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Introduction: Revealing factors and mechanisms in determining species co-

existence are crucial to community ecology, but studies using gut microbiota

data are still lacking.

Methods: Using gut microbiota data of 556 Brandt’s voles from 37 treatments

in eight experiments, we examined the relationship of species co-occurrence of

gut microbiota in Brandt’s voles (Lasiopodomys brandtii) with genetic distance

(or genetic relatedness), community diversity, and several environmental

variables.

Results: We found that the species co-occurrence index (a larger index indicates

a higher co-occurrence probability) of gut microbiota in Brandt’s voles was

negatively associated with the genetic distance between paired ASVs and the

number of cohabitating voles in the experimental space (a larger number

represents more crowding social stress), but positively with Shannon diversity

index, grass diets (representing natural foods), and non-physical contact within

an experimental space (representing less stress).

Discussion: Our study demonstrated that high diversity, close genetic

relatedness, and favorable living conditions would benefit species co-

occurrence of gut microbiota in hosts. Our results provide novel insights into

factors and mechanisms that shape the community structure and function of

gut microbiota and highlight the significance of preserving the biodiversity of

gut microbiota.
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Introduction

Species co-existence or co-exclusion is an important factor
in shaping the community and functions of various ecosystems,
and there are several theories on whether two species can coexist.
The competitive exclusion principle (i.e., Gause’s law) refers to
the difficulty of two species that are closely related or similar to
each other to occupy the same or similar ecological niche and
thus cannot coexist for a long time (Hardin, 1960). Similarly, the
ecological niche theory suggests that two species cannot co-exist
if their niches highly overlap (Letten et al., 2017). However, the
environmental filtering theory suggests that species with similar
environmental demands (e.g., closely related species) are more
likely to co-exist (Sommer et al., 2014; Le Bagousse-Pinguet et al.,
2017).

Species co-occurrence has been widely used to test these
hypotheses over the past few decades (Letten et al., 2017; Abbate
et al., 2018; Wang et al., 2022). The metrics used to calculate
species co-occurrence can be classified into matrix-level (Gotelli,
2000; Ulrich et al., 2009) and pairwise (Sfenthourakis et al., 2006;
Veech, 2013) approaches. The matrix-level approach calculates
a co-occurrence metric as a property of the entire presence-
absence matrix, whereas the pairwise approach measures co-
occurrence “species by species” (Veech, 2014). Some metrics,
including proportional similarity (Schoener, 1970) and correlation
coefficients, are used to examine the co-occurrence of pairwise
species, whereas the correlation coefficient metric is more
commonly used in studies of microbial co-occurrence networks
(Aas et al., 2005; Gross et al., 2010; Faust et al., 2012; Kehe et al.,
2021). However, the relationship between species co-occurrence
and genetic distance, as well as the effects of other environmental
variables (e.g., diversity, diets, or shelter quality), has been rarely
investigated (but see Wang et al., 2022).

The gut of most animals is inhabited by taxonomically and
functionally diverse symbiotic microbial communities that can
affect animal health and are influenced by genetics (Weinstein et al.,
2021), diet (Yin et al., 2017; Li et al., 2021a), and environmental
factors (Liu et al., 2020, 2022; Rocchi et al., 2022). Gut microbiota
dysbiosis refers to an imbalance in the microbial community that
disrupts the microbiota functions that are essential for maintaining
host health (Kriss et al., 2018). Dysbiosis of the gut microbiota
can lead to various diseases, such as inflammatory bowel disease,
metabolic disorders, and neurological disorders (Sekirov et al.,
2010; Gonzalez et al., 2011; Carding et al., 2015) and is often
associated with a reduction in overall microbial diversity (Kriss
et al., 2018). Moreover, gut microbiota dysbiosis is often associated
with a reduction in overall microbial diversity (Kriss et al., 2018).
Studies have shown that unfavorable factors, such as livestock
grazing (Li et al., 2019), social stress (Partrick et al., 2018; Liu
et al., 2022), and nutritional deficiency (Laitinen and Mokkala,
2019; Zhao et al., 2022), can reduce the gut microbial diversity
of animals and negatively affect the physiological functions of
hosts. The composition and relationships of gut microbes may be
different across hosts (Faith et al., 2013; Risely et al., 2021), and
the composition can fluctuate when the host is disturbed by the
external environment (Wu et al., 2017; Mardinoglu et al., 2018).
When hosts are genetically related, their gut microbial composition
and relationships tend to be similar (Roche et al., 2023). In recent

years, however, some studies have suggested that the relationships
between gut microbes are more universal across hosts (Bashan
et al., 2016; Kalyuzhny and Shnerb, 2017; Vila et al., 2020; Roche
et al., 2023). However, the impacts of genetic distance (or genetic
relatedness) between gut microbes, the diversity of gut microbes of
a community, and environmental factors on the co-occurrence of
gut microbiota have not been investigated, as far as we know.

The purpose of this study was to examine the relationship
of species co-occurrence of gut microbiota in Brandt’s voles
(Lasiopodomys brandtii) with their genetic distance (or
relatedness), community diversity, and several environmental
variables (e.g., diet composition, contact type, number of
cohabitating voles in the experimental space). We want to
test the following hypotheses: (1) The species co-occurrence index
should be negatively correlated with the genetic distance between
two paired amplicon sequence variants (ASVs) (or genera) of
gut microbes in each of the eight experiments, as predicted by
the environmental filter hypotheses. Alternatively, the species
co-occurrence index should be positively associated with genetic
distance, according to the competitive exclusion principle or
niche theory. (2) Species co-occurrence index should be positively
associated with the diversity of gut microbiota or favorable
environments (often positively associated with high diversity).

Materials and methods

Study subjects

Brandt’s voles (Lasiopodomys brandtii) are social animals
with a polygamous mating system (Batsuren et al., 2022). Their
population irrupts irregularly every 3–5 years, and both intrinsic
(density and social conflict) and external (rainfall, grazing, and
predators) factors have been shown to affect their population
growth (Zhang et al., 2003; Li et al., 2021b). Moreover, studies
have shown that diet, crowding, and photoperiod can significantly
alter the composition of gut microbiota in Brandt’s voles (Zhang
et al., 2018; Li et al., 2019; Liu et al., 2020; Zhao et al., 2022; Zhu
et al., 2022). In this study, all experimental voles were from our
laboratory colony maintained at the Institute of Zoology at the
Chinese Academy of Sciences or from our field station in Maodeng
Pasture, Xilinghaote, Inner Mongolia, China.

