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biofilm formation and virulence 
of Vibrio parahaemolyticus
Xue Li 1, Jingyang Chang 1,2, Miaomiao Zhang 1, Yining Zhou 1,2, 
Tingting Zhang 1, Yiquan Zhang 1* and Renfei Lu 1*
1 Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong 
Third People’s Hospital, Nantong, China, 2 School of Medicine, Jiangsu University, Zhenjiang, China

Calcium (Ca2+) can regulate the swarming motility and virulence of Vibrio 
parahaemolyticus BB22. However, the effects of Ca2+ on the physiology of V. 
parahaemolyticus RIMD2210633, whose genomic composition is quite different 
with that of BB22, have not been investigated. In this study, the results of 
phenotypic assays showed that the biofilm formation, c-di-GMP production, 
swimming motility, zebrafish survival rate, cytoxicity against HeLa cells, and 
adherence activity to HeLa cells of V. parahaemolyticus RIMD2210633 were 
significantly enhanced by Ca2+. However, Ca2+ had no effect on the growth, 
swarming motility, capsular polysaccharide (CPS) phase variation and hemolytic 
activity. The RNA sequencing (RNA-seq) assay disclosed 459 significantly 
differentially expressed genes (DEGs) in response to Ca2+, including biofilm 
formation-associated genes and those encode virulence factors and putative 
regulators. DEGs involved in polar flagellum and T3SS1 were upregulated, 
whereas majority of those involved in regulatory functions and c-di-GMP 
metabolism were downregulated. The work helps us understand how Ca2+ 
affects the behavior and gene expression of V. parahaemolyticus RIMD2210633.
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Introduction

Vibrio parahaemolyticus (V. parahaemolyticus) inhabits naturally in the marine ecosystems 
and commonly causes seafood-associated gastroenteritis in human (Chen et al., 2022). It 
expresses different kinds of virulence factors, mainly including thermostable direct hemolysin 
(TDH), type III secretion system 1 (T3SS1), T3SS2, type VI secretion system 1 (T6SS1), T6SS2 
and extracellular proteases (Cai and Zhang, 2018; Osei-Adjei et al., 2018; Li et al., 2019). TDH 
possesses the lethal toxicity, cytotoxicity, enterotoxicity, and hemolytic activity, and causes 
β-hemolysis on Wagatsuma agar, termed as the Kanagawa phenomenon (KP) (Cai and Zhang, 
2018). T3SS1 possesses cytotoxicity and lethal activity, whereas T3SS2 is mainly involved in 
V. parahaemolyticus-induced enterotoxicity (Hiyoshi et al., 2010). T6SS1 has anti-bacterial 
activity and thus plays a role in environmental fitness of V. parahaemolyticus, whereas T6SS2 
contributes to bacterial adhesion to host cells (Yu et al., 2012; Salomon et al., 2013). In addition, 
extracellular proteases may play roles in skin infections and processing other protein factors 
(Osei-Adjei et al., 2018). Other factors such as capsular polysaccharide (CPS), iron uptake 
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system, and lipopolysaccharide are also involved in the virulence of 
V. parahaemolyticus (Li et al., 2019).

V. parahaemolyticus can form biofilms on the surface, which refer 
to bacterial communities that aid bacteria to survive in adverse 
conditions (Ruhal and Kataria, 2021; Sun et  al., 2022). Flagellar 
systems are required for bacterial biofilm formation (Yildiz and Visick, 
2009). V. parahaemolyticus can produce a single polar flagellum and 
numerous lateral flagella, which are designed for swimming in liquids 
and swarming over surfaces, respectively (McCarter, 2004). The polar 
flagellar gene mutant defects in biofilm formation with failure in the 
progress of three-dimensional expansion (Enos-Berlage et al., 2005). 
Type VI pili can promote bacteria to colonize on surfaces and thus are 
positively correlated with biofilm formation (Yildiz and Visick, 2009; 
Ruhal and Kataria, 2021). Mannose-sensitive haemagglutinin (MSHA) 
and chitin-regulated pili are type IV pili produced by 
V. parahaemolyticus that play roles in attachment and agglutination, 
respectively (Shime-Hattori et  al., 2006). V. parahaemolyticus 
exopolysaccharide (EPS), which is biosynthesized by the products of 
cpsA-K and scvA-O (Liu et al., 2022), are the main components of 
biofilm matrix. The cps but not scv gene cluster is required for the 
wrinkly colony formation, as only the cps gene mutants form smooth 
colonies on the plate (Liu et al., 2022). V. parahaemolyticus undergoes 
the wrinkly and smooth phase variation, which affects biofilm 
formation and virulence factor production (Wu et al., 2022, 2023).

The second messenger cyclic diguanosine monophosphate (c-di-
GMP) is widely used by bacteria to control gene expression, including 
those associated with biofilm formation and virulence (Mills et al., 
2011). c-di-GMP is biosynthesized from guanosine triphosphate by 
the GGDEF domain of diguanylate cyclase (DGC) and degraded into 
linear di-GMP (pGpG) or GMP by the EAL or HD-GYP domain of 
phosphodiesterase (PDE) (Mills et al., 2011). In V. parahaemolyticus, 
there are 28 proteins with GGDEF domains, 13 proteins with EAL 
domains, 16 proteins with both GGDEF and EAL domains, and 5 
proteins with HD-GYP domains (Romling et al., 2013). Therefore, a 
total of 62 proteins are inferred to be required for the metabolism of 
c-di-GMP in V. parahaemolyticus. However, only a few of them have 
been confirmed to regulate biofilm formation, motility and/or 
c-di-GMP metabolism, including the GGDEF-EAL-domain 
containing proteins ScrC and ScrG, GGDEF-domain containing 
proteins ScrO, ScrJ, ScrL, and GefA, and EAL-domain containing 
proteins LafV and TpdA (Boles and McCarter, 2002; Kim and 
McCarter, 2007; Kimbrough et al., 2020; Kimbrough and McCarter, 
2021; Martinez-Mendez et al., 2021; Zhong et al., 2022).

