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Responses of soil bacterial 
communities and maize yields to 
sulfur application across four soil 
types
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China

Introduction: This study assessed the effects of S application on maize yields 
and soil bacterial communities across four sites with different soil types and 
three S application rates (0 kg ha-1, 30 kg ha-1, and 90 kg ha-1).

Methods: Changes in soil properties, bacterial community diversity, structure, 
and their contributions to maize production were evaluated post-S application 
treatments.

Results: (1) S application decreased soil pH, increased available sulfur (AS), and 
boosted maize yields in all soil types. (2) Reduced Chao1 and Shannon diversity 
indices were observed in black soil after S application. (3) Bacterial community 
structure was significantly affected by S application, except in sandy soil, impacting 
key stone taxa abundance. (4) Black soil showed higher sensitivity to S application 
due to less stable bacterial community structure. (5) Soil physicochemical indicators 
altered by S application, such as AS and pH, mediated bacterial diversity, influencing 
maize yield. Organic matter (OM) had the most significant direct positive effect on 
yield, followed by AS and bacterial community diversity.

Discussion: This study emphasizes the impact of S application on soil properties 
and bacterial communities in diverse soil types. Understanding these mechanisms 
can guide precision S application practices for maize yield regulation.
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1 Introduction

Sulfur (S) was another essential nutrient for plants, following nitrogen (N), 
phosphorus (P), and potassium (K). It serves as a crucial mineral nutrient, playing a vital 
role in regulating and controlling plant growth and development (Takahashi et al., 2011; 
Romero et al., 2014). S has multiple physiological and biochemical functions in plant 
growth. It is an integral element in amino acids and proteins, a foundational component 
of many cofactors and prosthetic groups, and an important structural substance of the 
chloroplast membrane and participates in redox reactions (Eriksen et al., 2002). S scarcity 
in soil has become increasingly pervasive all over China, as a result of the cautious use of 
S fertilizer on crops and increasing crop yields in recent years (Ramette, 2007; Wang et al., 
2008). Excessive and imbalanced application of nitrogen, phosphorus, and potassium 
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fertilizers, along with the utilization of pesticides containing S, 
have obscured deficiencies of S in the soil over an extended period. 
Decreasing the usage of fertilizers containing S, such as heavy 
calcium and superphosphate, also results in a decreasing amount 
of S nutrients available from the soil for crops, as a result of the 
maturity of the fertilizer manufacturing process and the ongoing 
optimization of the fertilizer structure (Li et al., 2017). As a result, 
more than 20% of the soil is in a potential sulfur-deficient state, 
which brings serious problems for agricultural production. When 
the supply of AS in the environment is insufficient to meet the 
needs of plant growth and development, can hinder the absorption 
of essential nutrients like as carbon and nitrogen, leading to 
disruption in protein biosynthesis, chlorophyll levels, and 
ultimately reducing crop yield (Capaldi et al., 2015). As far as Jilin 
Province, the soil AS was 27.2% below 12 mg kg−1, 20.7% was 
12–16 mg kg−1, 12.2% was 16–20 mg kg−1, and more than 60% of the 
soil had a S deficiency (Liu, 2021). As an inevitable consequence of 
insufficient supply, crop yields were restricted. Therefore, more 
attention should paid to S, especially in the farmland ecosystem.

More than 95% of total sulfur (TS) in the soil environment forms 
combining with organic molecules, which include soil organic matter 
and microbial biomass. Inorganic S usually only accounts for a small 
proportion of the total amount. However, organic S must 
be mineralized to SO4

2− in order to be absorbed by the plant (Kertesz 
and Frossard, 2015; Anantharaman et al., 2018). S compounds in the 
soil undergo a series of transformations, including the conversion of 
sulfide into sulfate, immobilization of inorganic sulfate and organic S 
compounds into microbial biomass and OM, and the mineralization 
of soil organic S. These processes are predominantly mediated by 
microorganisms, especially bacteria (Ma et al., 2020). Besides the S 
cycle, soil microorganisms significantly influence the regulation of 
chemical cycles during the processes of biological succession in 
farmland ecosystems (Qi et al., 2021). Prior independent research has 
demonstrated that the application of sulfur resulted in substantial 
alterations to the soil bacterial community structure in both black and 
sandy soil (Samples collected in 2018; Dong et al., 2022). Overall, 
further field experiments are required to validate the correlation 
between the structure of microbial communities and the quantity of 
added sulfur.

