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Metabolites: a converging node 
of host and microbe to explain 
meta-organism
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Meta-organisms encompassing the host and resident microbiota play a 
significant role in combatting diseases and responding to stress. Hence, there is 
growing traction to build a knowledge base about this ecosystem, particularly 
to characterize the bidirectional relationship between the host and microbiota. 
In this context, metabolomics has emerged as the major converging node of 
this entire ecosystem. Systematic comprehension of this resourceful omics 
component can elucidate the organism-specific response trajectory and the 
communication grid across the ecosystem embodying meta-organisms. 
Translating this knowledge into designing nutraceuticals and next-generation 
therapy are ongoing. Its major hindrance is a significant knowledge gap about the 
underlying mechanisms maintaining a delicate balance within this ecosystem. 
To bridge this knowledge gap, a holistic picture of the available information has 
been presented with a primary focus on the microbiota-metabolite relationship 
dynamics. The central theme of this article is the gut-brain axis and the 
participating microbial metabolites that impact cerebral functions.
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Introduction

The total number of resident microbiota, or the “collection of microorganisms living in or on 
the human body,” (Merriam-Webster, n.d.) marginally exceeds the number of human cells (Sender 
et al., 2016). A 70 kg adult male is estimated to have 39 trillion bacteria that live with 30 trillion 
human cells, which includes both nucleated and non-nucleated cells, e.g., red blood cells (Sender 
et al., 2016). The ratio between bacterial and host cells varies from 1.3 in adult males to 2.2 in adult 
females (Sender et al., 2016). The higher microbial cellular load in adult females is attributed to a 
unique and complex ecosystem of microbes colonized in the female genital tract (Punzon-Jimenez 
and Labarta, 2021) and vagina (Fu et al., 2020; Srinivasan et al., 2022), and this ecosystem alters 
with the menstruation cycle (Krog et al., 2022) and during pregnancy (Punzon-Jimenez and 
Labarta, 2021). Hence, it is essential to consider this diverse microbial ecosystem across the genders 
(Auriemma et al., 2021) to make any inference in this field of study.

The endogenous microbiota of the human body is mostly concentrated inside the intestine. 
The gut microbial community is predominantly enriched by bacteria (109–1011 cells/g) (Sender 
et al., 2016; Cani, 2018) and archaea (108–1010 cells/g) (Kim et al., 2020). Another major 
microbe that colonizes the intestinal lumen is the virus, an intracellular parasite, and the 
bacteriophage is a major viral species that controls the bacterial diversity in the host (Scanlan, 
2017). The bacteria outnumber viruses by approximately 10 to 1, as there are 109–1010 virus-
like particles (VLP) per gram of human feces (Shkoporov and Hill, 2019). While the human 
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genome contains approximately 20,000 genes, the hologenome, a 
combination of the host and resident microbes, contains over 33 
million genes (Lloyd-Price et al., 2016). Ninety-three percent of these 
genes belong to bacteria (Sender et al., 2016), while viruses claim the 
second largest share, e.g., 5.8% of total DNA (Arumugam et al., 2011). 
Together, this gut microbiota fosters a balanced ecosystem with its 
host, and this interactive milieu is the core feature of the meta-
organism (Theis et al., 2016) or holobiont concept (Simon et al., 2019). 
In theory, the meta-organism or holobiont concept is about studying 
the holistic host-microbiota interactive sphere that includes biology, 
ecology, and evolution of both host and resident-microbiota. For the 
present purpose, we will focus on the biology of meta-organisms.

The functional microbiome (Lam et al., 2015; Berg et al., 2020) is 
constituted by different omics layers linked to the microbe, namely 
metagenomics, metatranscriptomics, metaproteomics, and meta-
metabolomics, often called metabolomics (Zhang et al., 2019; Zou 
et al., 2019; Salvato et al., 2021). One of the significant operations of a 
functional microbiome is to maintain a robust crosstalk between the 
resident microbe and the host’s peripheral tissues, such as the heart, 
lungs, kidney, and brain. The gut-brain axis, possibly the most studied 
subject in this context, embodies the bidirectional communication 
between the host’s brain and gut commensals that control several 
brain functions, such as neuroinflammation, neurodegeneration, 
neurotoxicity, and behavioral, emotional, and memory constructs 
(Mayer et al., 2015; Cryan et al., 2020).

Eubiosis, or the balanced abundance profile of resident microbiota 
(Iebba et al., 2016; Al-Rashidi, 2022) fosters a symbiotic relationship 
with the host when the resources available to the host become 
systematically shared with its resident microbiota. Eubiotic microbial 
composition controls inflammation and maintains energy homeostasis 
and a robust gut-brain axis (Lloyd-Price et al., 2016). In contrast, 
stressful conditions, such as changes in lifestyle or challenges from 
foreign elements, elevate the host’s demand for the resources, 
eventually forcing the host and microbiota to compete for resources 
from a shared pool. Consequently, as the microbial diversity alters, the 
adaptive and facultative microbiota proliferate, and the overall 
ecosystem shifts into dysbiosis that could disrupt the host-microbial 
communication, including the gut-brain axis (Chen and Devaraj, 
2018; Dabke et al., 2019; Louis-Jean and Martirosyan, 2019; Cryan 
et al., 2020; Xu et al., 2020).

Metabolites are the key information hub of meta-organisms since 
the host-microbiota communication grid, including the gut-brain 
axis, is built upon the exchange of metabolites (Ramautar et al., 2013; 
Wishart, 2019; Wachsmuth et al., 2022). Being the intermediate and 
derivatives of the biological networks in host cells and microorganisms 
alike, metabolites appear to be the converging node of the ecosystem 
(Krautkramer et al., 2021). Illustrating this concept, Figure 1A depicts 
metabolites as the major node of the crosstalk between the host and 
its resident microbiota. Figure 1B shows the sizes of various metabolite 
superfamilies; these metabolite superfamilies are linked to the host, 
environment, resident microbiome, and their interphases. Microbial 
metabolites are the smallest in number (Krautkramer et al., 2021).

Rather than curating citations via preset exclusion-inclusion 
criteria, the present review article selected citations driven by its 
hypothesis and crafted the review in the following order. The first 
chapter briefly describes metabolomics, focusing on the available 
detection tools and pertinent databases to illuminate the metabolites’ 
association with other omics components. The second chapter 

describes the resident microbiome, its diversity profile, and how this 
ecosystem controls the host’s health. The third chapter focuses on the 
microbial metabolites, e.g., those synthesized by commensals 
colonized in or on the host. The fourth chapter discusses the gut-brain 
axis; the potential roles of metabolites and microbiome in supporting 
this communication framework, and the pathogenesis of the diseases 
linked to the central nervous system (CNS) are discussed in adjunct. 
The concluding section highlights the knowledge gap in 
comprehending meta-organisms and suggests future applications in 
healthcare and beyond. Significant terms used in this review article 
are defined in Box 1.