It is necessary for bacteria to continuously exchange substances 
with the surroundings during growth, making them sensitive to 
changes in environmental factors. Calcium (Ca2+) is one of the most 
abundant metal ions in seawater and thus plays crucial roles in the 
survival, reproduction and behavior altering of marine 
microorganisms (Chodur et al., 2018). It was previously reported that 
Ca2+ strongly inhibited the biofilm formation of V. cholerae (Bilecen 
and Yildiz, 2009); however, it effectively increased EPS production and 
biofilm formation in V. fischeri and V. vulnificus (Garrison-Schilling 
et al., 2011; Tischler et al., 2018). In V. parahaemolyticus BB22, Ca2+ 
was also able to enhance the lateral flagellar gene expression and 
T3SS1 production, and thus heightened the swarming motility and the 
cytotoxicity toward host cells (Gode-Potratz et al., 2010). The lateral 
flagella-mediated swarming motility is required for the formation of 
3D structural biofilm in vibrio species (Yildiz and Visick, 2009). Thus, 

Ca2+ may also have regulatory effects on biofilm formation in 
V. parahaemolyticus. In addition, the gene composition of 
V. parahaemolyticus RIMD2210633 is quite different with that of 
BB22, which harbors ~300 novel genes but lacks prophage f237 and 
several genomic islands (Jensen et al., 2013). Conflicting results on 
gene functions have also been observed in these two strains (Zhang 
et al., 2021a, 2023a). Therefore, roles of Ca2+ in gene expression and 
behavior altering are also worth investigating in 
V. parahaemolyticus RIMD2210633.

The aim of study was to explore the effects of Ca2+ on the behavior 
and gene expression of V. parahaemolyticus RIMD2210633. Notably 
enhancements in biofilm formation, intracellular c-di-GMP level, 
swimming motility, zebrafish survival rate, cytoxicity against HeLa 
cells and adhesion activity to HeLa cell monolayer were evident in 
response to Ca2+. However, no significant changes were observed for 
bacterial growth, swarming motility, CPS phase variation and 
hemolytic activity in response to Ca2+. In addition, Ca2+ significantly 
impacted on the expression of 459 genes in V. parahaemolyticus 
RIMD2210633, of these 265 genes were down-regulated and 194 genes 
were up-regulated. The work helps us understand how Ca2+ affects the 
behavior and gene expression of V. parahaemolyticus RIMD2210633.

Materials and methods

Bacterial strains and growth conditions

V. parahaemolyticus RIMD2210633 (Makino et al., 2003), termed 
here as the wild type (WT) strain, was used throughout in this study. 
V. parahaemolyticus strains were cultured in 2.5% (w/v) Bacto heart 
infusion (HI) broth (BD Biosciences, United States) at 37°C with 
shaking at 200 rpm. An overnight cell culture in HI broth was diluted 
50-fold into 5 mL HI broth, followed by cultured at 37°C to OD600 = 1.4 
(defined here as the second-round of culture). The resulting culture 
was diluted 1,000-fold into 5 mL HI broth or HI broth supplemented 
with 4 mM CaCl2 (HI-Ca2+) for the third round of growth (Gode-
Potratz et al., 2010).

Growth curve measurement

The growth curves of V. parahaemolyticus were measured 
similarly as previously described (Zhang et al., 2023b). Briefly, the 
second-round of culture was diluted 1,000-fold into 10 mL HI or 
HI-Ca2+ in glass tubes, and then grown continuously at 37°C with 
shaking at 200 rpm. The growth curves were created by measuring the 
OD600 values of each culture at 1 h intervals.

Crystal violet staining for evaluating biofilm 
formation ability

Biofilm formation abilities of V. parahaemolyticus in HI and 
HI-Ca2+ broth were assessed by the crystal violent (CV) staining 
method, which was performed similarly as previously described 
(Zhang et al., 2023a). Briefly, the second-round of culture was diluted 
50-fold into 2 mL HI broth or HI-Ca2+ in a 24-well cell culture plate, 
and then incubated at 30°C with shaking at 150 rpm for 6, 12, 24, 48, 
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or 72 h. Culture solution containing the planktonic cells were collected 
for the measurement of OD600 values. Biofilm cells were washed gently 
with deionized water for three times, and then stained with 0.1% CV, 
followed by washed for another three times. Bound CV in each well 
was dissolved into 2.5 mL 20% acetic acid, and then the OD570 value was 
measured. Relative biofilm formation was expressed as OD570/OD600.

Colony morphology assay

The colony morphology assays were performed similarly as 
previously described (Zhang et al., 2023a). Briefly, the second-round 
of culture was diluted 50-fold into 5 mL Difco marine (M) broth 2,216 
(BD Biosciences, United States), and then incubated statically at 30°C 
for 48 h. Two microliter was taken to spot on an HI or HI-Ca2+ plate, 
and then incubated at 37°C for 24 h.

Swimming motility

Swimming motility assays were performed similarly as previously 
described (Lu et al., 2021). Briefly, 2 μL of the second-round of culture 
were inoculated into a semi-solid HI plate containing 0.5% (w/v) 
Difco Noble agar (BD Biosciences, United States) or semi-solid HI 
plate supplemented with 4 mM CaCl2. The diameters of swimming 
areas were measured after incubation at 37°C.