To fully understand the effects of sulfur application on soil 
bacterial communities across various soil types and investigate the 
influence of soil physical and chemical properties, as well as microbial 
properties, on corn yield, we collected soil samples from four different 
soil types (black, sandy, saline, and dark brown soil). The aim was to 
comprehensively assess the impact of sulfur application on soil 
bacterial diversity and community structure in these diverse soil types. 
Additionally, we employed structural equation modeling (SEM) to 
explore the coupling effect of soil physicochemical properties on 
crop yield.

2 Materials and methods

2.1 Field sites and sample collection

In 2017, a field experiment was conducted at four sites: Sankeshu 
(43°20′N, 124°00′E), Fujia (43°21′N, 124°05′E), Helong (42°45′N, 
129°21′E), and Tongyu (44°36′N, 123°04′E) in the Jilin Province of 

China. All sites had a temperate monsoon climate but a different soil 
type. Based on the soil classification system, the soil samples collected 
from Sankeshu, Helong, Fujia, and Tongyu were classified into black, 
dark brown, sandy, and saline soil, respectively. Annual precipitation 
at the four sites were780.3, 542.4, 732.5, and 350 mm, respectively. Full 
details and field information for each site are listed in 
Supplementary Table S1. Research plots were established to assess the 
S (ammonium sulfate) application rates on maize yield and soil 
bacterial community. Three S application rates were tested: 
0 kg S ha−1(S0), 30 kg S ha−1 (S30), and 90 kg S ha−1 (S90). There were 
three replicates for each application rate, resulting in nine plots per 
site, structured in a random block design. The total number of plots 
for all sites was 36. The fertilizer application rates are summarized in 
Supplementary Table S2. Maize was sown in May with a planting 
density of 65,000 plants per hectare and harvested in October.

Soil samples were collected in September 2019. Five maize plants 
were chosen at random in each plot. All samples underwent a 2 mm 
sieving process to remove roots and other debris. Subsequently, five 
samples were pooled to generate a singular mixed rhizosphere soil 
sample for each plot (Azeem et al., 2020; Li et al., 2021; Yu et al., 2021). 
Subsamples designated for property analysis were stored at −20°C, 
while those allocated for DNA extraction were stored at −80°C.

2.2 Soil chemical properties and maize 
yield determination

The maize yields were measured at the harvesting stage of maize, 
and the number of plants, ears, and total fresh weight of maize ears 
within the yield area (18 m2) was recorded (Yu et al., 2019). The yields 
were calculated by 14% moisture content (Yu et al., 2019). Soil pH was 
determined using a pH meter at a soil: water ratio of 1:2.5. The soil 
organic matter (OM), available nitrogen (AN), available phosphorus 
(AP), and available potassium (AK) were analyzed by the potassium 
dichromate volumetric, diffusion method, the Olsen method, and the 
ammonium acetate extraction flame photometry method, respectively. 
The AS content was extracted using KH2PO4 and quantified using an 
Inductive Coupled Plasma Emission Spectrometer (ICP).

2.3 Illumina MiSeq high-throughput 
sequencing and data analysis

Soil DNA was extracted using the Fast DNA SPIN extraction kits 
(MP Biomedicals, Santa Ana, CA, United States), according to the 
manufacturer’s guidelines, with a negative control included.

The V3-V4 region of the 16S rRNA gene was amplified using the 
forward 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and reverse 
806R (5′-GGACTACHVGGGTWTCTAAT-3′) primers. Unique 7-bp 
barcodes, specific to each sample, were integrated into the primers for 
multiplex sequencing. PCR amplicons were purified utilizing 
Agencourt AMPure Beads from Beckman Coulter, located in 
Indianapolis, IN. Quantification was carried out employing the 
PicoGreen dsDNA Assay Kit provided by Invitrogen in Carlsbad, CA, 
United States. Following individual quantification, equal amounts of 
amplicons were mixed, and pair-end 2 × 300 bp sequencing was 
conducted using the Illlumina MiSeq platform and MiSeq Reagent Kit 
v3 at Shanghai Personal Biotechnology Co., Ltd. in Shanghai, China.
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The sequence data were processed using the Quantitative Insights 
into Microbial Ecology (QIIME2 2019.4), following a previously 
established protocol (Bolyen et al., 2019). After removing barcode and 
primer sequences, a quality filtering step was executed to eliminate 
ambiguous sequences that did not meet the quality criteria. UCHIIME 
algorithms were utilized to remove chimeric sequences. The resulting 
valid sequences were subsequently assigned for taxonomic 
classification and a representative sequence at the ASV level was 
chosen with default parameters, specifically targeting a 98% identity 
level. The analysis of alpha indexes, including Chao1, Shannon, 
Observed species, and Goods-coverage indices, was conducted using 
the QIIME2 software.