Metabolites: current perspective

Metabolites are the substrate, intermediate, and end product of 
the biological activities at the cells, tissues, or organ levels (Ramautar 
et al., 2013; Wishart, 2019). Metabolites are the typical downstream 
products of the host’s genomic, epigenomic, and proteomic activities. 
Present capabilities can detect more than 200,000 endogenous 
metabolites linked to ~1,900 metabolic enzymes encoded in the 
human genome (Kanehisa and Goto, 2000). In comparison, microbes 
produce approximately 16,000 metabolites, of which nearly 1,800 are 
exclusively produced by the microbe community, and the rest are 
produced by both humans and microbes. In addition, many 
metabolites are linked to the environment. For instance, ~32,000, 
~900, and ~160 metabolites are associated with diet, toxins, and drugs, 
respectively (Metabolite Statistics, n.d.). Approximately 1 to 3 million 
xenobiotic metabolites or synthetic products represent drugs, 
cosmetics, food supplements, pollutants, etc. (Idle and Gonzalez, 
2007; Johnson et al., 2012), and many overlap with those linked to the 
environment. A subset of these metabolites is classified as toxic 
substances and foreign stimulants to meta-organisms (Gonzalez-
Sanchez and DeNicola, 2021).

Emerging knowledge has associated the metabolites’ roles with 
many biological functions, such as disease pathogenesis (Mamas et al., 
2011), immune modulations (Levy et  al., 2016), and trans-organ 
communications (Levy et  al., 2016; Frezza, 2017). Indeed, the 
alterations of biochemical activities due to physiological and 
psychological stress, exposure to external stimulants, or shifts in diet 
or lifestyle changes alter the metabolite expressions (Liu et al., 2021) 
and ultimately influence the overall health of the meta-organism 
(Milovic et al., 2000; Amaral et al., 2009). Therefore, metabolomics 
holds time-sensitive information on the molecular activities that 
co-occur across multiple organisms comprising the host, its resident 
microbiota, and the overarching environment.

The technical capability of detecting the metabolite has reached a 
high standard of resolution and robustness in recent years due to the 
development of cutting-edge tools and highly enriched databases. 
Table  1 lists the leading tools available to detect and characterize 
metabolites. Mass spectroscopy-based tools are most popular due to 
their high throughput and highly sensitive detection capabilities 
(Dührkop et al., 2021). Recent technological developments in the 
miniaturization of spectrophotometers have revolutionized their 
applicability since these tools have become increasingly portable, 
affordable, and easy to operate in austere conditions (Alseekh et al., 
2021). There are supplementary tools available that can further enrich 
our knowledge of metabolites. For instance, the nuclear magnetic 
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resonance (NMR) spectroscopy can divulge the metabolites’ structures 
(Wishart et  al., 2022). The capability of Raman spectroscopy in 
detecting metabolites with spatial resolution has recently been adapted 
to study single-cell metabolomics (Berry and Loy, 2018). A low 
throughput option, such as histochemistry, presents a unique scope to 
detect the spatial enrichment of targeted metabolites. The spatial 
information could be  vital in mapping metabolites to the central 
nervous system (CNS). It can illuminate the differential metabolomic 
expressions across the blood-brain barrier (BBB). Speculatively, this 
knowledge can help to understand the roles of metabolites in the 
gut-brain axis (Mayer et al., 2015).

Development of pertinent databases remains an ongoing effort 
since the technological capabilities in identifying the metabolites 
remain a limiting step for constructing the databases. Table 2 lists the 

leading databases that can help in characterizing the metabolites in 
three ways. For instance, these databases can (1) find the association 
of the metabolites to the host’s bio functions, (2) find the association 
of the metabolites to microbial functions, and (3) facilitate systems 
integration to link the host and microbiota via metabolite-enriched 
bio networks and pathways. Of these three types of databases, the 
host-specific database is possibly at its most mature phase. Part of the 
reason is that we  have yet to fully comprehend the taxonomic 
determinants of the entire microbial community (Zhu et al., 2019).

There are mounting efforts to comprehend the biological functions 
of these metabolites and integrate them across various kingdoms 
(mammals, bacteria, etc.) and viruses based on their functional and 
biological relationships. These relationships are typically deduced either 
by statistical methods (e.g., correlative or enrichment analysis of the 

FIGURE 1

(A) Metabolite as a converging node of multiple kingdoms. This illustration depicts that the host (e.g., human in this case) produces a metabolite 
cluster. Likewise, the resident microbiota generates another set of metabolite clusters. Characterization of the functional interaction of these two 
clusters can inform the underlying mechanisms that control the meta-organism. (B) A comparative number of the metabolites generated from 
humans, the environment, and those microorganisms that colonize in or on humans. The circles are drawn in scale to give an eye estimation of the 
differences in their abundances.
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co-expressed metabolites) or by garnering the biochemical information 
(Amara et  al., 2022) via curating the available literature that helps 
linking the metabolites to certain diseases (e.g., carcinoma) or biological 
networks (e.g., HPA axis abnormalities) based on a priori information. 
Subsequently, this information converges to build ab initio metabolite 
network topology (Naake and Fernie, 2019). For instance, the IPA and 
KEGG pipeline listed in Table 2 statistically integrate a priori knowledge 
to infer a multi-omics associative matrix (Subramanian et al., 2020) with 
metabolomics as one of the network layers. Next, this network topology 
could be mapped across the meta-organism to gain insight. Table 2 lists 
MIMOSA (Noecker et  al., 2016), BioTransformer, and gutMGene 
(Cheng et al., 2022) databases that can inform about meta-organisms 
by integrating metabolomics across different kingdoms and organisms. 

This knowledge can lead us to design therapeutic strategies (Shi 
et al., 2021).

To summarize this chapter, metabolomics is a key sub-discipline of 
the pan-omics family (Brestoff and Artis, 2015; Bae et  al., 2019; 
Krautkramer et  al., 2021; Spivak et  al., 2022), and microbial 
metabolomics is one of its impactful, though small in size components 
(Krautkramer et al., 2021). Ongoing efforts aim to link the metabolites 
to their upstream and downstream regulators that could be potential 
therapeutic targets (Olivotto et al., 1984; Lee and Finkel, 2013). This 
information-gathering process needs customization since the expression 
levels of the metabolites are susceptible to the host’s disease pathology, 
diet, geographical location, and circadian rhythm (Jones et al., 2021). To 
elaborate, the abundance of trimethylamine-oxide (TMAO), a 

TABLE 1 Comparative description of the instruments/tools to measure metabolites.

Instrument/Tool Throughput Sensitivity Specificity Unique features/limitations

Instruments using mass 

spectrometry (MS), such as 

liquid chromatography (LC)-

MS, gas chromatography 

(GC)-MS, MALDI, etc.