Swarming motility

Swarming motility assays were performed similarly as previously 
described (Lu et al., 2019). Briefly, 2 μL of the third-round of culture 
were spotted on a HI plate containing 2.0% (w/v) Difco noble agar or 
HI plate supplemented with 4 mM CaCl2. The diameters of swarming 
zones were measured after incubation at 37°C.

Quantification of c-di-GMP

Intracellular c-di-GMP level was quantified similarly as previously 
described (Gao et al., 2020). Briefly, the second-round of culture was 
diluted 50-fold into 2 mL HI broth or HI-Ca2+ in a 24-well cell culture 
plate, and then incubated at 30°C with shaking at 150 rpm for 6, 12, 
24, 48, or 72 h. Bacterial cells at each time point were simultaneously 
harvested in triplicate from planktonic fractions and biofilms, 
resuspended in 2 mL ice-cold phosphate buffered saline (PBS), boiled 
at 100°C for 5 min, and then sonicated for 15 min in an ice-water bath. 
The concentrations of c-di-GMP and total proteins in the supernatant 
was measured by using a c-di-GMP Enzyme-linked Immunosorbent 
Assay (ELISA) Kit (Mskbio, China) and a Pierce BCA Protein Assay 
kit (ThermoFisher Scientific, United States), respectively. Intracellular 
c-di-GMP levels were expressed as pmol/g protein.

Detection of CPS phase variation

CPS phase variation was detected as previously study (Zhang 
et  al., 2023a). Briefly, a small amount of overnight cell culture of 

V. parahaemolyticus RIMD2210633 was streaked onto a HI plate or 
HI plate supplemented with 4 mM Ca2+, and then statically incubated 
at 37°C for 24 h.

Zebrafish infection assay

Zebrafish infection assays were performed similarly as previously 
described (Zhang et  al., 2016). Briefly, V. parahaemolyticus was 
cultured in HI broth or HI-Ca2+ broth in a 24-well cell culture plate at 
30°C with shaking at 150 rpm for 12 h. Bacterial cells were harvested, 
washed, resuspended in PBS, and then adjusted to 108 CFU/mL. A 
total of 20 μL bacterial suspensions was intraperitoneally injected into 
each of the 15 wild-type AB adult zebrafishes (7–8 months). The 
number of dead zebrafishes was monitored at a 12 h interval. PBS was 
used as the negative control. The proposed animal experiments were 
approved by the Ethics Review Committee of Nantong University 
(approval number: P20230206-004).

Cytotoxicity against HeLa cells

Cytotoxicity assay was performed similarly as previously described 
(Zhang et al., 2018). Briefly, the second-round of culture was diluted 
50-fold into 2 mL HI broth or HI-Ca2+ broth in a 24-well cell culture 
plate, and then incubated at 30°C with shaking at 150 rpm for 12 h. 
Bacterial cells were harvested, washed, and then diluted serially with 
the pre-warmed Dulbecco’s modified Eagle’s medium (DMEM) 
lacking phenol red for CFU determination and infection. HeLa cells, 
which are preserved in our lab, were infected with 106 CFU of bacterial 
cells for 3 h at a multiplicity of infection (MOI) of 2.5 (bacterial cells: 
HeLa cells). The released lactate dehydrogenase (LDH) was quantified 
with a CytoTox 96® Non-Radioactive Cytotoxicity Assay kit (Promega, 
United States) according to the manufacturer’s instructions.

Adhesion against HeLa cells

HeLa cell adhesion assays were performed similarly as previously 
described (Zhang et al., 2017a). Briefly, the second-round of culture 
was diluted 50-fold into 2 mL HI broth or HI-Ca2+ broth in a 24-well 
cell culture plate, and then incubated at 30°C with shaking at 150 rpm 
for 12 h. Bacterial cells were harvested and re-suspended in 
DMEM. HeLa cell monolayers were maintained in DMEM containing 
10% fetal bovine serum (FBS, Invitrogen) at 37°C with 5% CO2. The 
cell monolayers were infected at a MOI of 10. After incubation for 
90 min, the monolayers were washed three times with PBS, and then 
lysed with 1% Triton X-100. The number of bacterial cells in the 
lysates were serially diluted and counted on LB agar plates. The CFU 
of input bacterial cells were also determined by the plate count 
method. Percent adherence was calculated as adhered bacterial cells/
input bacterial cells.

The Kanagawa phenomenon test

KP tests were performed similarly as previously described (Sun 
et al., 2022). Briefly, 5 μL of the second-round of bacterial culture were 
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inoculated onto a Wagatsuma agar (CHROMagar, China) containing 
5% rabbit red blood cells (RBCs) or 5% RBCs together with 4 mM 
Ca2+. The radius of each β-hemolysin zone was determined after 
incubation at 37°C for 24 h.