Experiments and samples

The 16S rRNA gene sequence data of the V3-V4 region of
fecal gut microbiota of 556 Brandt’s voles (Table 1) were obtained
from previously published studies from our research group (Liu
et al., 2020, 2022; Li et al., 2021a). The forward primer was 341F
(CCTAYGGGRBGCASCAG) and the reverse primer was 806R
(GGACTACNNGGGTATCTAAT) in each study. The region and
lengths of sequences were identical between each of the studies.
The data were compiled from eight experiments (with 37 treatment
groups) in three independent studies: Study 1 (Li et al., 2021a),
Study 2 (Liu et al., 2020), and Study 3 (Liu et al., 2022; see Table 1).
Individuals in each treatment experienced the same external
environment (treatment), which provided us with the opportunity
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to study the effects of genetic distance, community diversity, and
other environmental factors on species co-occurrence between
paired ASVs of the gut microbiota in Brandt’s voles. For detailed
information about experiments and treatments, see Supplementary
information.

Sequence data processing

We removed barcodes and primers of each sequence and
removed short sequences (length < 390) using VSEARCH-2.21.1
(Rognes et al., 2016). To standardize the sample size and avoid the
sequence-depth effect, we randomly selected 50,000 sequences for
each fecal sample of voles using VSEARCH-2.21.1. We removed
singletons and clustered ASVs at a 100% identity threshold using
the unoise2 algorithm implemented in the cluster_unoise function,
which is integrated in VSEARCH-2.21.1. To reduce potential
error sequences and facilitate subsequent analysis (e.g., rare ASVs
can lead to too many zeros, which would affect the correlation
estimates), we removed the ASVs with abundances lower than
0.01% (5,527 ASVs in total).

Species mapping and function prediction

We employed the SILVA rRNA database version 1381 to
annotate the taxonomic information for each ASV. The length of
the 16S rRNA sequences (in the V3–V4 region for this study) used
for taxonomic identification generally can assign most ASVs only
to the genus level. Thus, only taxa of genera and above were used
for subsequent analyses to ensure accuracy.

We used PICRUSt2 (Douglas et al., 2020) to predict the
function of gut bacteria according to each ASV. PICRUSt2
predictions were conducted based on several gene family databases,
including the Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologs (KOs) and Enzyme Commission (EC) numbers.

Genetic distance

Calculating genetic distances require aligned sequences; thus,
we aligned the ASV sequences using Muscle version 5 (Edgar,
2021) and calculated the genetic distance between the aligned ASV
sequences using MEGA version 11 (Tamura et al., 2021).

Co-occurrence index of ASVs

We calculated Spearman’s correlation coefficient between
pairwise ASVs using their relative abundance within each treatment
group. Spearman’s correlation coefficient was used to indicate the
tendency of co-existence or co-exclusion between ASVs; a positive
coefficient indicated co-existence, while a higher value indicated a
higher probability of co-existence, and vice versa (Matchado et al.,
2021). To reduce potential errors caused by too many zero values,

1 https://www.arb-silva.de/

we removed the ASV pairs whose number of zero values was greater
than 50%.

Network analysis

The co-occurrence network was built by using the workflow
provided by CoNet (Faust and Raes, 2016). CoNet is an application
integrated in Cytoscape (Shannon et al., 2003) and can detects
significant non-random patterns of co-occurrence in incidence
and abundance data. We discarded ASVs with less than 20 non-
zero values across all samples (filtering) and divided each entry
by the sum of its corresponding column (normalization), thus
avoiding the inference of spurious associations due to different
sequencing depths (Faust and Raes, 2016). We used ASVs as nodes
and Spearman’s coefficients between nodes as the weights of the
edges. To assess edge significance, bootstrap method was deployed
with 100 sub-samplings. The edges with p-values greater than 0.05
were removed. The degree in a network refers to the number of
edges connecting a selected node to the remaining nodes (Liu et al.,
2021). The parameters (e.g., degree) of the network were calculated
using Cytoscape version 3.9.1, and four hub nodes (Liu et al., 2021)
were determined based on two criteria: (1) degree > 1% of total
volume and (2) betweenness centrality > 0.1.

Regression analysis

First, we used linear regression methods to detect the
relationship between the co-occurrence index and the genetic
distance of pairwise ASVs. For analyses (Table 1) that required
ASV selection based on p-values, we adjusted the p-values using the
Benjamini–Hochberg method to calculate the false discovery rate
(FDR) as follows:

FDR = p × N/Rank

here, FDR is the adjusted p-value, p is the original p-value of the
Spearman correlation, N is the number of ASV pairs, and Rank is
the rank of the corresponding original p-value among all p-values
(Benjamini and Hochberg, 1995).

Because many other factors (e.g., diet, crowding effects, etc.)
may also affect the co-occurrence index and linear regression
is not good at multivariable fitting, we further analyzed the
association of the co-occurrence index with all potential variables
using the generalized linear model (GLM) implemented in R
(R Core Team, 2018) version 4.2.0 with the “glm” function.
To avoid the collinearity effect, we first performed a pairwise
correlation analysis (Spearman correlation) of those variables,
including genetic diversity, Shannon index, Simpson index, chao1,
crowding level (average space occupied by an individual), and the
number of cohabitating voles (N). We retained only one variable in
the GLM analysis for variables with correlation coefficients greater
than 0.5. The Simpson index, crowding level, and chao1 were
significantly correlated with the Shannon index (Supplementary
Figure 1), so we retained only the Shannon index from these
variables for the GLM analysis. The initial candidate GLM model
included genetic diversity, Shannon index, number cohabitating of
voles in the experimental space (N), diet type (categorical variables:
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TABLE 1 Summary of the 37 treatment groups from 8 experiments.