2.4 Statistical analysis

Statistical analyses were performed using SPSS Statistics for 
Windows v 25.0 (IBM, Armonk, NY, United States). Differences in soil 
properties, maize yield, alpha diversity, and modularity index were 
determined by one-way ANOVA followed by Duncan’s multiple range 
test (p < 0.05). Two-way ANOVA was used to evaluate the effects of 
interactions between S fertilization rates and the different soil types 
on maize yield and soil properties (Chen et al., 2021).

The visualization of differences in microbial community 
composition across all soil samples (four soil types) was carried out 
using NMDS analysis with Bray–Curtis distance matrices, utilizing the 
“vegan” package for R (version 4.1.2). The NMDS analysis was 
considered reliable when the Stress value was less than 0.2. 
Furthermore, to assess the differences in soil microbial community 
composition between different S application treatments within each 
soil type, Analysis of Similarities (ANOSIM) was performed.

Network analysis was employed to investigate the co-occurrence 
patterns of rhizosphere bacterial communities across four distinct soil 
type. We calculated the Spearman correlations between ASVs with all 
the samples (four soil types) and identified strongly associated 
ecological clusters (modules). To construct the network, only robust 
(Spearman’s r > 0.6 or r < −0.6) and statistically significant (p < 0.05) 
correlations were taken into consideration, utilizing the “psych” 
package for R (version 4.1.2) (Jiao et al., 2019). This approach enabled 
us to concentrate specifically on the ASVs exhibiting robust 
co-occurred, increasing the likelihood of interactions among them, 
and promoting consistent module patterns across each soil type. The 
main modules in the network of each soil type were visualized using 
the interactive platform Gephi 0.9.2 (Zhang Y. et al., 2021). Seven 
network level topological characteristics were calculated.

Computed the total abundance of all genera in the primary 
network n modules and utilized Z-scores to standardize the 
cumulative abundance of each module, thus establishing it as the 
module’s relative abundance. The differences of genera present within 
the module were determined by one-way ANOVA followed by 
Duncan’s multiple range test (p < 0.05).

To investigate the relationship between soil physicochemical 
properties, bacterial communities, and maize yield, we  utilized 
structural equation modeling (SEM), implemented through the R 
package lavaan. This approach enabled us to evaluate both direct and 
indirect effects of soil properties and bacterial communities on crop 
productivity. The PC1 axis from Principal Component Analysis 
(PCA) were selected as the parameter for bacterial community 

structure, as per the ASV table. Typically, the approximate root mean 
square error and chi-square value (χ2). We  employed the Akaike 
Information Criterion (AIC) as a comprehensive measure to assess 
the model’s goodness of fit. The best-fitting SEM was determined 
based on the chi-square test (with a significance level of p > 0.05) and 
the root mean square approximation error (RMSEA<0.2). All 
analyses were conducted using R (version 4.1.2).

The predicted the functional attributes of bacterial community, 
we utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database, accessible through the following link: http://www.genome.
jp/kegg/. The prediction was executed using the Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt2) tool (Version 2.2.0), available at: https://github.
com/picrust/picrust2. PICRUSt2 estimates the functional composition 
of the bacterial community based on the proportional representation 
of marker gene sequences within the samples. The present study 
examines the abundance of Pathway level 3 through a sample heatmap 
analysis conducted using the R programming language (Douglas 
et al., 2020).

3 Results

3.1 Effect of S fertilization on maize yield 
and soil physicochemical properties

Regardless of soil type, the application of S led to higher maize 
yields compared to the S0 treatment, where no S was added. The 
highest maize yield was found in black soil and the lowest in saline soil 
under the same S application rate. Two-way ANOVA showed both soil 
types (F = 960.42; p < 0.001) and fertilization (F = 54.81; p < 0.001) have 
a very significant impact on maize yield, and the interaction between 
these two also has a significant impact (F = 8.36; p < 0.001) (Figure 1).

pH decreased significantly with the increase of S application, 
except for sandy soil (Table 1), and the changes in pH were consistent 
among other three soil types. AS gradually increased with S application 
rates and reached its peak in S90 treatment. There was no significant 
variations observed in other soil physicochemical parameters, 
including AN, AP, AK, and OM. Based on the findings from the 
Two-way ANOVA analysis, the rate of S application demonstrated a 
significant impact on the pH and AS, while the type of soil exhibited a 
significant relationship with all of the chemical properties of the soil.

3.2 Effects of S application on bacterial 
alpha diversity

The Good’s coverage for the observed bacterial ASVs was 
97.47 ± 0.29% (mean ± s.e), indicating a high probability of sequence 
detection in the samples. The Chao1 and Shannon indexes were used 
to evaluate the total number of ASVs contained in the samples and 
estimate the diversity of microbial communities. The bacterial Chao1 
diversity index was highest in the S0 treatment except for dark brown 
soil, and higher Chao 1 index was observed in all treatments of black 
soil. Bacterial alpha diversity decreased with S application in black 
soils, while it increased in S30 treatments in dark brown soils. 
However, alpha diversity in saline and sandy soils was not impacted 
by S application rates. Overall, the alpha diversity appeared to 
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be highest in saline soil, despite this soil yielding the lowest maize 
biomass (Figure 2).