RNA extraction and RNA sequencing

The second round of culture was diluted 50-fold into 2 mL HI 
broth and HI-Ca2+, respectively, in a 24-well cell culture plate, and 
then incubated at 30°C with shaking at 150 rpm for 12 h. Bacterial 
cells were simultaneously harvested in triplicate from planktonic 
fractions and biofilms for total RNA preparation using TRIzol Reagent 
(Invitrogen, United States). RNA concentration was determined by a 
Nanodrop  2000, and RNA integrity was measured by agarose gel 
electrophoresis. rRNA was removed and mRNA was enriched by 
using an Illumina/Ribo-Zero™ rRNA Removal Kit (bacteria) 
(Illumina, United  States). cDNA library was constructed and 
sequenced on an Illumina Hiseq platform in GENEWIZ 
Biotechnology Co. Ltd. (Suzhou, China) (Wu et al., 2022). Raw data 
of RNA-seq was filtered by Cutadapt (v1.9.1), and then aligned with 
the genome of V. parahaemolyticus RIMD2210633 using Bowtie2 
(v2.2.6) (Bray et al., 2016). Gene expression in bacterial cells grown in 
HI-Ca2+ (test group) was compared with that in bacterial cells grown 
in HI broth (reference group). HTSeq (v0.6.1) and Fragments Per Kilo 
bases per Million reads (FPKM) were used to calculate gene 
expression (Mortazavi et al., 2008; Anders et al., 2015). DESeq (v1.6.3) 
was used to analyze the difference in gene expression with selection 
criteria of qvalue (fdr, padj) ≤ 0.05 and absolute fold change ≥ 2 (Love 
et  al., 2014). Gene Ontology (GO) functional annotation was 
performed to analyze the differentially expressed genes (DEGs) 
involved in cellular components, molecular functions and biological 
processes (Harris et  al., 2004). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment was performed to analyze 
DEGs involved in metabolic pathways (Kanehisa and Goto, 2000). The 
putative functions of proteins that are encoded by DEGs were 
predicted by the Cluster of Orthologous Groups of proteins (COG) 
database (Tatusov et al., 2000).

Statistical methods

Each phenotypic assay was performed at least three times with 
three biological replicates in each. qPCR and c-di-GMP quantification 
were performed three times, respectively, and the results were 
expressed as the mean ± standard deviation (SD). Paired Student’s 
t-test was applied to calculate statistical significance, and p < 0.05 was 
considered as significant.

Results

Ca2+ did not affect the growth of Vibrio 
parahaemolyticus

The growth curves of V. parahaemolyticus in HI broth and HI-Ca2+ 
was measured to assess whether Ca2+ affects the bacterial growth. As 
shown in Figure 1, the growth rate of V. parahaemolyticus in HI-Ca2+ 

has no significant difference with that in HI broth, suggesting that 
additional Ca2+ did not influence the growth of V. parahaemolyticus.

Ca2+ promotes biofilm formation by Vibrio 
parahaemolyticus

The crystal violent (CV) staining and colony morphology assays 
were performed to investigate whether environmental Ca2+ affects 
biofilm formation by V. parahaemolyticus. As shown in Figure 2A, 
V. parahaemolyticus was able to form biofilms in both HI and HI-Ca2+ 
broth; however, the biofilm amounts in HI broth declined continuously 
with the incubation time, while those in HI-Ca2+ broth first increased 
considerably and then decreased dramatically, and the highest amount 
of biofilm occurred at the 12th h; the bacterial cells grown in HI-Ca2+ 
produced significantly more biofilms relative to those grown in HI 
broth (p < 0.05) at all time points tested except for the 6th h. As further 
determined by colony morphology assay, the colonies of 
V. parahaemolyticus grown on the HI-Ca2+ plate more wrinkled than 
those on the HI plate (Figure  2B). These results suggested that 
additional Ca2+ is beneficial for biofilm formation by 
V. parahaemolyticus.

Ca2+ increases swimming motility of Vibrio 
parahaemolyticus

The swimming and swarming motility were investigated to assess 
whether Ca2+ affects the motor capacities of V. parahaemolyticus. As 
shown in Figure 3A, swimming motility was significantly enhanced 
in the condition of HI-Ca2+ compared with that of HI at all time points 
tested. However, there was no significant differences in swarming 
motility between the two growth conditions at all time points tested 
(Figure 3B). These results suggested that Ca2+ enhanced the swimming 
capacity of V. parahaemolyticus, but had no effect on swarming motility.

FIGURE 1

Growth curves of V. parahaemolyticus. The OD600 values of V. 
parahaemolyticus RIMD2210633 grown with shaking in HI broth or 
HI broth supplemented with 4  mM CaCl2 were monitored at 1  h 
intervals. Experiments were performed three times with three 
replicates per trial for each condition. Paired Student’s t-tests were 
used to calculate statistical significance. The “ns” means no 
statistically significant differences (p >  0.05).
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Ca2+ increases intracellular c-di-GMP level 
of Vibrio parahaemolyticus

c-di-GMP is involved in the regulation of multiple bacterial 
behaviors, including biofilm formation (Biswas et al., 2020). Therefore, 
we measured intracellular c-di-GMP levels to investigate whether 
Ca2+-enhanced biofilm formation is related to the variation of 
c-di-GMP level. As shown in Figure 4, the intracellular c-di-GMP 
levels were significantly increased in bacterial cells grown in HI-Ca2+ 
compared to those grown in HI broth at the incubation time from 12 
to 48 h. However, there were no significant differences in c-di-GMP 
levels in V. parahaemolyticus grown under the two conditions at the 
6th and 72nd h. These results suggested that Ca2+ enhanced the 
biosynthesis of c-di-GMP in V. parahaemolyticus.

Ca2+ did not affect CPS phase variation of 
Vibrio parahaemolyticus

The switching between opaque (OP) and translucent (TR) colony 
phenotype of V. parahaemolyticus is directly attributed to the 
production of CPS or not and thus was termed as the CPS phase 
variation (Enos-Berlage and McCarter, 2000). CPS affects biofilm 
formation and virulence of V. parahaemolyticus (Hsieh et al., 2003; Lee 
et al., 2013). Therefore, CPS phase variation was assessed to detect 
whether Ca2+ affects CPS production in V. parahaemolyticus. As 

FIGURE 2

Involvement of Ca2+ in biofilm formation by V. parahaemolyticus 
RIMD2210633. Crystal violet staining (A) and colony morphology 
(B) of V. parahaemolyticus were determined. Pictures are 
representative of three independent experiments with three 
replicates each. Paired Student’s t-tests were used to calculate 
statistical significance. The asterisks (*) indicate statistically significant 
differences (p  <  0.05), whereas the “ns” represents no statistically 
significant differences (p  >  0.05).