Study Experiment
code

Experimental
condition

Treatment Treatment
ID

No.
voles

Diet Physical
contact

Study 1 Experiment 1 Lab DSR1 E1_F1 1 Grass No

Study 1 Experiment 1 Lab DSR2 E1_F2 1 Grass No

Study 1 Experiment 1 Lab DSR3 E1_F3 1 Grass No

Study 1 Experiment 1 Lab DSR4 E1_F4 1 Grass No

Study 1 Experiment 1 Lab DSR5 E1_F5 1 Grass No

Study 1 Experiment 1 Lab DSR6 E1_F6 1 Grass No

Study 1 Experiment 1 Lab DSR7 E1_F7 1 Grass No

Study 1 Experiment 1 Lab DSR8 E1_F8 1 Grass No

Study 2 Experiment 2 Lab HC without physical contact E2_H 9 Chow No

Study 2 Experiment 2 Lab LC without physical contact E2_L 2 Chow No

Study 2 Experiment 2 Lab MC without physical contact E2_M 4 Chow No

Study 2 Experiment 3 Lab HD with physical contact E3_H 8 Chow Yes

Study 2 Experiment 3 Lab LD with physical contact E3_L 2 Chow Yes

Study 2 Experiment 3 Lab MD with physical contact E3_M 4 Chow Yes

Study 3 Experiment 4 Lab HD with physical contact E4_H 8 Chow Yes

Study 3 Experiment 4 Lab LD with physical contact E4_L 2 Chow Yes

Study 3 Experiment 4 Lab MD with physical contact E4_M 4 Chow Yes

Study 3 Experiment 5 Lab HD without physical contact E5_H 8 Chow No

Study 3 Experiment 5 Lab MD without physical contact E5_M 4 Chow No

Study 3 Experiment 6 Lab HD with physical contact E6_H 8 Chow Yes

Study 3 Experiment 6 Lab LD with physical contact E6_L 2 Chow Yes

Study 3 Experiment 6 Lab MD with physical contact E6_M 4 Chow Yes

Study 3 Experiment 7 Lab HC without physical contact E7_H 8 Chow No

Study 3 Experiment 7 Lab LC without physical contact E7_L 2 Chow No

Study 3 Experiment 7 Lab MC without physical contact E7_M 4 Chow No

Study 3 Experiment 8 Enclosure HD in enclosures E8_H1 48 Grass Yes

Study 3 Experiment 8 Enclosure LD in enclosures E8_L1 48 Grass Yes

Study 3 Experiment 8 Enclosure MD in enclosures E8_M1 48 Grass Yes

Study 3 Experiment 8 Enclosure HD in enclosures E8_H2 48 Grass Yes

Study 3 Experiment 8 Enclosure LD in enclosures E8_L2 12 Grass Yes

Study 3 Experiment 8 Enclosure MD in enclosures E8_M2 12 Grass Yes

Study 3 Experiment 8 Enclosure HD in enclosures E8_H3 12 Grass Yes

Study 3 Experiment 8 Enclosure LD in enclosures E8_L3 12 Grass Yes

Study 3 Experiment 8 Enclosure MD in enclosures E8_M3 24 Grass Yes

Study 3 Experiment 8 Enclosure HD in enclosures E8_H4 24 Grass Yes

Study 3 Experiment 8 Enclosure LD in enclosures E8_L4 24 Grass Yes

Study 3 Experiment 8 Enclosure MD in enclosures E8_M4 24 Grass Yes

See the Supplementary information for detailed information on treatments and experiments. HD, high density (high group size and high space shortage); MD, medium density (medium group
size and medium space shortage); LD, low density (small group size and low space shortage); HC, high crowding (high group size with no space shortage); MC, medium crowding (medium
group size with no space shortage); LC, low crowding (small group size with no space shortage). DSR1–DSR8 represent the eight diet treatments comprising plant species 1–8, respectively, by
adding plant species in order from high to low palatability. No. voles, number of cohabitating voles in the experimental space.

grass or chow), and contact type (categorical variables: yes or no).
The initial model formulas for the co-occurrence index were as
follows:

co−occurrence index GD+ diet + shannon+ contact + N

Here, the co-occurrence index was represented by the Spearman’s
correlation coefficient between pairwise ASVs, GD represented the
genetic distance between each ASV pair, and diet represented the
diet type (i.e., grass or rabbit chow) of the Brandt’s voles in each
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treatment. The Shannon index represents Shannon diversity (alpha
diversity). Contact type indicates whether physical contact between
the voles was allowed (non-physical contact or having physical
contact) by having or not having barriers in the experimental
space. “Non-physical contact” means that cohabitating voles were
isolated by barriers that voles can see each other or feel each other
through smell, but cannot have physical contact; while “having
physical contact” means cohabitating voles can move freely in the
experimental space. N represents the number of Brandt’s voles
in each treatment group. In order to align the scales of the
independent and dependent variables and thus reduce potential
bias, all variables were normalized using Min-Max method except
for the categorical variables of diet and physical contact. The
Gaussian family function was used.

We performed automated model selection based on
information theory (Burnham and Anderson, 2010) to quantify
the relative importance of predictors for co-occurrence index.
We ranked the GLM models based on AIC (Akaike’s information
criterion) and chose the model with the lowest AIC value among
all models as the final model (Supplementary Table 1). The
model selection analyses were implemented in R (R Core Team,
2018) version 4.2.0 using the “MuMIn” package. Because factors
generated by pairwise comparisons (e.g., co-occurrence index)
may have correlated data structure, we randomly selected samples
of 1% of the total sample size for re-conducting the GLM analysis.
We performed this 10 times and the results were very similar
(Supplementary Table 2), indicating that our model results are
robust.

Co-occurrence index and genetic distance were calculated
by using custom codes in Python2 version 3.9.7. The co-
occurrence network analysis was performed with the use of CoNet
version 1.1.1. Regression analysis was performed with the use of
R version 4.2.0.

Results

Community composition of the gut
microbiota

In total, 4,566 amplicon sequence variants (ASVs) belonging
to 116 genera were identified. Three genera (Desulfovibrio,
Monoglobus, and Lachnospiraceae NK4A136 group) were present
in all voles, and 32 genera were observed in more than 90% of voles
(for details, see SupplementaryData 1). The relative abundances of
different genera (e.g., Desulfovibrio and Monoglobus) varied greatly
among the voles (Figure 1A and Supplementary Data 2).

The composition of the gut microbiota varied greatly among
different treatments, whereas the functional composition was
relatively stable (Figures 1B, C and Supplementary Table 3).
Bacteroidota and Firmicutes were the two most abundant phyla
in the gut, accounting for the majority of the gut microbiota
(Figure 1B); however, their proportions varied greatly among
the different treatment groups. For example, the proportion of
Firmicutes was more than 74.7% in the E3_H treatment, while

2 https://www.python.org/

the proportion of Bacteroidota was higher (47.5 vs. 31.0%) in the
E6_H treatment (Figure 1B). In contrast to the taxon composition,
the overall functional composition (Figure 1B) and diversity
(Figures 1D, E and Supplementary Data 1) of the gut bacteria
showed little variation across the treatment groups.

Co-occurrence network

For simplification, we presented only the co-occurrence
network of pooled data of gut microbiota from the three studies
with significant Spearman’s correlation coefficients (after FDR
adjustment). In total, 244 nodes (i.e., ASVs) had significant
co-occurrence or co-exclusion relationships with other nodes,
resulting in a total of 1,921 edges (i.e., ASV pairs having significant
correlation coefficients), of which 920 edges were co-occurrence,
and 1,001 were co-exclusion. Among these 244 nodes, four hub
nodes were identified (ASV-32, ASV-44, ASV-58, ASV-257), all
of which originated from Firmicutes (Figure 2A). Nodes from
Firmicutes have the largest average degree, positive degree, and
negative degree (Figure 2B). The effects of node degree of
other phylum are usually unbalanced, e.g., node degrees from
Cyanobacteria are mainly negative, whereas node degrees from
Patescibacteria are mainly positive (Figure 2B).