3.3 Effects of S application on bacterial 
community stability in maize soils

The NMDS analysis of all the soil samples (four soil types) showed 
that soil type formed distinct clusters in the coordinate (Figure 3A), 
and the difference of soil bacterial community between S application 

treatments within the same soil type was further revealed by ANOSIM, 
which considers both within and between treatment variance. The 
ANOSIM results indicated significant changes (p < 0.05; Figure 3B) 
between different S application treatments excluding sandy soil, which 
indicates that S application significantly affected the community 
structure of soil bacteria. In addition, according to the observed R 
value of ANOSIM analysis, among the four soils, S application had a 
greater impact on the bacterial community of back soil. This is partly 
attributed to the relatively lower variability between samples of the 
same treatment within black soils.
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FIGURE 1

Histogram showing maize yields in four soils in response to Sulfur (S) application at three rates (0, 30, and 90  kg  S  ha−1). Different letters indicate 
significant differences between treatment groups in each soil type (p  <  0.05). For the ANOVA results: *, **, and *** indicate that there are significant 
differences for each factor at the levels of p  =  0.05, p  =  0.01, and p  =  0.001. T, Soil types; F, Fertilizer; and T  ×  F, Soil types  ×  fertilizer.

TABLE 1 Soil characteristics under application of S application.

Soil types Sample pH AP (mg/kg) AK (mg/kg) AN (mg/kg) OM (g/kg) AS (mg/kg)

Black S0 5.78 ± 0.07a 51.3 ± 4.82a 185.1 ± 7.93a 128.7 ± 3.25a 21.71 ± 0.79a 13.3 ± 1.31b

S30 5.70 ± 0.05ab 50.0 ± 1.68ab 187.4 ± 3.83a 128.3 ± 1.72ab 21.70 ± 2.28a 18.3 ± 1.03a

S90 5.62 ± 0.02b 48.4 ± 6.60b 182.2 ± 8.45a 126.5 ± 2.18ab 21.80 ± 2.98a 21.3 ± 2.87a

Sandy S0 5.57 ± 0.03a 33.0 ± 2.46ab 157.5 ± 1.30a 66.9 ± 2.73a 15.67 ± 0.02a 11.8 ± 1.03b

S30 5.53 ± 0.11a 33.9 ± 1.38a 161.8 ± 2.87a 66.0 ± 3.34ab 16.05 ± 0.10a 15.7 ± 0.24a

S90 5.50 ± 0.08a 34.2 ± 0.76a 162.3 ± 4.17a 65.5 ± 4.49b 15.77 ± 0.31a 17.5 ± 1.08a

Dark brown S0 5.58 ± 0.03a 27.1 ± 2.97a 167.9 ± 1.08a 90.9 ± 1.15a 12.44 ± 1.52a 12.7 ± 1.31b

S30 5.48 ± 0.03b 25.9 ± 2.38a 169.7 ± 4.17a 90.7 ± 2.76a 12.49 ± 0.87a 18.0 ± 1.08a

S90 5.36 ± 0.052c 25.8 ± 1.70a 168.4 ± 0.36a 90.4 ± 5.57a 12.62 ± 0.50a 20.5 ± 3.08a

Saline S0 8.64 ± 0.07a 35.9 ± 0.61a 203.2 ± 5.92a 40.7 ± 4.08a 10.29 ± 1.19a 11.0 ± 0.82c

S30 8.33 ± 0.02b 36.0 ± 0.28a 202.2 ± 5.56a 38.0 ± 1.75ab 10.39 ± 1.95a 14.3 ± 0.62b

S90 8.03 ± 0.04c 36.8 ± 0.73a 198.3 ± 7.99a 37.3 ± 1.86ab 10.43 ± 1.16a 17.2 ± 1.31a

ANOVA

T *** *** *** *** *** **

F *** ns ns ns ns ***

T × F ns ns ns ns ns ns

In the results of the ANOVA, different letters indicate significant differences treatment in each soil types (p < 0.05). *, **, and *** indicate that there are significant differences between the 
treatments at the levels of p = 0.05, p = 0.01, and p = 0.001, and ns indicates that the difference is not significant (p > 0.05). T, Soil types; F, Fertilizer; T × F, Soil types × fertilizer.
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To assess the influence of S application on the soil bacterial 
community, a correlation network was constructed, incorporating the 
identified soil bacterial. We further defined nodes with more than 10 
edges as network active centers, and three ecological clusters 
(modules) that strongly co-occurring was revealed, which play an 
active role in regulating the interactions between communities.