FIGURE 3

Ca2+ promoted the swimming motility of V. parahaemolyticus 
RIMD2210633. Swimming (A) or swarming (B) capacity of V. 
parahaemolyticus was measured by detection of the diameters of 
swimming or swarming areas in a semi-solid swimming or on 
swarming agar. The data at each time point are expressed as the 
mean ± SD of three independent experiments with three replicates 
each. Paired Student’s t-tests were used to calculate statistical 
significance. The single asterisk (*) represents p < 0.05, whereas the 
“ns” indicates p > 0.05.

FIGURE 4

Ca2+ enhanced the production of intracellular c-di-GMP in V. 
parahaemolyticus RIMD2210633. Bacterial cells were cultured 30°C 
with shaking at 150 rpm in HI broth containing 0 or 4 mM CaCl2, and 
then harvested simultaneously in triplicate from biofilms and 
planktonic fractions. The intracellular c-di-GMP was extracted by 
ultrasonication, and the c-di-GMP concentration was measured by 
a c-di-GMP Enzyme-linked Immunosorbent Assay (ELISA) Kit. 
Intracellular c-di-GMP level was expressed as pmol/mg. The data 
are expressed as the mean ± SD of three independent experiments 
with three replicates each. Paired Student’s t-tests were used to 
calculate statistical significance. The single asterisk (*) represents 
p < 0.05, whereas the “ns” indicates p > 0.05.
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shown in Figure 5, V. parahaemolyticus grown on both HI and HI-Ca2+ 
agars exhibited OP phenotype, suggesting that Ca2+ did not affect CPS 
phase variation and CPS production in V. parahaemolyticus.

Ca2+ affects the virulence of Vibrio 
parahaemolyticus

Several virulence-associated phenotype assays were performed to 
elucidate the potential effects of Ca2+ on the virulence of 
V. parahaemolyticus. The final survival rate of zebrafishes that were 
infected by V. parahaemolyticus grown in HI broth was 16%, in 
comparison to the survival rate of 24% for those were infected by 
V. parahaemolyticus grown in HI-Ca2+, while a 100% survival rate was 
observed for the control group (Figure 6A). In addition, it is worth 
noting that the survival rates were continuous gradient decreasing until 
stabilization in both HI and HI-Ca2+ groups with the passage of post-
infection time, especially in the HI-Ca2+ group (Figure 6A). The results 
of KP test showed that the diameters of β-hemolysis zones caused by 
V. parahaemolyticus grown on the Ca2+-containing condition were 
similar to those of on the condition without Ca2+, suggesting that Ca2+ 
had no regulatory effect on the hemolytic activity of V. parahaemolyticus 
(Figure 6B). In addition, the cytotoxicity and cell adhesion ability of 
V. parahaemolyticus grown in HI-Ca2+ broth were all significantly 
enhanced relative to those grown in HI broth, suggesting that Ca2+ was 
able to induce the cytotoxicity and cell adhesion ability of 
V. parahaemolyticus against HeLa cells (Figures 6C,D). Taken together, 
Ca2+ was able to affect the virulence of V. parahaemolyticus.

Overview of Vibrio parahaemolyticus gene 
expression in the response to Ca2+

The highest biofilm amount of V. parahaemolyticus in HI-Ca2+ 
occurred at the 12th h post-incubation (Figure 1A). Therefore, the 
gene expression profile of V. parahaemolyticus grown in HI-Ca2+ (test) 
for 12 h was compared with that grown in HI broth (reference) by 
RNA-seq to investigate the Ca2+ stimulon. The expression levels of 459 
genes were differentially expressed in response to Ca2+. Of these, 194 

were upregulated, and 265 were downregulated (Figure  7A). The 
results of GO enrichment showed that DEGs were enriched in 
biological process (15 GO terms, 54 DEGs), cellular component (5 GO 
terms, 54 DEGs) and molecular function (7 GO terms, 23 DEGs) 
(Figure 7B). The KEGG enrichment demonstrated that there are 57 
DEGs involved in metabolism, 18 DEGs in human disease, 6 DEGs in 
genetic information processing, 21 DEGs in environmental 
information processing, and 13 DEGs in cellular processes 
(Figure 7C). The COG enrichment divided DEGs into at least 20 
functional categories including function unknown, general function 
prediction only, amino acid transport and metabolism, transcription, 
and energy production and conversion (Figure 7D). The fold change, 
p value and descriptions of DEGs are listed in Supplementary Table S1.

Selected DEGs from the Ca2+ stimulon

A total of 27 genes encoding putative regulators were 
remarkably differentially expressed in response of Ca2+ stimulation 
(Table 1). Of these, 24 were downregulated, and 3 were upregulated. 
Six DEGs encoding GGDEF- or EAL-domain containing proteins 
were remarkably differentially expressed, of these 1 was upregulated 
(VP1478) and 5 were downregulated (VP1881, VP2888, VPA0360, 
VPA0713, and VPA0925). In addition, 1 MSHA gene, 12 polar 
flagellar genes, and 9 T3SS1 genes were significantly upregulated in 
response of Ca2+ stimulation (Table 1). Moreover, 2 T3SS2 genes 
and 1 T6SS1 gene were downregulated in the response of Ca2+ 
stimulation (Table 1).