High; however, low 

throughput targeted 

assays could 

be accomplished

High Depends on the tool selection. For instance, 

the LC-MS tool is highly proficient in 

measuring volatile compounds, whereas 

GC-MS tools are excellent platforms for 

detecting polar/non-polar metabolites

Sample identification depends on the 

maturity of the database, which has been 

evolving continuously. Also, this 

technique cannot provide the structural 

information of the molecule

Nuclear magnetic resonance 

(NMR) spectroscopy

High, but lower 

than MS-based tools

High, but lower than 

MS-based tools

Highly specific, possibly more than MS-

based tools

Uniquely capable of detecting the 

structure of metabolite

Raman spectroscopy Moderate Moderate Highly specific Uniquely capable of detecting with spatial 

resolution and structural identification 

without destroying the samples so that the 

samples could be repurposed

Box 1 Definitions of the key terms used in this article. The “*” items are those whose definitions are sometimes contested; see the main text for 
details.

Term Definition

Resident microbiota Group of microorganisms, including bacteria, archaea, viruses, fungi, and protozoa that colonize in or on the host, such as human

Resident microbiome Genome of the resident microbiota

Functional 

metagenome

Biological functions accomplished by the microbiota

Metabolites Substrate, derivates, intermediatory agents, and end products of the bio functions

Metabolomics Sub discipline of multi-omics that particularly deals with metabolites

Metabolite networks Cluster of nodes that are connected via edges. Here, the nodes are represented by the metabolites, co-regulating diseases, and biological signals, 

and the edges are represented by functional and/or structural connections between the nodes

Microbial 

metabolites

The metabolites that are generated specifically from the biological actions undertaken by or in the microbiota

Hologenome Combined assembly of gene and genome of resident microbiota and the host

Holobiont A concept about studying the host-microbiota interactive commune that includes their combined biology, ecology, and evolution

Meta-organism Bidirectional association encompassing the host and resident microbiota

Homeostasis A balanced environment in an ecosystem that includes the host, microorganisms, and environment

Eubiosis Balanced microbial ecosystem

Dysbiosis Disbalanced condition of the microbial ecosystem, which is typically caused by disease onset, lifestyle change, or exposure to foreign agents/

stressful conditions

Alpha diversity The shift in the abundance profile of the microbial populations within a particular community

Beta diversity The shift in the abundance profile of the microbial populations across the communities
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liver-oxidized product of gut bacteria-derived TMA, is significantly 
over-expressed not only by certain disease types, such as type-2 diabetes 
and hepatic/renal diseases but also among the population who 
consumes fish-enriched diet (Subramaniam and Fletcher, 2018). 
Further, the sensitivity of metabolite profile to geographic location is 
underlined by a cross-continent diversification of breast milk-induced 
metabolite and microbiota (Gómez-Gallego et  al., 2018). The 
compositions and characteristics of fecal microbiota and corresponding 
metabolites are highly susceptible to many indigenous and exogenous 
factors. Hence, the accuracy and reproducibility of detecting fecal 

metabolites critically depend on the study design and sampling protocol 
(Weinstock, 2012; Scherz et al., 2022). Potentially optimized protocols 
for fecal sample collection are discussed here (Mathay et  al., 2015; 
Vogtmann et al., 2017; Jones et al., 2021). It is possibly essential to 
longitudinally collect fecal samples (Jones et al., 2021; Zheng et al., 2022) 
since it is unlikely that a single sampling of fecal materials can accurately 
represent the dynamic nature of microbiota.

All these factors should be considered to understand the true 
impacts of metabolites. In conclusion, systems knowledge integration 
could be  the key to elucidating the relationship dynamics among 

TABLE 2 Available computation tools for developing predictive functional models using metabolomics and functional metagenomics.

Name Description

KEGG Pathway 

Database

This partially open-access database can generate a multi-omics functional database. KEGG COMPOUND is focused on the functional analysis of 

mammalian metabolites and other small molecules (Kanehisa et al., 2017).

Taking advantage of KEGG’s automatic annotation servers for metagenome sequences, KEGG pathways construction can inform the functional 

characteristics of metagenome (Kanehisa et al., 2016).

Website: https://www.genome.jp/kegg/pathway.html

Ingenuity 

Pathway 

Analysis (IPA)

A commercial tool for multi-omics functional analysis. A specific sub-tool is focused on functional analysis of mammalian metabolites and other small 

molecules.

Website: https://analysis.ingenuity.com

IMPaLA An open-access enrichment analysis tool focused on functional analysis of mammalian metabolites. This tool can integrate gene/protein candidates with 

metabolites.

Website: http://impala.molgen.mpg.de

MIMOSA An open access system-level multi-omics integration tool that can deliver functional analysis of metabolites from mammalian and bacterial kingdom 

(Noecker et al., 2016).

Website: http://github.com/borenstein-lab/MIMOSA

BioTransformer An open-access systems integrative platform focused on functional analysis of metabolites from mammalian and bacterial kingdoms.

Website: https://biotransformer.ca

gutMGene A curated database that can perform functional integration of host and bacteria based on the metabolite and small molecular information.

Website: http://bio-annotation.cn/gutmgene

MelonnPan A model-based predictive platform for functional analysis of bacterial metabolites.

Website: https://huttenhower.sph.harvard.edu/melonnpan/

VirHostNet A model-based characterization of the functional network to inform the virus-virus interaction and virus-host interactions (Guirimand et al., 2015).

Website: http://virhostnet.prabi.fr

HUMAnN3 An open-source analytical pipeline for functional analysis of mammalian and bacterial communities. As per the website, the functional analysis tends to 

answer the following question: “What are the microbes in my community of interest doing (or capable of doing)?”

Website: https://github.com/biobakery/humann

MetaCyc A curated database of metabolic pathways that take place across multiple kingdoms. At present, this database documents metabolic networks associated 

with bacteria, archaea, and several eukarya, such as fungi, etc. (Caspi et al., 2020).

Website: https://metacyc.org/

Metage2Metabo 

(M2M)

A graph-based exploratory pipeline of annotated genome and metabolite to deliver functional analysis.

Website: https://metage2metabo.readthedocs.io/en/latest/

MetExplore An archive of curated and annotated metabolic networks in a collaborative environment (Cottret et al., 2018).

Website: https://metexplore.toulouse.inra.fr/metexplore2/

AGORA A correlative assembly tool to form the gut organisms through reconstruction and analysis; furthermore, a host-microbiome interactive network could 

be mapped by integrating the data with the Recon package (Magnúsdóttir et al., 2017).

Website: https://github.com/opencobra/cobratoolbox

MaAsLin2 Meta-integration approach to data-driven modeling of microbial profile encompassing taxonomic, functional, or metabolomic features to generate 

metagenomic functional profile (Mallick et al., 2021)

Website: https://github.com/biobakery/maaslin2_benchmark

This list excludes those that document only the omics/taxonomic information, such as locations of structural and functional regions, gene annotations, phylogenetic classification, and 
annotations, without presenting a tool to connect them to build functional networks to explain biomechanisms. A discussion about the open-source modules focused on similar network-
building objectives could be consulted elsewhere.
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different kingdoms, ecosystems, and the longitudinal profile of 
functional microbiota. The following chapters illuminate how 
metabolites play key roles in determining functional metagenomics—
the bidirectional relationship between the microbiota and the host.