Factors associated with the
co-occurrence index (Spearman
correlation coefficient)

Linear regression analysis indicated that the co-occurrence
index between ASVs was significantly negatively associated with
genetic distance (reversal of genetic relatedness) in all experiments
(Figure 3 and Supplementary Table 4) and treatment groups
(Supplementary Figure 2 and Supplementary Table 5). The
GLM results reconfirmed the negative association between the
co-occurrence index and genetic distance after excluding other
confounding factors (Table 2), suggesting that more closely related
ASVs tend to co-occur in a host.

According to the GLM results (Table 2), the number of
cohabitating voles in the experimental space was negatively
correlated with the co-occurrence index, whereas the alpha
diversity of the gut microbiota was positively correlated with the co-
occurrence index, suggesting that high diversity may promote ASV
co-occurrence. The co-occurrence index was higher in the grass
diet treatment group than in the non-grass diet (i.e., rabbit chow)
group. The co-occurrence index was higher in the treatment groups
that voles cannot contact each other in the experimental space.

Discussion

Currently, factors and mechanisms that determine species co-
existence of gut microbiota have not been elucidated. In this
study, using data on the gut microbiota of Brandt’s voles from
37 treatments of eight experiments, we found the species co-
occurrence index of gut microbiota in Brandt’s voles was positively
associated with the genetic relatedness (reversal of genetic distance)
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FIGURE 1

Community composition and diversity of the gut microbiota in Brandt’s vole. (A) Abundance of each genus of gut microbiota in each individual of
Brandt’s vole. Only genera with an average abundance above 1% were shown. (B) Variation in phylum composition of gut microbiota in Brandt’s
voles among different treatment groups. Different colors indicate different phyla. (C) Function composition of gut microbiota in Brandt’s voles
among different treatment groups. Different colors indicate different enzyme classes (level 1 classification). (D) Shannon diversity of microbiota of
Brandt’s voles in each treatment. (E) Functional diversity of microbiota of Brandt’s voles in each treatment. For Simpson diversity, see Supplementary
Figure 3.

between paired amplicon sequence variants (ASVs), Shannon
diversity index, grass diets (natural foods vs. rabbit chow) but
negatively associated with the number of cohabitating voles in
the experimental space, where a larger number of cohabitating
voles represented more crowding stress due to space shortage and
more odor or sound stress. Our study demonstrated that high
diversity, high genetic relatedness, and favorable environments
would benefit species co-occurrence of gut microbiota. Thus, our
results provide novel insights into key factors and mechanisms in
shaping community assemblies.

Genetic distance and species
co-occurrence

The gut microbial community is a type of commensal
community (Artis, 2008), and the co-existence of different
kinds of microorganisms is essential for maintaining community

stability and function. In ecology, two major hypotheses are
used to explain species co-existence or exclusion: the competitive
exclusion principle (CEP; similar to niche theory), and the
environmental filtering theory (EFT). The CEP emphasizes the
effects of interspecific interactions, whereas the EFT focuses on
the dependence or response of species to similar environments
and resources. Genetic relatedness is often used to test the EFT
and EFT has been supported by many studies; for example, Yan
et al. (2016) found that the species co-occurrence of mammals,
birds, reptiles, and amphibians in China was negatively associated
with the genetic distance between species (Yan et al., 2016). Wang
et al. (2022) also found that species (Lepidoptera) co-occurrence
is negatively associated with their phylogenetic relatedness (i.e.,
genetic distance) (Wang et al., 2022). These two theories are not
exclusive to each other but may be complementary at different
scales or taxa, for example, at a small spatial scale. Wang et al.
(2022) found that Lepidoptera co-existence is lower at smaller
spatial scales, providing evidence in support of the CEP on a
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FIGURE 2

(A) Co-occurrence network of pooled ASVs of the gut microbiota in Brandt’s voles under different treatments. (B) Distribution of degree, positive
degree (i.e., the Spearman correlation coefficient is positive), and negative degree (i.e., the Spearman correlation coefficient is negative) of network
nodes in each phylum.

small spatial scale, where species may compete more seriously with
each other. To the best of our knowledge, no studies have been
conducted to test the EFT using gut microbiota. In this study, we
found that genetic distance is negatively associated with the co-
occurrence index in the gut microbes of Brandt’s voles, providing
new evidence in support of the EFT. Bacteria with close genetic
relatedness may tend to have similar functions and require similar
resources or environments; therefore, they tend to have a similar
response to environmental changes (such as diet and stress), as
predicted by the EFT. Notably, genetic relatedness does not always
represent trait similarity, so further studies on the relationship
between function similarity and genetic distance are necessary.
Competition and colonization trade-off has been suggested to affect
community assembly (Bin et al., 2019) because competitive ability
and colonization capacity may lead to ecological niche differences.
Unfortunately, we have no data on the colonization ability of gut
microbes, which requires further study. It should be pointed out

that the co-occurrence index of species may cover various species
interactions (e.g., mutualism, predation) and may not be used
to test the CEP theories that emphasize species sharing similar
resources.

Diversity and species co-occurrence

Many studies have suggested that diversity can promote the
stability of communities (Girvan et al., 2005; Proulx et al., 2010;
Cadotte et al., 2012), ecosystem reliability (Naeem and Li, 1997),
and the stability of ecosystem functions at various ecological scales
(Oliver et al., 2015), which may also benefit species co-occurrence.
A larger number of species in the trophic network facilitates the
provision of more food sources, thereby maintaining the stability
of the network (Yang et al., 2022). One species may likely depend
heavily on several resource species that are complementary or
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FIGURE 3

Relationship between co-occurrence index and genetic distance between ASVs of gut microbiota in Brandt’s voles in the eight experiments. The
co-occurrence index represents Spearman correlation coefficient, and the scatter points indicate the pooled ASV pairs for each experiment. The red
line indicates the linear fitting line. The coefficients of the regression are shown in Supplementary Table 4. (A–H) indicate Experiments 1–8 (see
“Materials and methods” and Table 1).

TABLE 2 Coefficients in the GLM analysis of the species co-occurrence index (Spearman correlation).

Dependent Independent Estimates Std error t value p-value

Co-occurrence index Intercept 0.5450 0.0002 2526.9 < 0.001

GD −0.0643 0.0003 −228.5 < 0.001

Shannon index 0.0248 0.0003 92.8 < 0.001

N −0.0209 0.0004 −59.3 < 0.001

Diet: grass 0.0419 0.0001 328.3 < 0.001

Physical contact: yes −0.0174 0.0001 −118.3 < 0.001

GD, genetic distance; N, number of cohabitating voles per replicate (experimental space) in each treatment group.

competitive with each other; thus, more diversified resource species
may facilitate the coexistence of consumer species (Naeem and Li,
1997; Yang et al., 2022). A previous study demonstrated that the
gut bacterial composition of migratory birds varied greatly among
individuals, but their microbiome metabolism and functions were
similar (Cao et al., 2020). Similarly, we found that the composition
of gut microbiota varied considerably under different treatments,
but the functional composition was more stable (Figure 1),
suggesting that the functions of the diversified bacteria were
complementary to each other; thus, high diversity helps maintain
the coexistence of gut microbes.