Discussion

V. parahaemolyticus is ubiquitous in marine ecosystems, while 
Ca2+ is one of the most abundant metal ions in seawater (Chodur 
et  al., 2018). Therefore, the fluctuation of Ca2+ concentration 
should be  pertiment to the lifestyle, population density, and 
pathogenicity of V. parahaemolyticus. Indeed, Ca2+ is an important 
stimulus signal for V. parahaemolyticus. A study showed that Ca2+ 
affected the transcriptome and promoted swarming motility and 
T3SS1-dependent virulence of V. parahaemolyticus BB22 (Gode-
Potratz et al., 2010). However, another study demonstrated that 
extracellular Ca2+ inhibited the expression of T3SS1 gene in 
V. parahaemolyticus RIMD2210633 (Sarty et al., 2012; Liu and 
Thomas, 2015). Thus, Ca2+-dependent gene expression in 
V. parahaemolyticus should be affected by the genetic background. 
In this study, we showed that addition of Ca2+ remarkably induces 
the c-di-GMP production, biofilm formation, swimming motility, 
zebrafish survival rate, cytoxicity and adhesion activity of 
V. parahaemolyticus RIMD2210633 (Figures 1, 3, 4, 6). However, 
Ca2+ has no regulatory effects on bacterial growth, swarming 
motility, CPS production and hemolytic activity (Figures 2, 4, 6). 
The data of RNA-seq showed that addition of Ca2+ strikingly 
influenced the expression of 459 genes in V. parahaemolyticus 
RIMD2210633. Of these, 265 were down-regulated and 194 were 
up-regulated (Figure  7; Supplementary Table S1). A previous 
study probed the response of V. parahaemolyticus BB22 to Ca2+ 
during growth on the surface and showed that only 50 genes were 
differentially expressed in response to Ca2+, including 35 

FIGURE 5

Ca2+ did not affect the CPS phase variation of V. parahaemolyticus 
RIMD2210633. Bacterial cells were streaked onto a HI plate 
containing 0 or 4 mM CaCl2, and then statically incubated at 37°C 
for 24 h. Pictures were representative of two independent 
experiments with three replicates each.
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up-regulated and 15 down-regulated genes (Gode-Potratz et al., 
2010). The significant difference in the number of DEGs between 
the two works may be  due to the following reasons: firstly, 
differences in the genomes of two strains (Jensen et al., 2013); 
secondly, gene expression profiles vary under different growth 
conditions; thirdly, the detection efficiency of RNA-seq used in 
this study for gene expression may be  higher than that of 
microarray analysis used in the previous work.

Environmental Ca2+-dependent biofilm formation has been 
reported in vibrio species. Addition of Ca2+ led to V. cholerae to 
form a biofilm with decreased thickness and stability but increased 
roughness, and to express less VPS biosynthesis-associated 
proteins (Bilecen and Yildiz, 2009). Ca2+ is a potent inhibitor of 
VieA in V. cholerae, which is a EAL-domain containing protein 
that presumably decreases the c-di-GMP level (Tamayo et  al., 
2005). In V. vulnificus, Ca2+ remarkably enhances the rate of CPS 
and EPS phase variation, intracellular c-di-GMP concentrations, 
brp expression and biofilm formation (Garrison-Schilling et al., 
2011; Chodur et al., 2018). IamR promotes the biofilm formation 
of V. vulnificus via activation of iamA expression, in a 

Ca2+-dependent manner (Pu et  al., 2020). The Ca2+-binding 
protein CabA also contributes to the biofilm formation of 
V. vulnificus in a Ca2+-dependent manner under the conditions 
with elevated c-di-GMP levels (Park et al., 2015). Ca2+ is also able 
to induce V. vulnificus to form biofilms under non-conditions that 
typically do not form biofilms (Tischler et al., 2018). Herein, the 
data showed that Ca2+ induces the biofilm formation and wrinkly 
colony phenotype formation of V. parahaemolyticus RIMD2210633 
(Figure 1). V. parahaemolyticus undergoes the wrinkly and smooth 
colony phase variation, which is directly associated with cpsA-K, 
and the wrinkly phenotype strain has a stronger biofilm formation 
ability than the smooth phenotype strain (Wu et  al., 2022). 
However, Ca2+ seems to have no regulatory effect on cpsA-K 
transcription. Instead, 6 genes encoding EAL- or GGDEF-domain 
containing proteins were remarkably differentially expressed in 
response of Ca2+. Of these, 5 were downregulated (VP1881, 
VP2888, VPA0360, VPA0713, and VPA0925) and 1 was 
upregulated (VPA1478). VP1881, which was named as TpdA, is 
an EAL-domain containing protein that positively controls 
swimming and swarming motility, and negatively controls biofilm 