Microbial ecosystem: diversity profile 
and disease pathogenesis

The hologenome encompasses nearly 1,600 times more microbial 
genes than the host genome (Lloyd-Price et al., 2016). This estimation 
alone can underscore the inherent complexity of meta-organism, 
which thrives on a symbiotic bidirectional relationship between host 
and resident microbiota. This host-microbiota crosstalk is shaped by 
and contributed to the host and its resident microbe’s coevolution, 
synchronized interactions with foreign elements, commensalistic 
association, and ecological or mutualistic collaboration (Ogunrinola 
et  al., 2020); and its cumulative impacts are manifested in the 
microbial diversity profile (Manor et  al., 2020). Therefore, it is 
contemplated that the quantitation of microorganismal diversity could 
throw light on disease etiology.

The estimation of microbial diversity primarily depends on the 
following two factors: richness (measures the number of independent 
species) and evenness (quantifies the relative abundances of different 
species). Alpha diversity measures the evenness and richness of 
microbial profiles within a community (Baczkowski et al., 1998). The 
routines, namely the Shannon diversity, Simpson diversity, and Chao 
1 quantify different features of alpha diversity (GitHub, n.d.). Shannon 
diversity estimates the effective number of species colonized in a 
particular community, hence quantifying both evenness and richness 
(with a weight to evenness) of the microbial profile. Chao 1 estimates 
the number of species or the total richness of a particular community. 
Simpson diversity is primarily a dominance index, as this estimation 
gives more weight to the common or dominant species. On the other 
hand, beta diversity is the characteristic of the trans-community 
microbial profile (Baczkowski et al., 1998). The unweighted Unifrac 
quantifies the presence or absence of different taxa across the 
communities, whereas the weighted Unifrac considers the abundance 
of different taxa. The Bray–Curtis index estimates the abundance-
based dissimilarity across the communities, while the Jaccard index 
measures the occurrence (presence vs. absence)-based diversity across 
the communities (GitHub, n.d.).

A shift from a balanced ecosystem or the dysbiotic ecosystem 
could be attributed to diet and lifestyle alterations (Ghosh et al., 2013), 
age (Mariat et al., 2009), obesity (Magne et al., 2020), circadian rhythm 
(Thaiss et al., 2014, 2015), and disease pathologies, including cancer 
(Sheflin et  al., 2014; Biragyn and Ferrucci, 2018), cardiovascular 
disorder (Lau et al., 2017), immune dysfunction (de Oliveira et al., 
2021), and several psychological illnesses (Sarkar et al., 2018; Parker 
et al., 2020). For instance, a reduced alpha diversity of gut microbiota 
was found in young adults (mean age: ~13 years) with attention-deficit 
hyperactivity disorder (ADHD). The measurement was estimated by 
Shannon diversity and Chao 1 index, which likely indicated a 
diminished richness of gut microbe linked to ADHD (Prehn-
Kristensen et  al., 2018). A contrasting picture emerged from an 
independent younger (mean age ~8 years) cohort, where Shannon 
diversity and Chao 1 index of subjects with ADHD emerged higher 
than that of the healthy baseline (Wang L. J. et al., 2020). These studies 

highlighted how multiple factors concurrently influence the 
microbial diversity.

Often, a combinatory analysis of alpha and beta diversity metrics 
is used to characterize the holistic changes in the microbial ecosystem. 
For instance, the alpha diversity in the fecal microbiota of cervical 
cancer patients showed no differences. Still, the beta diversity 
measured by the weighted Unifrac and Bray–Curtis algorithm 
revealed a significant difference that underscored a shift in trans-
community microbial abundance, but not within a community (Wang 
Z. et al., 2019). Similarly, physiological stress caused significant alpha 
and beta diversity in gut microbes among young men. The Shannon 
dissimilarity and Chao 1 index suggested a shift in microbial richness 
within a community, while the Bray–Curtis analysis suggested a trans-
community shift (Karl et al., 2017).

With the advancement of high-resolution detection technologies, 
we  can now probe individual community members of the gut 
commensals. The abundance profile of a single microbe or its 
associative abundance profile with neighboring commensal(s) can 
deliver highly precise information. For instance, the shifting ratio of 
Bacteroidetes and Firmicutes has been linked to age (Mariat et al., 
2009), obesity (Magne et al., 2020), and so forth. Linking the microbial 
abundance profile with circadian rhythm, the relative abundance of 
Lactobacillus was reported to escalate during the resting phase than 
during the active phase (Thaiss et al., 2014).

There is a growing appreciation for using the microbial diversity 
profile to develop the next generation intervention strategy. The 
torchbearer of the success story is the fecal microbiota transplantation 
(FMT) method that stalled tumor growth (Riquelme et al., 2019), 
ameliorated cardiovascular illness (Hu et al., 2019), and eliminated 
pathogenic insults (Hui et al., 2019) by maneuvering the microbial 
diversity. However, the potential of FMT as a treatment option is 
possibly limited due to the concerns about this intervention method’s 
traceability, safety, and standardization process (Osman et al., 2022; 
Vaughn et  al., 2023). Driven by the hypothesis that the hypoxic 
condition inside the tumor is favorable for anaerobic microorganisms, 
systematic colonization of anaerobic bacteria successfully arrested the 
growth and metastasis of tumor cells (Drozdz et al., 2020). Further, 
the knowledge of dysbiosis helped to customize the diet supplements 
for immunotherapy to treat carcinoma (Routy et al., 2018).

Systematic manipulation of microbial colonies has emerged as a 
potential therapeutic option to combat several ailments; nevertheless, 
a comprehensive understanding of its molecular underpinnings is 
warranted to make this intervention process robust and effective. In 
this context, the next chapter highlights the microbial metabolites, 
which could play a critical role in designing a therapeutic strategy 
based on microbes. Once integrated with host metabolites, this 
knowledge could illuminate the biological underpinnings of their 
symbiotic relationship and lead to novel therapeutic options.

Microbial metabolites and their 
spectrum of bio functions

In a homeostatic condition, the expression level of microbial 
metabolites is controlled by the host’s genetic predisposition, age 
(Connell et  al., 2022), and other environmental factors, such as 
geographical location, food habits, and various lifestyle traits (Gupta 
et al., 2020; Krautkramer et al., 2021). Interestingly, there are less than 
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two thousand microbial-specific metabolites in human compared to 
more than two hundred thousand host metabolites. However, the size 
of the microbial genome far outnumbers the human genome (Lloyd-
Price et  al., 2016; Metabolite Statistics, n.d.). A small number of 
microbial metabolites is potentially attributed to a rather streamlined 
metabolic function performed by the microorganisms. Ahmed et al. 
(2022) and Krautkramer et  al. (2021) extensively reviewed these 
microbial-derived metabolites and reported how their biological 
functions reach various peripheral tissues to ensure the host’s health 
and fitness.