In this study, we found that the diversity of gut microbiota in
Brandt’s voles was positively associated with species co-occurrence
index (Table 2). Therefore, we argue that communities with high
diversity have more ecological niches to offer, and can therefore
favor the coexistence of more species.

Environmental factors and species
co-occurrence

As discussed above, high diversity would produce more positive
relations between species, increasing biomass or productivity,

thus facilitating species co-occurrence. However, unfavorable
environments often reduce diversity (Li et al., 2019, 2021a;
Liu et al., 2020, 2022), thus, harm species co-occurrence.
The positive Spearman correlation either indicates mutualism
or the same response to a favorable environmental variable
(e.g., food type, stress condition), while the negative Spearman
correlation either indicates competition or predation, or the
same response to unfavorable environmental variables. In this
study, we found that the species co-occurrence index of gut
microbiota in Brandt’s voles was positively associated with grass
diets (i.e., natural food) and no-physical contact within the
experimental space, but negatively associated with the number of
cohabitating voles in the experimental space. A larger number
of cohabitating voles in one experimental space often represents
more crowding stress due to space shortage, stronger odor, or
auditory stress, while no barrier between voles would increase
social stress due to direct fighting (Liu et al., 2022), which
may result in dysfunction of gut microbiota and a harmful
impact on the species co-occurrence of ASVs. In this study, each
experiment consisted of several treatments, while each treatment
contained several replicates. The voles in each replicate were co-
housed (with or without physical contact between individuals)
and experienced the same treatment pressure (e.g., density).
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Grass diets are natural for Brandt’s voles and may be
more diversified in nutrients (e.g., fiber) compared to rabbit
chow, thus favoring the co-occurrence of ASVs. Furthermore,
natural foraging allows for a more diverse diet, which may
create a more diverse nutritional environment in the gut that
is conducive to a broader range of microbial taxa (Heiman and
Greenway, 2016). Nutrients, such as fiber, fat, and protein, have
significant effects on the composition and function of intestinal
microorganisms (Wu et al., 2022). Low-fiber diets can trigger
a significant depletion of gut microbial diversity and beneficial
metabolites, disrupting the composition of gut microbiota (Riva
et al., 2019). Dietary supplementation with functional amino acids,
including tryptophan, glutamine, methionine, and branched-chain
amino acids, significantly optimizes the structure and function
of the microbial community and establishes a new balance
of host-microbiota interactions (Ma and Ma, 2019). Li et al.
(2019) found that voles in livestock grazing enclosures exhibited
significantly lower alpha diversity, and that the microbiota from
voles in grazed enclosures had a smaller and more simplified co-
occurrence network with a relatively higher percentage of positive
interactions. Li et al. (2021a) found that the alpha diversity of gut
microbiota increased linearly with dietary species richness, whereas
dietary species richness affected the composition, function, and
community assembly of the gut microbiota of Brandt’s voles in a
nonlinear manner. These results indicate that favorable and more
diversified natural plants are beneficial to the growth of Brandt’s
voles through their gut microbiota.

Implications of this study

Dysbiosis and diseases may be linked to the loss of diversity
in host gut microbes (Kriss et al., 2018). Our study revealed that
a high diversity of gut microbiota could increase the species co-
occurrence of the gut microbiota. Thus, biodiversity preservation
of gut microbes is essential for maintaining the host’s health. We
found that unfavorable conditions (e.g., poor-quality food and
high-stress living conditions) decreased species co-occurrence of
gut microbes, suggesting that they may be important intrinsic
(density dependency effect) or external (food) factors in regulating
the composition of gut microbiota.

Notably, technical biases, stochastic responses of the gut
microbiota to the altered gut environment, and intrinsic properties
of the gut microbiota may lead to different results. Thus, more
studies are needed to investigate the underlying mechanism in
regulating species coexistence of gut microbiota (Costea et al., 2017;
Zaneveld et al., 2017; Poyet et al., 2019).

Data availability statement

The original contributions presented in this study are included
in this article/Supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

The study was conducted in accordance with the guidelines by
the Animal Care and Use Committee of the Institute of Zoology of
Chinese Academy of Sciences.

Author contributions

CC: Conceptualization, Data curation, Software, Visualization,
Writing – original draft, Writing – review & editing. GL: Data
curation, Writing – review & editing. XY: Writing – review &
editing. JZ: Writing – review & editing, Data curation. JL: Data
curation, Writing – review & editing. AZ: Writing – review &
editing. ZZ: Conceptualization, Funding acquisition, Writing –
original draft, Writing – review & editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. The
study is supported by research grants from the Key Program
of National Natural Science Foundation of China (32090021),
the Strategic Priority Research Program of Chinese Academy of
Sciences (XDPB16), and the Program of Ministry of Science and
Technology (2019FY100300).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.
1337402/full#supplementary-material

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1337402
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1337402/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1337402/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1337402 February 3, 2024 Time: 17:1 # 10

Cheng et al. 10.3389/fmicb.2024.1337402

References

Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., and Dewhirst, F. E. (2005). Defining
the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732. doi:
10.1128/JCM.43.11.5721-5732.2005

Abbate, J. L., Gladieux, P., Hood, M. E., Vienne, D. M., Antonovics, J., Snirc, A., et al.
(2018). Co-occurrence among three divergent plant-castrating fungi in the same Silene
host species. Mol. Ecol. 27, 3357–3370. doi: 10.1111/mec.14805

Artis, D. (2008). Epithelial-cell recognition of commensal bacteria and maintenance
of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420. doi: 10.1038/
nri2316

Bashan, A., Gibson, T. E., Friedman, J., Carey, V. J., Weiss, S. T., Hohmann, E. L.,
et al. (2016). Universality of human microbial dynamics. Nature 534, 259–262. doi:
10.1038/nature18301

Batsuren, E., Zhang, X., Song, M., Wan, X., Li, G., Liu, J., et al. (2022).
Density-dependent changes of mating system and family structure in Brandt’s voles
(Lasiopodomys brandtii). Ecol. Evol. 12:e9199. doi: 10.1002/ece3.9199

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

Bin, Y., Lin, G., Russo, S. E., Huang, Z., Shen, Y., Cao, H., et al. (2019). Testing the
competition-colonization trade-off and its correlations with functional trait variations
among subtropical tree species. Sci. Rep. 9:14942. doi: 10.1038/s41598-019-50604-3

Burnham, K. P., and Anderson, D. R. (2010). Model Selection and Multimodel
Inference: a Practical Information-Theoretic Approach, 2nd Edn. New York, NY:
Springer.