The network analysis results revealed that bacterial network 
density was highest in saline soil, followed by dark brown and sandy 

soil, and lowest in black soil (fewer nodes result in more edges). 
However, upon compared network-level topological characteristics, it 
was observed that the dark brown and saline soil networks exhibited 
significantly higher average degree and clustering coefficient values 
compared to the black and sandy soil networks. These findings suggest 
that the networks of dark brown and saline soil were more 
interconnected and displayed stronger relationships among their 
components, and the bacterial community structure of black soil was 

FIGURE 2

Alpha diversity indices of soil microbial community under three rates S application (0, 30, and 90  kg  S  ha−1). Different letters indicate significant 
differences for each factor (p  <  0.05). p value of inter group population differences obtained from Kruskal Wallis non parametric test. B, Black soil; D, 
Dark brown soil; S, Sandy soil; and Y, Saline soil.

FIGURE 3

Non-metric multidimensional scaling ordination based on Bray-Curtis distances comparing the composition of soil bacterial communities (A). ANOSIM 
was used to test the difference of soil bacterial between different S application treatments within the same soil type (B–E).
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less stable. This information is visually depicted in Figures 4A–D and 
is also available in Supplementary Table S3.

S application regulates the co-occurrence of bacterial networks 
by changing the abundance of keystones in the module. The S 
application in dark brown soil significantly increased the abundance 
of module 1. The S application in sandy and saline soil reduced the 
abundance of module 2, but the results were opposite in dark brown 
soil. The results in module 3 were consistent with the changes in 
abundance in module 2, except that the abundance of S90 treatment 
in saline soil was lower than that of S0 and S30 treatment 
(Figures 4E–G). We found that in the modules 1, 2, and 3, the more 
abundant genera were all from Patescibacteria, Actinobacteria, and 
Proteobacteria (co-trophic groups) (Supplementary Table S6).

3.4 Effect of S fertilization-driven soil 
properties on maize yields

We employed structural equation modeling (SEM) to assess both 
the direct and indirect influenced of soil physicochemical properties 
and bacterial communities on the yields of maize. The model fit the 
data well (χ2 = 11.502, p = 0.243, AIC = 79.792, SMSEA = 0.152; 
Supplementary Table S4). The results showed that S application and 
soil types had a significantly impact on the physicochemical 
properties of the soil (such as pH and AS), these factors exerted 

control over the maize yield either independently or in combination, 
while also influencing the soil bacterial communities, including their 
structure and diversity, which in turn mediated the impact on maize 
yield (Figure 5). Overall, the OM (path coefficient = 0.746) had the 
most significant positive and direct impact on maize yields, followed 
by soil AS (0.161) (Figure 5). Bacterial diversity (−0.318) had direct 
and negative effects on crop yields (Figure 5). In addition, soil pH and 
AN had significantly higher indirect effects than other driving 
factors. S application directly affects the changes in pH, which likely 
mediates the bacterial diversity and leads to the final regulation of 
maize yield.

3.5 Effect of S application on potential 
functions of the sulfate reduction

The sulfate reduction pathway encompasses both assimilatory 
and dissimilatory processes, which involve the reduction of sulfate 
to sulfide. Most prokaryotes with sulfate reducing ability are 
bacteria. Five genes control the three sequential enzymatic steps in 
the dissimilatory sulfate reduction pathway (Figure 6A). Conversely, 
the assimilatory sulfate reduction pathway comprises four steps 
controlled by five enzymes, encompassing a total of seven 
(Figure  6A). In this study, PICRUSt was utilized to predict the 
relative gene abundances related to dissimilatory sulfate reduction. 