Shifting microbial diversity from its eubiotic state is effectively 
mirrored by the microbial metabolite profile. Therefore, multiple 
ongoing efforts aim to manipulate the microbial metabolites to 
improve host’s health; however, these undertakings meet a significant 
challenge due to the lack of pertinent knowledge (Entwistle et al., 
2019; Brunet et al., 2020). After screening several available literature 
(Yano et al., 2015; Rath et al., 2017; Fung et al., 2019; Wang S. P. et al., 
2020; Krautkramer et al., 2021; Mou et al., 2021; Otaru et al., 2021; 
Ahmed et  al., 2022), a bacteria-metabolite relationship network 
(Figure 2) was developed. This network informs the biological sites 
(e.g., bacteria) where a particular family of metabolites is synthesized. 
It is important to note that these networks are primarily built upon a 
priori knowledge; hence, the validity of such networks depends on 
continuous cross-checking of the literature and experimental feedback 
(Amara et al., 2022). Secondly, similar associative networks linking 
metabolites with other organisms, such as viruses and archaea, are 

essential to fully characterize the microbial metabolites’ functional 
outreach, and this aspect is yet underdeveloped. Table 2 presents the 
databases that aim to bridge this knowledge gap, and Figure 2 maps 
these microbial metabolites to their bacterial source.

Secondary bile acid (SBA) and short-chain fatty acids (SCFAs) are 
two major microbial metabolites in human. High-fat diets trigger the 
biosynthesis of SBA in the gut lumen (Ridlon et al., 2016; Zeng et al., 
2019). Deoxycholic acid and lithocholic acid are two important SBAs 
produced by the dehydroxylation of primary bile acids (Ridlon et al., 
2016; Zeng et al., 2019). In addition, gut microbiota epimerizes and 
oxidizes the primary and secondary bile acids to produce SBAs of iso-, 
alo-, oxo- and keto- families, which are comparatively low expressed 
entities, and their functional attributes are yet to be  fully 
comprehended (Wahlstrom et al., 2016).

SCFAs are primarily comprised of acetate, propionate, and 
butyrate in an approximate molar ratio of 60:20:20, respectively, in a 
healthy host. Additional low-abundant SCFAs include fumarate, 
succinate, lactate, and pyruvate, which are used for cross-feeding 
among the different microbes (Macfarlane and Macfarlane, 2003; Silva 
et al., 2020). Anaerobic fermentation of non-digestible carbohydrates 
is the primary course of SCFAs production, as the pentose phosphate 
pathway and the Embden–Meyerhof–Parnas Glycolytic pathway 
catabolize five-carbon (e.g., xylene, pectins) and six-carbon (e.g., 
fructose, sucrose, starch, cellulose, etc.) substrates, respectively, to 
produce SCFA (Krautkramer et  al., 2021). Briefly, the common 
end-product of the pentose phosphate pathway and Glycolytic 

FIGURE 2

Bacteria-metabolite relationship network. The oval and square-shaped nodes represent the resident bacterial genera or species and the metabolite 
families, respectively. The solid edges connect the bacterial species or genera to their secretary metabolites. A set of broken edges that converge to 
serotonin connect it to those bacterial species that demonstrated correlative shifts in abundance, although there is no direct evidence of serotonin 
production from these bacteria (Yano et al., 2015; Fung et al., 2019). A double solid line connected GABA to Bacteroidetes to suggest that 
Bacteroidetes encodes an enzyme to produce GABA (Otaru et al., 2021). This network system was constructed after consulting a host of published 
literature (Pokusaeva et al., 2017; Rath et al., 2017; Wang et al., 2020; Krautkramer et al., 2021; Mou et al., 2021; Ahmed et al., 2022). The yellow, green, 
and blue boxes represent the metabolites linked to small chain fatty acids (SCFA), amino acids and their derivates, and others, respectively. GABA, 
γ-aminobutyric acid; TMA, trimethyl amine; Imp, imidazole propionate; PAGln, phenylacetylglutamine; PAGly, phenylacetylglycine.
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pathway is phosphoenolpyruvate, which converts to pyruvate by 
endothermic cyclic conversion between NADPH and NAD+. Pyruvate 
is essentially the upstream substrate of all major SCFAs. For instance, 
the acetate and butyrate are produced from pyruvate via acetyl Co-A 
intermediate, with carbon dioxide and ethanol being the major 
byproducts, and propionate is generated via the succinate pathway 
utilizing carbon dioxide as the major co-factor (Fernandez-Veledo 
and Vendrell, 2019). Lactate and formate are additional downstream 
products from pyruvate metabolism. The production of these 
metabolites in microbes is typically controlled by access to dietary 
resources and stress factors. For instance, acetate and lactate are 
typically produced when carbohydrates are in excess; on the other 
hand, limited energy to the microbial community generally escalates 
the synthesis of propionate (Macfarlane and Macfarlane, 2003).

The scarcity of carbohydrates and/or high colonic pH induces the 
generation of SCFAs via protein fermentation (Neis et al., 2015). In 
addition to SCFAs, the protein fermentation in microbes produces 
folates, phenols, and indoles. Catabolism of branched-chain amino 
acids, such as leucine, isoleucine, and valine, produce isobutyrate and 
isovalerate, which are usually accumulated in low concentrations 
(Macfarlane and Macfarlane, 2003; Silva et al., 2020). Kynurenines and 
serotonin are the major products of the catabolism of tryptophan, an 
essential amino acid (Ostapiuk and Urbanska, 2022). Nearly 90% of 
the serotonin in the human body is produced by the colon, particularly 
the enterochromaffin cells on colonic epithelia. Currently, there is no 
direct evidence that microbiota produces serotonin, although such a 
possibility cannot be overruled since the microbiome encodes some 
contigs that typically contribute to the serotonergic network (Yano 
et al., 2015; Fung et al., 2019). In addition, a reduced concentration of 
serotonin was reported in concurrence with an increased abundance 
of tryptophan in germ-free mice, which indirectly suggests a microbial 
influence on serotonin production (Strasser et al., 2016). Another 
essential amino acid, namely histidine, undergoes decarboxylation in 
various bacterial species to produce histamine, and this recent 
discovery could have great potential in the field of allergic and 
immune therapy (Mou et al., 2021). Non-essential amino acids, such 
as tyrosine and L-dopa, and SCFAs, particularly butyrate, are 
metabolized in various bacterial species to produce dopamine, a key 
modulator of the gut-brain axis (Villageliu and Lyte, 2018).

Microbial metabolites could have beneficial or toxic roles 
depending on the metabolites’ expression levels and the target organ. 
For instance, low expression of SBAs (5–50 μM) promotes proliferation 
and invasiveness of colon cancer cells. Still, at higher expression levels 
(>50 μM), SBAs inhibit the colonic cell cycle and activate cancer cell 
apoptosis (Milovic et al., 2000; Amaral et al., 2009). Kynurenic acid 
operates differentially in different organs; in the CNS, kynurenic acid 
acts as a neuroprotective agent but inhibits insulin synthesis in the 
liver and kidney (Ostapiuk and Urbanska, 2022). SCFAs have various 
functions in bioenergy production, maintaining gut integrity, and 
promoting anti-inflammation via reactive oxygen species production 
(Tan et al., 2014). On the other hand, TMAO, a phosphatidylcholine 
derivative, is linked to oxidative stress, hyperlipidemia, and 
pro-inflammation (Agus et al., 2021).