FIGURE 6

Regulatory effects of Ca2+ on the virulence of V. parahaemolyticus RIMD2210633. The numeral results were expressed as the mean ± SD from at 
least two independent experiments with four replicates. Paired Student’s t-tests were used to calculate statistical significance. The single asterisk (*) 
represents p < 0.05, whereas the “ns” indicates p > 0.05. (A) Survival curves of zebrafish. Approximately 2 × 106 CFU V. parahaemolyticus cells were 
injected intraperitoneally into each adult zebrafish, and then the survival rates of zebrafishes were recorded with a 12 h interval. (B) Hemolytic 
activity. Effects of Ca2+ on the hemolytic activity of V. parahaemolyticus RIMD2210633 was assessed by KP test. The pictures shown here are 
representative images of three independent experiments with four replicates in each. (C) Cytotoxicity against HeLa cells. The cytotoxicity of V. 
parahaemolyticus RIMD2210633 against HeLa cells was evaluated in terms the release of LDH. (D) Adherence against HeLa cells. HeLa cells were 
infected with V. parahaemolyticus RIMD2210633 at a MOI of 10. The percent adherence was calculated as bacterial cells adhered/input bacterial 
cells. The adherence rate of bacterial cells cultured in HI broth was normalized to 100%.
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formation (Martinez-Mendez et  al., 2021). VPA0360 (scrM) 
encoding a GGDEF-domain containing protein is part of scrMNO 
has been identified as a significant contributor to 
V. parahaemolyticus biofilm formation (Kimbrough et al., 2020). 
The functions of the other 4 genes are not yet known, but it can 
be speculated that one of the mechanisms by which Ca2+ promotes 
biofilm formation is to alter the intracellular c-di-GMP pool, as 
addition of Ca2+ to the medium induced the production of 
c-di-GMP (Figure 3). Additionally, 1 type IV pili gene (VP2705), 
1 lateral flagellar gene (VPA1535) and 11 polar flagellar genes, 
which are all associated with biofilm formation (Yildiz and Visick, 
2009), were remarkably induced by environmental Ca2+ (Table 1). 
There are 16 MSHA genes, 39 lateral flagellar genes, and 58 polar 
flagellar genes in the genome of V. parahaemolyticus 
RIMD2210633 (Makino et  al., 2003). Thus, Ca2+ is unlikely to 
affect the assembly of type IV pili and lateral flagella as it only 
regulates one of the associated genes. However, Ca2+ should 
be able to affect the function of polar flagellum as it can induce 

swimming motility of V. parahaemolyticus (Figure 3A). In brief, 
Ca2+-dependent biofilm formation may be mediated by controlling 
c-di-GMP production and polar flagellum assembly in the current 
growth conditions. However, it must be noted that transcriptome 
data only explores gene expression profile at a certain growth 
phase and cannot fully reflect that during biofilm formation 
induced by Ca2+.

Previously, a study showed that Ca2+ induces bile salt-
dependent virulence gene expression of V. cholerae through 
promoting bile salt-induced TcpP-TcpP interaction (Hay et al., 
2017). Another study in V. fischeri showed that Ca2+ functions as 
a pH-dependent cue to promote the T6SS-mediated competition 
in low-viscosity liquid environments (Speare et al., 2022). The 
data presented here showed that Ca2+ can also regulate the 
virulence-associated phenotypes of V. parahaemolyticus 
RIMD2210633, including lethality in zebrafish, cytoxicity against 
HeLa cells and adhesion toward HeLa cells (Figure 6). However, 
only 12 genes encoding the known virulence determinants were 

FIGURE 7

Expression profiles of V. parahaemolyticus RIMD2210633 in the response of Ca2+. (A) Volcano plot. Red, blue and gray points represent the up-
regulated, down-regulated and no-significant regulated genes, respectively. (B) The enrichment of gene ontology (GO) term. Green, red and blue bars 
represent molecular function, cellular component and biological process, respectively. The number on the top of each bar indicates the number of 
enriched genes. (C) Pathways of differentially expressed genes were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG). The vertical axis 
represents KEGG classification, while the horizontal axis represents the number of DEGs. (D) Cluster of Orthologous Groups of proteins (COG). The 
vertical axis represents COG classification, whereas the horizontal axis represents the number of DEGs. Red and blue bars represent up-regulated and 
down-regulated genes, respectively.
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TABLE 1 Selected DEGs.