Cadotte, M. W., Dinnage, R., and Tilman, D. (2012). Phylogenetic diversity
promotes ecosystem stability. Ecology 93, S223–S233. doi: 10.1890/11-0426.1

Cao, J., Hu, Y., Liu, F., Wang, Y., Bi, Y., Lv, N., et al. (2020). Metagenomic analysis
reveals the microbiome and resistome in migratory birds. Microbiome 8:26. doi: 10.
1186/s40168-019-0781-8

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., and Owen, L. J. (2015).
∗Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26. doi: 10.3402/
mehd.v26.26191

Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., et al.
(2017). Towards standards for human fecal sample processing in metagenomic studies.
Nat. Biotechnol. 35, 1069–1076. doi: 10.1038/nbt.3960

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M.,
et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38,
685–688. doi: 10.1038/s41587-020-0548-6

Edgar, R. C. (2021). High-accuracy alignment ensembles enable unbiased
assessments of sequence homology and phylogeny. Bioinformatics. Nat. Commun.
13:6968. doi: 10.1101/2021.06.20.449169

Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman,
A. L., et al. (2013). The long-term stability of the human gut microbiota. Science
341:1237439. doi: 10.1126/science.1237439

Faust, K., and Raes, J. (2016). CoNet app: inference of biological association
networks using Cytoscape. F1000Res 5:1519. doi: 10.12688/f1000research.9050.2

Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., et al.
(2012). Microbial co-occurrence relationships in the human microbiome. PLoS
Comput. Biol. 8:e1002606. doi: 10.1371/journal.pcbi.1002606

Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., and Glover, L. A.
(2005). Bacterial diversity promotes community stability and functional resilience
after perturbation. Environ. Microbiol. 7, 301–313. doi: 10.1111/j.1462-2920.2005.0
0695.x

Gonzalez, A., Stombaugh, J., Lozupone, C., Turnbaugh, P. J., Gordon, J. I., and
Knight, R. (2011). The mind-body-microbial continuum. Dialogues Clin. Neurosci. 13,
55–62. doi: 10.31887/DCNS.2011.13.1/agonzalez

Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology
81, 2606–2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2

Gross, E. L., Leys, E. J., Gasparovich, S. R., Firestone, N. D., Schwartzbaum,
J. A., Janies, D. A., et al. (2010). Bacterial 16S sequence analysis of severe caries
in young permanent teeth. J. Clin. Microbiol. 48, 4121–4128. doi: 10.1128/JCM.01
232-10

Hardin, G. (1960). The competitive exclusion principle: an idea that took a century
to be born has implications in ecology, economics, and genetics. Science 131, 1292–
1297. doi: 10.1126/science.131.3409.1292

Heiman, M. L., and Greenway, F. L. (2016). A healthy gastrointestinal microbiome
is dependent on dietary diversity. Mol. Metab. 5, 317–320. doi: 10.1016/j.molmet.2016.
02.005

Kalyuzhny, M., and Shnerb, N. M. (2017). Dissimilarity-overlap analysis of
community dynamics: opportunities and pitfalls. Methods Ecol. Evol. 8, 1764–1773.
doi: 10.1111/2041-210X.12809

Kehe, J., Ortiz, A., Kulesa, A., Gore, J., Blainey, P. C., and Friedman, J. (2021).
Positive interactions are common among culturable bacteria. Sci. Adv. 7:eabi7159.
doi: 10.1126/sciadv.abi7159

Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G., and Lozupone, C. A.
(2018). Low diversity gut microbiota dysbiosis: drivers, functional implications and
recovery. Curr. Opin. Microbiol. 44, 34–40. doi: 10.1016/j.mib.2018.07.003

Laitinen, K., and Mokkala, K. (2019). Overall dietary quality relates to gut
microbiota diversity and abundance. Int. J. Mol. Sci. 20:1835. doi: 10.3390/
ijms20081835

Le Bagousse-Pinguet, Y., Gross, N., Maestre, F. T., Maire, V., Bello, F., Fonseca, C. R.,
et al. (2017). Testing the environmental filtering concept in global drylands. J. Ecol.
105, 1058–1069. doi: 10.1111/1365-2745.12735

Letten, A. D., Ke, P., and Fukami, T. (2017). Linking modern coexistence theory and
contemporary niche theory. Ecol. Monogr. 87, 161–177. doi: 10.1002/ecm.1242

Li, G., Li, J., Kohl, K. D., Yin, B., Wei, W., Wan, X., et al. (2019). Dietary
shifts influenced by livestock grazing shape the gut microbiota composition and co-
occurrence networks in a local rodent species. J. Anim. Ecol. 88, 302–314. doi: 10.1111/
1365-2656.12920

Li, G., Shi, C., Song, Y., Chu, H., and Zhang, Z. (2021a). The role transition of
dietary species richness in modulating the gut microbial assembly and postweaning
performance of a generalist herbivore. mSystems 6:e0097921. doi: 10.1128/mSystems.
00979-21

Li, G., Wan, X., Yin, B., Wei, W., Hou, X., Zhang, X., et al. (2021b). Timing
outweighs magnitude of rainfall in shaping population dynamics of a small mammal
species in steppe grassland. Proc. Natl. Acad. Sci. U S A. 118:e2023691118. doi: 10.1073/
pnas.2023691118

Liu, J., Huang, S., Li, G., Zhao, J., Lu, W., and Zhang, Z. (2020). High housing density
increases stress hormone- or disease-associated fecal microbiota in male Brandt’s voles
(Lasiopodomys brandtii). Hormones Behav. 126:104838. doi: 10.1016/j.yhbeh.2020.
104838

Liu, J., Huang, S., Zhang, X., Li, G., Batsuren, E., Lu, W., et al. (2022). Gut microbiota
reflect the crowding stress of space shortage, physical and non-physical contact in
Brandt’s voles (Lasiopodomys brandtii). Microbiol. Res. 255:126928. doi: 10.1016/j.
micres.2021.126928

Liu, Z., Ma, A., Mathé, E., Merling, M., Ma, Q., and Liu, B. (2021). Network analyses
in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 22,
1639–1655. doi: 10.1093/bib/bbaa005

Ma, N., and Ma, X. (2019). Dietary amino acids and the gut-microbiome-immune
axis: physiological metabolism and therapeutic prospects: amino acids and the gut
microbiom. Compr. Rev. Food Sci. Food Saf. 18, 221–242. doi: 10.1111/1541-4337.
12401