In this context, there is growing traction about how gut microbiota 
communicate with peripheral organs. For instance, the dysbiosis of 
gut commensal has been linked to pulmonary health and asthma 
(Hufnagl et al., 2020), liver immunology (Trebicka et al., 2021), kidney 
failure (Zaky et  al., 2021), and multiple cancer pathogenesis 

(Alexander and Turnbaugh, 2020; Sánchez-Alcoholado et al., 2020; 
Zheng et al., 2020; Kandalai et al., 2023; Xia et al., 2023). Indeed, an in 
vivo model suggested how microbial metabolites are associated with 
circadian rhythm and its disruption (Tahara et al., 2018). The roles of 
microbial metabolites in bioenergy production, somatic inflammation 
(Alexander and Turnbaugh, 2020), and physiological performances 
(Borrego-Ruiz and Borrego, 2024) have been studied extensively. 
Because psychological issues have become a prevalent health concern 
in the modern world, the study on the gut-brain axis is at the epicenter 
of the field of host-microbiome study. Figure  3 illustrates the 
functional association of these microbial metabolites to various brain 
diseases and co-morbidities, and the next chapter is focused on the gut 
microbiome-metabolite-brain axis.

Gut microbiota-metabolite-brain axis

The gut microbiota-brain axis is a feedback-controlled circuit that 
recruits metabolites as the primary messenger between the gut and 
brain (Mayer et al., 2015; Ahmed et al., 2022). Due to the limited 
access to the human brain, the concept of the gut-brain axis has thus 
far been primarily built upon animal models. Mounting evidence 
shows that the gut microbiota-metabolite-brain axis controls the 
neurophysiology and signaling networks and regulates a spectrum of 
behavioral constructs. The association between the resident 
commensals and cerebral health was suggested by interrogating a 
colony of germ-free mice that demonstrated inhibited expression of 
tight junction proteins on BBB coupled with escalated BBB 
permeability (Braniste et  al., 2014; Parker et  al., 2020). Similarly, 
longitudinal antibiotic treatment reduced the abundance of gut 
commensals in mice, and this cohort demonstrated a cognitive 
deficiency and memory loss, as well as diminished neurogenesis in the 
hippocampus, the primary brain region to process memory (Fröhlich 
et  al., 2016). Increased activity of a major component of the 
sympathetic nervous system in germ-free mice, namely the 
hypothalamic-pituitary-adrenal (HPA) axis, potentially orchestrated 
elevated Bdnf gene expressions (Manca et al., 2020) and accumulation 
of corticosterone in the bloodstream (Neufeld et al., 2011). Linking 
the gut commensal to social skill development, Desbonnet et  al. 
(2014) reported that the germ-free mice showed increased social 
avoidance and self-grooming along with decreased social engagement. 
This negative outcome was reversed by administrating probiotic diets 
that helped growing the commensals in the host (Desbonnet et al., 
2014; Fröhlich et al., 2016).

Differential microbial signatures, such as a shift in the diversity of 
the entire ecosystem (Uronis et al., 2011; Prehn-Kristensen et al., 2018; 
Tran et al., 2019; Wang L. J. et al., 2020) or a change in the comparative 
abundance of selected taxonomic groups (e.g., Firmicutes and 
Bacteroidetes ratio) (Mariat et al., 2009; Magne et al., 2020) are linked 
to various psychological deficiencies and co-morbidities. To elaborate, 
traumatic brain injury and post-traumatic stress disorder—the two 
most prevalent psychological disorders of modern warfare—are 
linked to fecal microbiota. For instance, a social stress mouse model 
stimulating PTSD-like traits caused a time-independent shift in the 
overall abundance profile of gut bacteria alongside a time-resolved 
alteration of the Firmicutes and Bacteroidetes ratio (Gautam et al., 
2018; Hoke et al., 2022). Concurrently, these stressed mice displayed 
behavioral deficiencies, metabolic dysfunction, neurotoxicity (Muhie 
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et  al., 2017), and a shift in the neuronal morphology in the 
hippocampus, amygdala, and prefrontal cortex (Anilkumar et  al., 
2022). In fecal samples, the total abundance of bacterial phyla, namely 
Actinobacteria, Lentisphaerae, and Verrucomicrobia, was directly 
associated with the increased PTSD index (Hemmings et al., 2017). 
The proliferation of obligate anaerobic bacteria such as Deferribacteres 
in fecal samples of traumatic brain injury (TBI) patients potentially 
highlights that TBI triggers a hypoxic condition in the colonic lumen 
due to endogenous energy deprivation (Nicholson et al., 2019; Angoa-
Pérez et al., 2020).

Gut-brain communication is facilitated by transferring 
neurotransmitters and neuromodulators via the bloodstream or 
lymphatic systems and synaptic transmission via the vagus nerve 
(VN). Most bloodborne microbial metabolites cross the BBB via 
carrier proteins and receptors expressed on BBB or by compromising 
BBB integrity (Ahmed et al., 2022). VN, a significant component of 
the parasympathetic nervous system, constitutes a parallel 
communication channel between the gut microbiota and the nervous 
system, encompassing the CNS and enteric nervous system (ENS) 
(Parker et  al., 2020). In vivo studies observed that the microbial 
population was not directly connected to the VN because the nerve 
fibers do not penetrate the gut epithelia. Instead, the changes in the 
microbial ecosystem and corresponding shifts in metabolite levels 
perturb the neuroendocrine and endocrine signals of the host 
gastrointestinal tract; downstream signal travels to the brain via a 
series of receptors on the vagal afferents and neuropod cell-mediated 
synaptic transmission (Parker et al., 2020; Ahmed et al., 2022).

The intestinal epithelia play an integral role in the communication 
between brain and gut microbiota. Perturbed by the stress and 
environmental shifts, the neurons, immune cells, and mucosal cells of 

the intestinal epithelia release catecholamines, serotonin, dynorphin, 
and cytokines into the gut lumen. Playing a critical role in this process, 
the enterochromaffin cells in intestinal epithelia potentially act as the 
first line of the recipient of information about food intake, as it rapidly 
transmits this knowledge to the brain via activating VNs [sometimes 
via a single synapse within a millisecond timeframe (Kaelberer et al., 
2018)] and/or sending bloodborne messengers to the hypothalamus; 
henceforth these cells regulate food intake and glycemia (Bohórquez 
et al., 2015; Gribble and Reimann, 2016). This enterochromaffin cell-
mediated serotonin production is modulated by microorganisms such 
as Clostridium spp. and their metabolites, such as indole, 
norepinephrine, and butyric acid (Yano et al., 2015; Fung et al., 2019). 
This serotonin pool, often called the peripheral serotonin (El-Merahbi 
et al., 2015) functions independently of the serotonin pool generated 
inside the CNS since serotonin cannot cross BBB (Berger et al., 2009). 
The role of brain serotonin in controlling mood, sleep, and stress 
response is comparatively well studied (Berger et al., 2009; Strasser 
et  al., 2016), while we have not fully comprehended the role of 
peripheral serotonin (El-Merahbi et al., 2015). The SBAs are another 
major microbial metabolite that cannot cross the BBB, although 
preliminary indications suggest certain roles for SBAs in modulating 
the brain functions (Monteiro-Cardoso et al., 2021).