FIGURE 4

Co-occurrence networks of the bacterial communities in the maize rhizosphere were constructed across four soil types based on correlation analysis. 
A connection in the network represents a robust (Spearman’s r  >  0.6 or r  <  −0.6) and statistically significant (p  <  0.05) correlation. Each node in the 
graphical representation corresponds to a specific genus, with node size indicating the number of connections (degree). The node colors correspond 
to different categories: pink nodes represent module 1, green nodes represent module 2, and yellow nodes represent module 3 (A–D). The red and 
blue colors of each connection between two nodes represent positive and negative relationships, respectively, based on Spearman’s correlation 
coefficients. Each edge in the network indicates a strong and statistically significant correlation between two nodes, with the thickness of the edge 
proportional to the value of the Spearman’s correlation coefficient. The relative abundance (z-score of accumulated abundance) of microbial clusters 
across treatments in the four types of soil is shown in (E–G). Different letters indicate significant differences between sulfur application rates (0, 30, and 
90  kg  S  ha–1) for each soil type [Black (B), Sandy (S), Saline (Y), and Dark Brown (D)] as determined by ANOVA (p  <  0.05).
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In all four types of soil, S application reduced the abundance of five 
dissimilatory sulfate reduction genes, including sulfate 
adenylyltransferase (sat), adenylylsulfate reductase subunit A 
(aprA), adenylylsulfate reductase subunit B (aprB), dissimilatory 
sulfite reductase subunit alpha (drsA), and dissimilatory sulfite 
reductase subunit beta (drsB). The difference lies in the higher 
abundance of sat in sandy soil under the S90 treatment. The 
abundance of most assimilatory sulfate reduction genes decreased 
with S application (except for sulfate adenyltransferase (cysN) and 
sulfite reductase (sir) in sandy soil, adenylylsulfate kinase (cysC) 
and sulfate adenylyltransferase subunit (cysD) in dark brown soil, 
phosphoadenosine phosphosulfate reductase (cysH), sulfite 
reductase (NADPH) flavoprotein alpha-component (cysJ), and 
sulfite reductase (NADPH) hemoprotein beta component (cysI) in 
saline soil). Particularly in black soil, S application inhibited the 
abundance of all assimilatory sulfate reduction genes (Figure 6B; 
Supplementary Table S5).

4 Discussion

4.1 The responses of soil physicochemical 
properties and maize yield to S application

Our findings indicated that the application of S resulted in a 
significantly increase in maize yield (Figure 1). The highest yield was 
observed with the S90 treatment across various soil types, with the 
exception of dark brown soil, which the differences between the S30 
and S90 treatments were not statistically significant. Our findings 
align with the results obtained reported by Cao et  al. (2017), 

demonstrating that S application effectively enhanced maize yield. 
Specifically, Cao et al. (2017) reported that in dark brown soil, the 
optimal application rate for S was 80 kg ha−1, resulting in a significant 
increase in maize yield. Under uniform S application rates, maize 
yields exhibited variability, with the highest yield observed in black 
soil and the lowest in saline soil. The OM emerged as a significant 
underlying determinant, exerting an indirect influence on crop yields 
by fostering microbial biomass and enhancing soil enzyme activity 
(Luo et  al., 2018). The deleterious effects of saline soil on plant 
physiology manifest through multiple mechanisms such as: osmotic 
stress, ion imbalances, perturbations in nutrient equilibria, metabolic 
dysregulation, and diminished cellular division rates, which 
collectively impinging upon overall crop productivity (Gharib et al., 
2016; Hafez et al., 2020).

Soil physicochemical properties are important indexes to evaluate 
soil fertility and are affected by various factors. Previous research has 
confirmed that when S enters the soil, it undergoes oxidation by soil 
bacteria, such as Thiobacillus, converting it to sulfuric acid. This 
process leads to a reduction in soil pH, and increased S application 
exacerbates the decline in soil pH (Germida and Janzen, 1993; Du 
et al., 2020). In our investigation, while maintaining a consistent input 
of NPK fertilizers, we  observed a gradual decreased in soil pH 
corresponding to an increase in S application (Table 1), aligning with 
the findings mentioned earlier. Furthermore, our findings revealed a 
positive correlation between S application and the AS, aligning with 
the findings of Sachiko (Masuda et al., 2016). The probable explanation 
for this phenomenon is that oil microorganisms primarily participate 
in the oxidation process of S application mainly affects the relative 
abundance of sulfate-reducing bacteria and the amount of AS (Masuda 
et al., 2016).

FIGURE 5

Structural equation model (SEM) showing the direct and indirect effects of soil physicochemical properties (pH, OM, AN, and AS) and bacterial 
community diversity and structure on maize yield in S-amended treatments and four soil types. In the diagram, red arrows represent positive 
relationships (p  <  0.05), while blue arrows represent negative relationships (p  <  0.05). The numbers displayed on the arrows, which serve as standardized 
path coefficients, indicate the percentage of variance explained by the predictor variables. The width of each arrow reflects the strength of the 
standardized path coefficient. Soil organic matter content (OM), available nitrogen (AN), and available sulfur (AS).
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The present study builds upon the foundation established by our 
previous work (Dong et al., 2022), which examined similar research 
questions with a focus on two specific soil types. In the current study, 
we extend this investigation to encompass a broader scope, involving 
four distinct soil types and a longer experimental timeframe of 3 years. 
In our previous studies (Dong et al., 2022), we did observe a decrease 
in OM in black soil with S application. However, in this study, we did 
not observe any significant variations in OM due to S application 
(Table 1). This discrepancy could be attributed to the fact that this 
study was conducted over a longer timeframe. Although S application 
has been widely studied in relation to soil pH, AS, and its interaction 
with heavy metals such as cadmium. These observations have been 
reported in a range of studies (Skwierawska et al., 2008; Masuda et al., 
2016; Li et  al., 2019; Wu et  al., 2019; Du et  al., 2020). However, 
we acknowledge that the potential impact of S application on the 
content of OM has not been extensively documented in the literature. 
To address this, we are committed to monitoring and documenting 
the long-term changes in organic material content at our 
experimental site.