Mardinoglu, A., Wu, H., Bjornson, E., Zhang, C., Hakkarainen, A., Räsänen,
S. M., et al. (2018). An integrated understanding of the rapid metabolic benefits
of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 27,
559-571.e5. doi: 10.1016/j.cmet.2018.01.005

Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D.,
et al. (2021). Network analysis methods for studying microbial communities: a mini
review. Comput. Struct. Biotechnol. J. 19, 2687–2698. doi: 10.1016/j.csbj.2021.05.001

Naeem, S., and Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature 390,
507–509. doi: 10.1038/37348

Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F.,
et al. (2015). Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30,
673–684. doi: 10.1016/j.tree.2015.08.009

Partrick, K. A., Chassaing, B., Beach, L. Q., McCann, K. E., Gewirtz, A. T., and
Huhman, K. L. (2018). Acute and repeated exposure to social stress reduces gut
microbiota diversity in Syrian hamsters. Behav. Brain Res. 345, 39–48. doi: 10.1016/
j.bbr.2018.02.005

Poyet, M., Groussin, M., Gibbons, S. M., Avila-Pacheco, J., Jiang, X., Kearney,
S. M., et al. (2019). A library of human gut bacterial isolates paired with longitudinal
multiomics data enables mechanistic microbiome research. Nat. Med. 25, 1442–1452.
doi: 10.1038/s41591-019-0559-3

Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S., et al.
(2010). Diversity promotes temporal stability across levels of ecosystem organization
in experimental grasslands. PLoS One 5:e13382. doi: 10.1371/journal.pone.0013382

R Core Team (2018). R: a Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B., and Sommer, S. (2021).
Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime
dynamics in wild meerkats. Nat. Commun. 12:6017. doi: 10.1038/s41467-021-26298-5

Riva, A., Kuzyk, O., Forsberg, E., Siuzdak, G., Pfann, C., Herbold, C., et al. (2019).
A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon
microbiome. Nat. Commun. 10:4366. doi: 10.1038/s41467-019-12413-0

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1337402
https://doi.org/10.1128/JCM.43.11.5721-5732.2005
https://doi.org/10.1128/JCM.43.11.5721-5732.2005
https://doi.org/10.1111/mec.14805
https://doi.org/10.1038/nri2316
https://doi.org/10.1038/nri2316
https://doi.org/10.1038/nature18301
https://doi.org/10.1038/nature18301
https://doi.org/10.1002/ece3.9199
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/s41598-019-50604-3
https://doi.org/10.1890/11-0426.1
https://doi.org/10.1186/s40168-019-0781-8
https://doi.org/10.1186/s40168-019-0781-8
https://doi.org/10.3402/mehd.v26.26191
https://doi.org/10.3402/mehd.v26.26191
https://doi.org/10.1038/nbt.3960
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1101/2021.06.20.449169
https://doi.org/10.1126/science.1237439
https://doi.org/10.12688/f1000research.9050.2
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1111/j.1462-2920.2005.00695.x
https://doi.org/10.1111/j.1462-2920.2005.00695.x
https://doi.org/10.31887/DCNS.2011.13.1/agonzalez
https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
https://doi.org/10.1128/JCM.01232-10
https://doi.org/10.1128/JCM.01232-10
https://doi.org/10.1126/science.131.3409.1292
https://doi.org/10.1016/j.molmet.2016.02.005
https://doi.org/10.1016/j.molmet.2016.02.005
https://doi.org/10.1111/2041-210X.12809
https://doi.org/10.1126/sciadv.abi7159
https://doi.org/10.1016/j.mib.2018.07.003
https://doi.org/10.3390/ijms20081835
https://doi.org/10.3390/ijms20081835
https://doi.org/10.1111/1365-2745.12735
https://doi.org/10.1002/ecm.1242
https://doi.org/10.1111/1365-2656.12920
https://doi.org/10.1111/1365-2656.12920
https://doi.org/10.1128/mSystems.00979-21
https://doi.org/10.1128/mSystems.00979-21
https://doi.org/10.1073/pnas.2023691118
https://doi.org/10.1073/pnas.2023691118
https://doi.org/10.1016/j.yhbeh.2020.104838
https://doi.org/10.1016/j.yhbeh.2020.104838
https://doi.org/10.1016/j.micres.2021.126928
https://doi.org/10.1016/j.micres.2021.126928
https://doi.org/10.1093/bib/bbaa005
https://doi.org/10.1111/1541-4337.12401
https://doi.org/10.1111/1541-4337.12401
https://doi.org/10.1016/j.cmet.2018.01.005
https://doi.org/10.1016/j.csbj.2021.05.001
https://doi.org/10.1038/37348
https://doi.org/10.1016/j.tree.2015.08.009
https://doi.org/10.1016/j.bbr.2018.02.005
https://doi.org/10.1016/j.bbr.2018.02.005
https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.1371/journal.pone.0013382
https://doi.org/10.1038/s41467-021-26298-5
https://doi.org/10.1038/s41467-019-12413-0
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1337402 February 3, 2024 Time: 17:1 # 11

Cheng et al. 10.3389/fmicb.2024.1337402

Rocchi, G., Giovanetti, M., Benedetti, F., Borsetti, A., Ceccarelli, G., Zella, D., et al.
(2022). Gut microbiota and COVID-19: potential implications for disease severity.
Pathogens 11:1050. doi: 10.3390/pathogens11091050

Roche, K. E., Bjork, J. R., Dasari, M. R., Grieneisen, L., Jansen, D. A., Gould, T. J.,
et al. (2023). Universal gut microbial relationships in the gut microbiome of wild
baboons. eLife 12:e83152. doi: 10.7554/eLife.83152

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584

Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy
habitats. Ecology 51, 408–418. doi: 10.2307/1935376

Sekirov, I., Russell, S. L., Antunes, L. C. M., and Finlay, B. B. (2010). Gut microbiota
in health and disease. Physiol. Rev. 90, 859–904. doi: 10.1152/physrev.00045.2009

Sfenthourakis, S., Tzanatos, E., and Giokas, S. (2006). Species co-occurrence: the case
of congeneric species and a causal approach to patterns of species association: rainfall
reliability in mediterranean-climate ecosystems. Glob. Ecol. Biogeogr. 15, 39–49. doi:
10.1111/j.1466-822X.2005.00192.x

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/gr.1239303

Sommer, B., Harrison, P. L., Beger, M., and Pandolfi, J. M. (2014). Trait-mediated
environmental filtering drives assembly at biogeographic transition zones. Ecology 95,
1000–1009. doi: 10.1890/13-1445.1

Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary
genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. doi: 10.1093/molbev/
msab120