Gene ID Name Fold change Functional annotation/domains

Putative regulators

VP0118 3.9082 Nitrogen regulation protein

VP0350 calR 0.3036 Leucine transcriptional activator

VP0569 0.4666 DNA-binding response regulator PhoB

VP0709 treR 0.4999 Trehalose repressor

VP0938 0.4976 Transcriptional regulator

VP1190 3.2011 Anaerobic nitric oxide reductase regulator

VP1212 0.3269 DNA-binding response regulator

VP1889 0.3891 Cold shock transcriptional regulator CspA

VP2424 0.4934 AraC family transcriptional regulator

VP2450 0.3638 MarR family transcriptional regulator

VP2766 0.3554 Transcriptional repressor protein MetJ

VP2836 0.4025 TetR family transcriptional regulator

VPA0369 0.4607 LuxR family transcriptional regulator

VPA0462 0.4194 Predicted transcriptional regulators

VPA0495 2.1037 AraC family transcriptional regulator

VPA0531 0.4994 AraC family transcriptional regulator

VPA0599 0.4619 LysR family transcriptional regulator

VPA0601 0.4630 Arylsulfatase regulator

VPA0678 0.4243 Winged helix-turn-helix domain-containing protein

VPA0733 0.4453 LysR family transcriptional regulator

VPA0741 0.4154 Transcriptional regulator

VPA0743 0.4468 Response regulator VieB

VPA0785 0.4774 Transcriptional regulator

VPA1332 vtrA 0.4586 Transcriptional regulator ToxR

VPA1563 0.4925 Transcriptional regulator

VPA1682 0.4791 MarR family transcriptional regulator

VPA1729 0.3677 LuxR family transcriptional regulator

c-di-GMP metabolism

VP1881 0.3659 EAL-only

VP2888 0.4291 GGDEF-only

VPA0360 0.3528 GGDEF-only

VPA0713 0.4602 EAL-only

VPA0925 0.4899 GGDEF-only

VPA1478 2.2069 GGDEF-only

Type IV pili

VP2705 mshK 2.1165 MSHA biogenesis protein MshK

T3SS1

VP1667 vopN 2.3288 Outer membrane protein PopN

VP1669 vscO 2.0976 Type III secretion protein YscO

VP1670 vscP 2.2189 Translocation protein in type III secretion

VP1671 vscQ 2.4952 Type III secretion system protein

VP1686 vopS 2.7630 Adenosine monophosphate-protein transferase

VP1695 vscD 2.2001 Type III export protein PscD

VP1696 vscC 2.7988 Type III secretion protein YscC

(Continued)
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remarkably differentially expressed in response to Ca2+, including 
9 T3SS1 genes, 2 T3SS2 genes and 1 T6SS1 gene (Table 1). T3SS1 
contributes cytotoxicity and lethal activity of V. parahaemolyticus, 
whereas T3SS2 is required for enterotoxicity (Hiyoshi et al., 2010). 
In addition, T6SS1 mainly contributes to the environmental 
fitness of V. parahaemolyticus as it possesses the anti-bacterial 
activity (Salomon et al., 2013). However, T3SS1, T3SS2, and T6SS1 
are all multi gene encoded secretion systems, with each gene loci 
containing dozens of coding genes (Makino et  al., 2003). 
Controlling several genes within the loci may not effectively affect 
the function of the secretion systems. Although Ca2+ was able to 
affect the virulence-related phenotypes (Figure  6), the growth 
conditions for phenotype experiments were not completely 
consistent with that of RNA-seq. In addition, a previous study has 
shown that Ca2+ activates T3SS1 gene expression in 
V. parahaemolyticus RIMD2210633 (Sarty et al., 2012; Liu and 
Thomas, 2015), while this study shows inhibitory effects, which 
may be due to the different growth conditions in these two works. 
The regulatory mechanisms of Ca2+ on the virulence of 
V. parahaemolyticus RIMD2210633 still needs to be investigated.

RNA-seq data also showed that 27 putative regulatory genes 
were remarkably differentially expressed in response to Ca2+, 
including 24 down-regulated and 3 up-regulated genes (Table 1). 
Some of these genes encode global regulators, including LysR 
family transcriptional regulators (VPA0599 and VPA0733), AraC 
family transcriptional regulators (VP2424, VPA0495, and 
VPA0531), LuxR family transcriptional regulators (VPA0369 and 
VPA1729) and MarR family transcriptional regulators (VP2450 

and VPA1682). The two well-studied regulatory genes, calR and 
vtrA, were also significantly inhibited by Ca2+. CalR was originally 
identified in V. parahaemolyticus BB22 that positively regulated 
swarming motility and T3SS1 expression in the low-Ca2+ growth 
condition (Gode-Potratz et  al., 2010). Later studies in 
V. parahaemolyticus RIMD2210633 revealed that it is a global 
regulator controlling multiple gene loci, including virulence genes 
and biofilm formation-associated genes (Osei-Adjei et al., 2017; 
Zhang et al., 2017a,b, 2021b). VtrA and VtrC form a co-component 
signal transduction system sensing the bile acid signals to 
positively regulates the expression of TDH and T3SS2 (Gotoh 
et al., 2010; Kodama et al., 2010; Kinch et al., 2022; Zou et al., 
2023). However, roles of the other putative regulators are still 
unknown, and more studies should be  performed to elucidate 
their regulatory actions on V. parahaemolyticus gene expression 
in future.

In conclusion, the biofilm formation, c-di-GMP production, 
swimming motility, zebrafish survival rate, cytoxicity and 
adherence activity of V. parahaemolyticus RIMD2210633 were 
significantly enhanced by Ca2+. However, Ca2+ had no effect on the 
growth, swarming motility, CPS production and hemolytic 
activity. A total of 459 genes were remarkably differentially 
expressed in response to Ca2+, including the key virulence genes, 
biofilm formation-associated genes and putative regulatory genes. 
DEGs involved in polar flagellum and T3SS1 were upregulated, 
whereas majority of those involved in regulatory functions and 
c-di-GMP metabolism were downregulated. The work helps us to 
understand how Ca2+ affects the behavior and gene expression of 

TABLE 1 (Continued)

Gene ID Name Fold change Functional annotation/domains

VP1697 vscB 2.2416 Type III export apparatus protein NosA

VP1698 exsD 2.0652 Hypothetical protein

T3SS2

VPA1332 vtrA 0.4586 Transcriptional regulator ToxR

VPA1333 0.3990 Hypothetical protein

T6SS1

VP1409 0.4972 Hypothetical protein

Cell motility

VP0777 flgD 2.2977 Flagellar basal body rod modification protein

VP0778 flgE 2.3423 Flagellar hook protein FlgE

VP0781 flgG 3.5421 Flagellar basal body rod protein FlgG

VP0782 flgH 3.2884 Flagellar basal body L-ring protein

VP0786 flgL 2.0792 Flagellar hook-associated protein FlgL

VP0788 flaC 2.1250 Flagellin

VP2229 cheA 2.0450 Chemotaxis protein CheA

VP2248 fliG 2.1219 Flagellar motor switch protein G

VP2251 flaM 2.1576 FlaM

VP2257 flaG 2.5005 Flagellar protein FlaG

VP2258 flaA 2.1478 Flagellin

VPA1535 fliG 2.2787 Flagellar motor switch protein G
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V. parahaemolyticus RIMD2210633. However, due to the 
limitation of sample collection for RNA-seq, the transcriptome 
data cannot reflect the dynamic response of V. parahaemolyticus 
RIMD2210633 to Ca2+ stimulation, and more works remain to 
be need to discover potential mechanisms.
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