The stress signals released into the intestinal lumen via the gut 
epithelial cells alter the pH and viscosity of gastrointestinal fluid along 
with the intestinal lumen’s temperature and pressure (Parker et al., 
2020; Ahmed et al., 2022). As a result, the microbial compositions and 
their motility adapt to best utilize the available resources, such as 
excess lactate or reduced bioenergy, to survive in unfavorable 
environments. If the changes in the gut microbial ecosystem exceed 
normal homeostatic ranges, a therapeutic intervention becomes 

FIGURE 3

The microbial metabolites and associated brain functions and co-morbidities. The green nodes represent the microbial metabolites mapped in 
Figure 2 to associate with their generators, like the bacterial genera and species. The edges represent the connection between the metabolite and 
various functions, and all the edges were crafted differently to highlight their distinct connective modalities. The functions are clustered into two 
groups, namely, the brain functions and the co-morbidities of psychological stress. SCFA, small chain fatty acids; TMAO, trimethylamine N-oxide; 
NADP, nicotinamide adenine dinucleotide phosphate; NAD+, nicotinamide adenine dinucleotide.
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necessary; furthermore, if these processes are left unchecked, the 
intestinal epithelia become permeable, allowing the gut microbiome 
to enter the bloodstream- this condition is known as gut leakage 
(Chakaroun et  al., 2020). Given changes in the functional 
metagenomics is mirrored by the differentially expressed 
microbial metabolites.

The altered ecology of commensals differentially secrete a wide 
variety of neurotransmitters derived from aromatic amino acids, 
which act on the brain functions as excitatory (e.g., glutamate, 
dopamine, and acetylcholine) or inhibitory neurotransmitters (e.g., 
GABA and glycine) (Spivak et al., 2022). It is also important to note 
that the synthesis and biofunctions of these neurotransmitters are 
controlled by various co-factors (e.g., age) and multiple peripheral 
tissues (e.g., kidney and liver). Still, the degree of influences of these 
co-factors on the gut commensals remains largely unexplained.

Glutamate, the most prominent neurotransmitter in the cortex 
region of the brain, is regulated by kynurenic acid, and colonic 
Lactobacillus and Pseudomonas spp. contribute a significant portion 
of whole-body kynurenic acid accumulation via tryptophan 
metabolism (Ostapiuk and Urbanska, 2022). The synthesis of 
dopamine, another excitatory neurotransmitter, is controlled by 
p-cresol and synthesized in several peripheral tissues and colonic 
Lactobacillus and Clostridium spp. (Pascucci et al., 2020). In addition 
to modulating the dopaminergic network, p-cresol regulates the 
oxytocinergic and opioidergic networks and guides behavioral 
plasticity (Putnam and Chang, 1858). On the other hand, Bacteroidetes, 
one of the most abundant fecal microorganisms, encodes glutamate 
decarboxylase-encoding gene, which is linked to the production of 
GABA, the major inhibitory neurotransmitter of brain (Otaru 
et al., 2021).

Clostridia, Fusobacterium, and Acidaminobacter are the 
primary producers of SCFAs, while Firmicutes, a highly abundant 
fecal microorganism, mainly secretes butyrate (Eeckhaut et  al., 
2011). SCFAs, primarily propionate and butyrate, participate in 
many health-beneficial function (Louis and Flint, 2017); for 
instance, they control the adaptive immune systems (Louis and 
Flint, 2017) and, in this process, mitigate neuroinflammation by 
inhibiting the production of histone deacetylase 1, a 
proinflammatory cytokine (Song et al., 2022).

In a healthy gut milieu, lactate is used to cross-feed the microbiota 
for unrelenting SCFA production. In homeostatic conditions, many 
gut microbes, including Firmicutes, convert lactate to propionate and 
butyrate (Abedi and Hashemi, 2020), which helps maintain a low 
accumulation of lactate in the intestinal lumen (Duncan et al., 2004). 
Increased lactate production is typically pH mediated and often 
identified as the marker of dysbiosis when Firmicutes and Bacteroidetes 
get replaced by lactate-producing Actinobacteria, Lactobacillus, and 
Proteobacteria. This event inhibits the synthesis of butyrate and 
propionate (Abedi and Hashemi, 2020; Wang S. P. et  al., 2020). 
Interestingly, increased lactate production by gut anaerobes during 
exercise potentially supports the host’s mitochondrial respiration 
(Brooks, 2020) and indirectly facilitates cerebral BDNF production via 
upregulating the Sirtuin1 network. This is likely a dose-dependent 
impact of lactate on brain, as the mice under the regime of physical 
exercise showed increased learning and memory retention power (El 
Hayek et al., 2019).

In addition to lactate, several other microbial metabolites actively 
participate in neuronal bioenergetics and glucose homeostasis (Zhang 

et  al., 2021). Potentially directed by enterochromaffin cells, 
microorganisms inside the intestinal lumen produce glucose via 
gluconeogenesis (Soty et  al., 2017), which switches to lactate 
production during energy deficiency and hypoxia (Brooks, 2020). 
Although the microbe-induced glucose metabolism has been 
comparatively well studied (van Olden et al., 2015; Utzschneider et al., 
2016), some pertinent aspects still need additional probing. For 
instance, the energy-modulating hormones, such as peptide YY and 
GLP-1, are found to be  expressed on intestinal epithelia, and 
corresponding receptors are reportedly expressed in the hypothalamus 
(Steinert et  al., 2011), although the mode of exchange of these 
hormones between the gut and brains is yet obscured.

Finally, recent studies have suggested a potential association 
between the host microbial community and the glymphatic system 
(Hablitz and Nedergaard, 2021), a novel concept that explains the 
waste clearance pathways exclusively from the mammalian CNS 
(Meyerhoff et al., 2022). Glymphatic systems’ close associations with 
BBB and sleep construction, and therefore with the tryptophan 
pathway and vagal retrograde signaling network, intrigue us to link 
the gut microbiome to glymphatic systems (Hablitz and Nedergaard, 
2021); however, much work is needed to completely understand 
this mechanism.