Ulrich, W., Almeida-Neto, M., and Gotelli, N. J. (2009). A consumer’s guide to
nestedness analysis. Oikos 118, 3–17. doi: 10.1111/j.1600-0706.2008.17053.x

Veech, J. A. (2013). A probabilistic model for analysing species co-occurrence:
probabilistic model. Glob. Ecol. Biogeogr. 22, 252–260. doi: 10.1111/j.1466-8238.2012.
00789.x

Veech, J. A. (2014). The pairwise approach to analysing species co-occurrence.
J. Biogeogr. 41, 1029–1035. doi: 10.1111/jbi.12318

Vila, J. C. C., Liu, Y.-Y., and Sanchez, A. (2020). Dissimilarity–overlap analysis of
replicate enrichment communities. ISME J. 14, 2505–2513. doi: 10.1038/s41396-020-
0702-7

Wang, M., Yan, C., Luo, A., Li, Y., Chesters, D., Qiao, H., et al. (2022). Phylogenetic
relatedness, functional traits, and spatial scale determine herbivore co-occurrence in a
subtropical forest. Ecol. Monogr. 92:e01492. doi: 10.1002/ecm.1492

Weinstein, S. B., Martínez-Mota, R., Stapleton, T. E., Klure, D. M., Greenhalgh,
R., Orr, T. J., et al. (2021). Microbiome stability and structure is governed by host
phylogeny over diet and geography in woodrats (Neotoma spp.). Proc. Natl. Acad. Sci.
U.S.A. 118:e2108787118. doi: 10.1073/pnas.2108787118

Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Mannerås-Holm, L., et al.
(2017). Metformin alters the gut microbiome of individuals with treatment-naive type
2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858.
doi: 10.1038/nm.4345

Wu, J., Zhao, Y., Wang, X., Kong, L., Johnston, L. J., Lu, L., et al. (2022). Dietary
nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit.
Rev. Food Sci. Nutr. 62, 783–797. doi: 10.1080/10408398.2020.1828813

Yan, C., Xie, Y., Li, X., Holyoak, M., and Zhang, Z. (2016). Species co-occurrence
and phylogenetic structure of terrestrial vertebrates at regional scales: phylogenetic
structure of terrestrial vertebrates. Glob. Ecol. Biogeogr. 25, 455–463. doi: 10.1111/geb.
12428

Yang, X., Gu, H., Zhao, Q., Zhu, Y., Teng, Y., Li, Y., et al. (2022). High seed diversity
and availability increase rodent community stability under human disturbance and
climate variation. Front. Plant Sci. 13:1068795. doi: 10.3389/fpls.2022.1068795

Yin, X., Lee, B., Zaragoza, J., and Marco, M. L. (2017). Dietary perturbations alter
the ecological significance of ingested Lactobacillus plantarum in the digestive tract.
Sci. Rep. 7:7267. doi: 10.1038/s41598-017-07428-w

Zaneveld, J. R., McMinds, R., and Vega Thurber, R. (2017). Stress and stability:
applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2:17121.
doi: 10.1038/nmicrobiol.2017.121

Zhang, X.-Y., Sukhchuluun, G., Bo, T.-B., Chi, Q.-S., Yang, J.-J., Chen, B., et al.
(2018). Huddling remodels gut microbiota to reduce energy requirements in a small
mammal species during cold exposure. Microbiome 6:103. doi: 10.1186/s40168-018-
0473-9

Zhang, Z., Pech, R., Davis, S., Shi, D., Wan, X., and Zhong, W. (2003). Extrinsic
and intrinsic factors determine the eruptive dynamics of Brandt’s voles Microtus
brandti in Inner Mongolia. China. Oikos 100, 299–310. doi: 10.1034/j.1600-0706.2003.
11810.x

Zhao, J., Lu, W., Huang, S., Le Maho, Y., Habold, C., and Zhang, Z. (2022).
Impacts of dietary protein and niacin deficiency on reproduction performance, body
growth, and gut microbiota of female hamsters (Tscherskia triton) and their offspring.
Microbiol. Spectr. 10:e0015722. doi: 10.1128/spectrum.00157-22

Zhu, H., Li, G., Liu, J., Xu, X., and Zhang, Z. (2022). Gut microbiota is
associated with the effect of photoperiod on seasonal breeding in male Brandt’s voles
(Lasiopodomys brandtii). Microbiome 10:194. doi: 10.1186/s40168-022-01381-1

Frontiers in Microbiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1337402
https://doi.org/10.3390/pathogens11091050
https://doi.org/10.7554/eLife.83152
https://doi.org/10.7717/peerj.2584
https://doi.org/10.2307/1935376
https://doi.org/10.1152/physrev.00045.2009
https://doi.org/10.1111/j.1466-822X.2005.00192.x
https://doi.org/10.1111/j.1466-822X.2005.00192.x
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1890/13-1445.1
https://doi.org/10.1093/molbev/msab120
https://doi.org/10.1093/molbev/msab120
https://doi.org/10.1111/j.1600-0706.2008.17053.x
https://doi.org/10.1111/j.1466-8238.2012.00789.x
https://doi.org/10.1111/j.1466-8238.2012.00789.x
https://doi.org/10.1111/jbi.12318
https://doi.org/10.1038/s41396-020-0702-7
https://doi.org/10.1038/s41396-020-0702-7
https://doi.org/10.1002/ecm.1492
https://doi.org/10.1073/pnas.2108787118
https://doi.org/10.1038/nm.4345
https://doi.org/10.1080/10408398.2020.1828813
https://doi.org/10.1111/geb.12428
https://doi.org/10.1111/geb.12428
https://doi.org/10.3389/fpls.2022.1068795
https://doi.org/10.1038/s41598-017-07428-w
https://doi.org/10.1038/nmicrobiol.2017.121
https://doi.org/10.1186/s40168-018-0473-9
https://doi.org/10.1186/s40168-018-0473-9
https://doi.org/10.1034/j.1600-0706.2003.11810.x
https://doi.org/10.1034/j.1600-0706.2003.11810.x
https://doi.org/10.1128/spectrum.00157-22
https://doi.org/10.1186/s40168-022-01381-1
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

	High diversity, close genetic relatedness, and favorable living conditions benefit species co-occurrence of gut microbiota in Brandt's vole
	Introduction
	Materials and methods
	Study subjects
	Experiments and samples
	Sequence data processing
	Species mapping and function prediction
	Genetic distance
	Co-occurrence index of ASVs
	Network analysis
	Regression analysis

	Results
	Community composition of the gut microbiota
	Co-occurrence network
	Factors associated with the co-occurrence index (Spearman correlation coefficient)

	Discussion
	Genetic distance and species co-occurrence
	Diversity and species co-occurrence
	Environmental factors and species co-occurrence
	Implications of this study

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