4.2 The response of soil bacterial diversity 
and community structure to S application

Soil microbes can facilitate a series of processes, including 
sulfur oxidation and reduction, in the soil to promote the 
conversion of S within the soil. The fertilizer application was likely 
to cause changes in the structure of soil bacterial communities, 
based on previous research (Li et al., 2017). According to Dong’s 
report, the Chao 1 index shown no significant difference among the 
S0, S30, and S90 treatments after 2 years of S application (Dong 

et  al., 2022). However, the Shannon index of S0 treatment was 
significantly higher than that of S30 treatment in black soil. In 
congruence with this, in this study, we found that after 3 years of S 
application, the Chao1 and Shannon indexes of S0 treatment were 
significantly higher than S90 treatment in black soil (Figure 2). In 
sandy soil, Dong et al. (2022) noted a higher Chao1 index in S0 
treatment compared to S90 treatment, while our current study 
revealed no significant differences in the Chao1 and Shannon 
indexes among the three treatments in sandy soil. We recognize that 
such variations might be influenced by factors that require longer-
term continuous observation to establish consistent patterns. The 
context of soil dynamics, microbial interactions, and environmental 
conditions could contribute to the observed variability in results 
over time. Consequently, we  plan to extend our observations 
beyond the current timeframe to gain a more robust understanding 
of these patterns. In this study, the highest diversity and abundance 
of bacteria were observed in saline soil, possibly attributed to 
prolonged salinization and S application reducing the soil pH. The 
soil pH reduction created a conducive environment for maize 
growth and offered increased nutrients for microorganisms. 
Therefore, the alpha diversity index of bacteria was higher. The 
application of S altered the soil’s chemical properties, consequently 
impacting the functions of soil microorganisms. The health and 
productivity of an ecosystem depend on a range of factors, including 
the number and types of bacteria and other microorganisms.

According to the NMDS analysis, it was concluded that the effect 
of different S application rates on bacterial community structure was 
significant in all soil types apart from sandy soil (Figures  3B–E). 
Vincent findings indicated that both soil and crop types significantly 
influence the structures of soil bacterial communities (Tardy et al., 
2015), which was also confirmed by Santosh ANOSIM analysis showed 

FIGURE 6

The sulfate reduction pathways and associated gene abundances. (A) The dissimilatory and assimilatory sulfate reduction pathways. (B) Relative 
abundances of PICRUSt predicted genes relevant with S metabolism across the S application (0, 90  kg  S  ha−1) in four soils [Black (B), Dark Brown (D), 
Sandy (S), and Saline (Y)]. The red and blue fonts indicate genes relevant with assimilatory and dissimilatory sulfate reduction pathways, respectively.
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that the difference caused by soil types was much greater than the 
amount and type of S application (Mohanty et al., 2013). Earlier studies 
had indicated that the type of soil plays a predominant role in shaping 
the structure of rhizosphere bacterial communities. Additionally, it has 
been observed that a singular application of chemical fertilizers has a 
limited impact on the overall composition of microbial communities, 
although it may influence the abundance of specific groups (De Brito 
Ferreira et al., 2017). The previous research also observed that the S 
application had the greatest effect on bacterial community structure in 
black and dark brown soils (Figures 3B,D). Co-occurrence network 
analysis has been used to explore the underlying mechanisms of 
bacterial communities in various habitats and to identify the key 
groups that have the greatest impact on microbial communities (Faust 
and Raes, 2012; Liu et al., 2020; Ji et al., 2021). Network stability is 
closely related to network complexity. As a result, the closely related 
microorganisms in this study are artificially segmented into a module, 
where species with high abundance are designated as keystones, which 
are thought to collectively carry out the majority of functions. S 
applications changed the abundance of the keystone. Keystone species 
are represented was shown in the Supplementary Table S6. In order to 
further confirm the reaction of microorganisms in different soils and 
verify ANOSIM results, bacterial network diagrams were analyzed. S 
application led to changes in the relative abundance of bacteria; there 
was no significant change in the relative abundance of module 1, and 
a relative increase in the abundance of module 2, especially for S30 in 
the dark brown soil and S90  in saline soil treatments. The relative 
abundance of module 3 decreased significantly in sandy and dark 
brown soil, but increased significantly in saline soil (Figure  4G). 
We also found that in the modules 1, 2, and 3, the more abundant 
genera were all from Patescibacteria, Actinobacteria, and Proteobacteria 
(co-trophic groups) (Supplementary Table S6), which have the 
functions of decomposing nutrients, promoting the decomposition of 
animal and plant residues and promoting the absorption of nutrients 
by the root system (Wang M. et al., 2021). Compared the network 
properties of four different types of soil, the number of nodes and 
connections in dark brown and saline soil was greater, the connections 
between nodes are more complex, and the molecular ecological 
network becomes more robust. The possible reason is that the content 
of organic matter in the soil is low and the rhizosphere effect of 
syntrophic bacteria is abundant, which strengthens the connection 
between bacterial communities. Conversely, the average degree of the 
black and sandy soil networks was smaller, indicating that the material 
information transfer efficiency between species is higher, but fewer 
connections and relationships. Therefore, they have a sensitive response 
to the outside world (Yu et al., 2021; Zhang H. et al., 2021). Because 
higher organic matter results in a weakened rhizosphere effect, thereby 
avoiding competition (Gustavo, 2022).