Challenges and path forward

Systems interrogation and knowledge integration of functional 
metagenome, meta-organism, and host omics are gaining traction to 
uncover the holistic molecular mechanism that drives the host’s stress 
response. Most of the available data, particularly those focused on the 
gut-brain axis, are built upon animal models due to the limited 
availability of the human brain. However, the translational potential 
of rodent metagenomic data is often contested. The brain morphology 
of humans and rodents is fundamentally different since the human 
gyrecephalic brain has distinct convolutions and expansions in the 
cortex, which facilitate handling a much wider range of emotional 
structures than that by the smooth-surfaced cortex in the 
lissencephalic brain of rodent (Sun and Hevner, 2014). Furthermore, 
the ecosystem of rodent microorganisms is distant from that of 
human; conversely, domestic animals, such as dogs, have higher 
metagenomic homology with humans (Wardeh et al., 2015). On the 
positive side, the enterochromaffin cells of rodents were found 
genetically homologous to that of human, although their functional 
homology, particularly under stress, is yet to be fully characterized 
(Roberts et al., 2019). Some of the customized rodent models, such as 
the germ-free model and gnotobiotic humanized model, are promoted 
for greater translational potential (Uzbay, 2019). These models could 
reduce the high variability of metagenomic data among the research 
laboratories. Nevertheless, germ-free mice are predisposed to various 
unique characteristics due to their atypical habitat, limited maternal 
care, and distinct lifestyles and diets (Mayer et al., 2015). Altogether, 
these traits potentially limit the translational potential of the outcome 
derived from germ-free mouse colonies (Mayer et al., 2015).

The true characteristics of the host-gut microbe relationship are still 
obscure; to begin with, we are still unsure if this relationship is causative 
or correlative in nature. Comprehension of the host-microbe relationship 
possibly depends on the following two fundamental pieces of information: 
(i) how the gut microbe communicates with peripheral organs and (ii) 
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how different microorganisms in the gut lumen, such as bacteria, viruses, 
etc. crosstalk among themselves. To shed light on the gut microbe-organ 
axis, this review article has discussed in detail the topic of the gut microbe-
brain axis, while the other relationship matrix with gut microbes and 
other peripheral organs, such as lungs, liver, and kidneys, were cursorily 
discussed. The inter-organism relationship, particularly the bacteria-virus 
mutualistic association, has been considered to be the controlling factor 
of host defense. Enteric virus is mostly represented by bacteriophage and 
eukaryotic virus (Li et al., 2021), although the characterization of the virus 
composition has been challenged by limited capability in mapping the 
virus gene sequences (Minot et al., 2011; Manrique et al., 2016). Given 
that the bacteriophage can obliterate bacteria, their relationship and 
comparative abundance in the intestine remains an interesting subject to 
moot. A significantly high ratio of bacteriophage-to-bacteria at the enteric 
mucosal surface in comparison to the rest of gut lumen (Barr et al., 2013) 
is a potential frontline of defense against bacterial infection and thereby 
regulates many antagonists and beneficial actions including the host 
defense and immune response (Almeida et al., 2019; Kirsch et al., 2021). 
Our understanding of additional inter-kingdom relationships, such as 
bacteria-archaea (Hoegenauer et al., 2022) and bacteria-protozoa (Dubik 
et  al., 2022), are still at their early stages, although emerging studies 
identified their concerted efforts in disease pathogenesis (Kodio et al., 
2020; Mafra et al., 2022).

Needless to say, we have yet to fully characterize the associations 
between microbial metabolites and disease pathology. One of the 
possible modalities to meet the knowledge gap is to systematically 
dissociate a sick gut from its sick host. The null hypothesis could 
be that the fecal microbe of a sick host cannot adversely affect a healthy 
host. To support this hypothesis, fecal samples could be collected from 
the stressed or sick rodents and allowed to colonize them in healthy 
gnotobiotic rodents using FMT (Wang J. W. et al., 2019). Subsequent 
analysis can throw light on how a sick microbiota can control the host’s 
health in the absence of the adverse condition. Concurrent FMT of 
healthy commensals (i.e., the fecal samples collected from healthy 
cohort) into sick rodents will help in getting the full scenario about 

how microbiota communicate with the host to regulate its 
overall health.

Following the same concept, a surgical deletion or chemical 
manipulation of VNs can highlight the role of this nervous system in 
sensing the dietary intake (Brown et al., 2011; Yao et al., 2018) and 
consequent impacts on humans, such as the change in body weight 
(Burneo et al., 2002).

The outcome of the abovementioned modalities has been used to 
customize the traditional nutraceuticals, such as prebiotic, postbiotic, 
and symbiotic diets, and more novel supplements, namely parabiotic 
(made from non-viable microorganisms) and postbiotic biotherapies 
(made from microbial derivatives, such as metabolites) (Nataraj et al., 
2020); although these nomenclatures are contested in past (Zolkiewicz 
et al., 2020; Salminen et al., 2021). Additional therapeutic approaches 
include genetic domestication of the microbe of interest using gene-
editing technology (e.g., CRISPR) or by implanting synthetic 
promoters in the gut lumen (Mimee et al., 2016; Inda et al., 2019). In 
the recent past, Bacteroidetes, one of the most abundant gut 
commensals, was successfully systems-engineered (Mimee et  al., 
2016). It is a step toward designing a universally applicable tool that 
can systematically alter the microorganism along with its neighbors 
(e.g., Firmicutes that co-habitats Bacteroidetes) and/or co-factors (e.g., 
diet source) to reinforce the host’s response (Wexler, 2007; Inda 
et al., 2019).

Disease diagnostic and prognostic capabilities based on meta-
organism data have shown significant progress. A sophisticated 
colonoscopy with a miniature camera can monitor a wide range of 
physiological attributes of the colon, such as pH, temperatures, etc., in 
real-time (Yung et al., 2016; Kalantar-Zadeh et al., 2017). Ingestible 
sensor prototypes, such as the “digital pill,” have emerged at the 
forefront to the disease diagnosis platforms (Kalantar-Zadeh et al., 
2017; Beardslee et al., 2020). These advanced sensors can determine 
the colon oxidation potentials due to the shifts in microbial abundance 
(Baltsavias et  al., 2020) and profile the gases, such as oxygen and 
hydrogen, emitted inside the colon lumen (Kalantar-Zadeh et  al., 

Box 2 An outlook of the conventional to futuristic tools/technologies that could readily benefit from the knowledge of meta-organisms and 
metabolites.
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2018). Box 2 documents these novel diagnostic concepts along with 
the more conventional prototypes that monitor microbe and 
microbial metabolites.

Shifting the focus to its surrounding environment, metagenome 
and metabolites have shown great potential to enable 360° surveillance 
outreach. Wastewater surveillance of the microbiome gave a 
longitudinal profile of spreading COVID-19 infection across different 
communities (Brumfield et  al., 2022). Metabolite monitoring in 
bryophytes and fish larvae (Sanches-Fernandes et al., 2022) can act as 
biosensors of toxins or radio-biological attacks on the communities.

Microbial metabolites are the primary intermediatory of the 
crosstalk between host and microbiota. This is an emerging concept 
essentially refining the traditional view of postprandial neuronal and 
hormonal exchange between the brain and gut (Wachsmuth et al., 
2022). The microbiome is critically associated with the 
pathophysiology of several diseases and the host’s adaptive response 
to stress. Hence, one can anticipate that systematic modulation and 
monitoring of the microbiome could be the key enabler to combat 
diseases. Overall, meta-organisms and functional microbiota are the 
subject of very active research, and we hope to see significant progress 
in the coming years.
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