduce the dimensionality of the 
feature space, allowing us to train models even with a limited 
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number of instances. This not only aids in computational 
efficiency but also contributes to model interpretability.

2.10 Ethics approval

This study has been approved by Comitato Etico Indipendente, 
Azienda Ospedaliero-Universitaria ‘Consorziale Policlinico’ on 
February 2023 (prot. n. 0023249|09/03/2023).

3 Discussion

3.1 Choice of treatment

Behçet’s disease is a rare, chronic, autoimmune disorder that can 
affect blood vessels throughout the body. It is named after the Turkish 
dermatologist, Hulusi Behçet, who first described the condition in 
1937. This disease primarily involves inflammation of blood vessels 
(vasculitis) and can affect various parts of the body. The overactivation 
of the innate immune system, typical of this disease, seems to be caused 
by an altered T-cells homeostasis, but it is common thought that also 
some components of the human microbiome can promote an abnormal 
adaptive immune response, in presence of a favorable genetic 
background. Behçet’s disease is more common in certain regions, such 
as the Mediterranean, Middle East, and Asia, but it can affect people of 
any ethnicity. Diagnosis is often based on clinical symptoms and may 
require ruling out other similar conditions. Treatment typically focuses 
on managing symptoms and reducing inflammation.

The gut microbiome has been a subject of extensive research in 
the context of immunological diseases. A recent study showed that a 
peculiar dysbiosis of the GM is present also in individuals with BS, 
mainly represented by a depletion of SCFA-producing bacteria, 
especially of butyrate (Pagliai et al., 2020). Several trials previously 
showed that inulin-type fructans supplemented in doses varying 
between 5 and 30 g per day may increase the SCFA levels and enrich 
microbial diversity in healthy and diseased people (Gibson et al., 1995; 
Ramirez-Farias et al., 2008; Calabrese et al., 2022; Vacca et al., 2023). 
Thus, the aim of the present project is to conduct a trial to investigate 
whether a supplement of inulin could be  beneficial for the gut 
microbiome and metabolome to the amelioration of the clinical 
symptoms and disease severity in individuals with BS. In support, a 
previous proof-of-concept study demonstrated that butyrate-enriched 
diets modulate the redox state of the blood and promote fibrin 
degradation, which is impaired by a neutrophil-dependent mechanism 
in BS (Becatti et  al., 2016). However, the same study reported no 
significant effects on gut microbiota composition and SCFA 
production, suggesting that more effective dietary interventions are 
needed (Emmi et al., 2021).

3.2 Anticipated results

This will be the first study that tries to understand the complex 
relationships between diet, intestinal microbiota and human breath in 
patients affected by BD through an innovative approach based on AI 
methods (Golob et al., 2023; Novielli et al., 2023; Papoutsoglou et al., 
2023). Such an understanding can represent a significant step forward 

toward the comprehension of pathogenetic mechanism at the basis of 
BD onset and the identification of microbial, metabolic and 
immunological factors and therapeutic biomarkers able to control 
treatment outcome and to better understand how the such a treatment 
can modify microbiome. In fact, intestinal dysbiosis has been linked 
to inflammatory diseases (Douzandeh-Mobarrez and Kariminik, 
2019) and recent studies have demonstrated that therapeutic treatment 
in rare rheumatological diseases can modify subclinical intestinal 
inflammation and dysbiosis (Manasson et al., 2020), highlighting the 
bidirectional nature of this correspondence. Furthermore, this study 
will evaluate for the first time with multivariate models if microbiome 
and breath modulation through the diet can improve disease activity 
in patients with BD under treatment. This analysis could enable us to 
find valuable markers to identify responders and non responders, 
allowing treatment optimization and a personalized therapeutic 
approach. This study could be also useful to analyze diet effects on BD 
activation and/or remission. Going into details, network approach 
thought for this study is aimed to catch functional structure of 
dynamic processes happening between microbiome and human host, 
to identify the coexistence of different microorganisms, to trace 
relationships between microorganisms and to identify cohesive groups 
that play fundamental roles in maintaining functional relationships in 
the global network during the treatment. Identification and 
quantification of some of the topological properties of the network 
modules can provide important information on microbiome 
interactions and on their relationship with possible disorders and 
anomalies in inflammatory and pathological states. Specifically, 
co-occurrence patterns and identified polymicrobial interactions will 
be  related with other clinical and phenotypical data to detect 
correlations between network functional and structural properties and 
biological and pathological profiles in different starting conditions. 
This integrative approach is completely innovative, since it will allow 
to highlight some connectivity patterns linked to inflammatory states, 
pathologies, etiological agents and even the organisms responsible for 
pathology transmission.

In our study protocol, we propose groundbreaking methodologies 
for personalized understanding of Behçet’s disease. One avenue of 
exploration involves the utilization of breath analysis to identify 
distinct Volatile Organic Compounds (VOCs) patterns in exhaled 
breath (Di Gilio et  al., 2020a). By harnessing the capabilities of 
artificial intelligence algorithms, we aim to explore the nexus between 
microbiome and metabolome offering a non-invasive and efficient 
approach for Behçet’s disease management. Here, machine learning 
takes center stage, enabling us to unravel complex patterns within the 
oral microbiome. The goal is to uncover unique microbiome 
signatures associated with Behçet’s disease, laying the groundwork for 
a personalized medicine approach. This exploration promises not only 
a deeper understanding of the disease but also the potential for 
tailored interventions based on individualized oral microbiome and 
metabolome profiles (Bellando-Randone et al., 2021).

In the third facet of our study, we introduce the application of 
explainable artificial intelligence to analyze microbiome and 
volatilome data related. This innovative approach addresses the 
limitations of traditional machine learning methods, offering a clear 
and interpretable understanding of disease-associated microbiome 
and metabolome biomarkers. By incorporating local explanation 
embeddings and an unsupervised clustering method, we  could 
anticipate the identification of distinct subgroups among subjects 
(Novielli et al., 2023). These perspectives open the door to personalized 
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interventions, marking a significant stride toward a more nuanced and 
effective treatment paradigm for Behçet’s disease.

4 Conclusion

The protocol presents a promising and innovative approach to 
understanding BD, with potential implications for personalized 
treatment strategies, using eXplainable Artificial Intelligence.

The versatility of the selected analysis methods makes it possible 
to apply this approach to other types of complex diseases.
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