4.3 Investigating the direct and indirect 
effects of soil properties influenced by S 
fertilization on maize yields

Structural equation modeling analysis revealed that S application 
influenced soil physicochemical property, which in turn had direct or 
indirect effects on maize yields by impacting soil bacterial communities 
(Yu et al., 2019). The soil pH contents were the most important drivers 

controlling maize yields indirectly, through mediation of soil bacterial 
communities. In addition, AS and OM content directly affected maize 
yield (Figure 5). Microbial activities facilitate S oxidation and reduction 
reactions, which are pivotal in driving the soil sulfur cycle (Su et al., 
2017; Wang Q. et al., 2021). Several investigation shaved demonstrated 
that fertilizers indirectly alter the soil bacterial community structures 
and other characteristics or directly affect crop production by affecting 
soil physicochemical and microbial properties. Therefore, reasonable 
fertilization has great significance to improve crop yields and maintain 
soil properties (Yu et al., 2016; Hou et al., 2022).

4.4 Predicted pathways of bacterial 
communities in maize rhizosphere soil

At present, there is limited research on the prediction of functional 
characteristics of bacterial community structure in maize rhizosphere 
soil in response to sulfur fertilizer application. In this article, the use of 
PICRUSt2 expands upon the original PICRUSt1 approach for predicting 
community functional potential based on marker gene sequencing date. 
It is utilized to investigate the influence of S application on genes 
associated with sulfate reduction functional (Wang et al., 2022).

Sulfate was turned into adenosine phosphosulfate (APS) to 
3′-phosphoadenylyl sulfate (PAPS) to sulfite to sulfide (Zhang et al., 
2019). A total of five genes were detected to participate in the four-
step reaction process of the dissimilatory sulfate reduction pathway. 
Firstly, sulfate was converted into ammonium persulfate (APS), and 
then APS was converted into sulfite. Finally, sulfite was transformed 
into sulfide (Zhang et al., 2019). A total of seven genes were detected 
to participate in the four-step reaction process of the assimilatory 
sulfate reduction. The genes K00394 (aprA), K00395 (aprB), K11180 
(drsA), and K11181 (drsB) exhibit a negative trend with S application. 
This validates that the high application of S inhibited the dissimilatory 
sulfate reduction process (Li et  al., 2022). While reports on the 
assimilatory sulfate reduction process are limited, it has been 
observed that assimilatory sulfate reduction occurs more frequently 
compared to dissimilatory sulfate reduction (Linz et al., 2018). The 
results of this study showed that more sulfate reducing genes were 
enriched in S0 treatment (sat, aprA, aprB, drsA, and drsB), which is 
consistent with the research results of Zhang H. et al. (2021).

5 Conclusion

In summary, according to the results of the present study, S 
application can notably alter soil physiochemical properties. With 
increased S application, soil pH gradually decreased and AS steadily 
increased. Compared to the other three soil types, black soil was 
more sensitive to the S application. In addition, network analysis 
showed that S application alters the abundance of keystone taxa in 
all four types of soil. The application of S reduced of most 
dissimilatory and assimilated sulfate reduction genes. S application 
and the type of soil, either together or independently, have an effect 
on both the properties of the soil and the structure of the bacterial 
community. The properties of the soil, along with the bacterial 
communities, directly and indirectly impacts on maize yields with 
S application.
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