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Global climate change has altered the frequency of soil freeze–thaw cycles, 
but the response of soil microorganisms to different elevation gradients during 
the early freeze–thaw period remains unclear. So far, the influence of the 
altitudinal gradient on the microbial community and metabolic characteristics 
in the early freeze–thaw period of the Qinghai Lake Basin remains unclear. 
To this end, we collected soil at different elevations in the early freeze–thaw 
period of the Qinghai Lake Basin and investigated the influence of the elevation 
gradient on soil microbial community characteristics and soil metabolic 
processes as well as the corresponding environmental driving mechanism 
by high-throughput sequencing and LC–MS (Liquid Chromatograph-Mass 
Spectrometer) nontargeted metabolite determination. The results showed 
that Proteobacteria were the dominant microflora in the Qinghai Lake Basin. 
The dominant phyla associated with carbon and nitrogen are Proteobacteria 
and Firmicutes, both of which are significantly affected by elevation. The soil 
physicochemical factors jointly affected the soil microbial communities and 
metabolism. Total phosphorus nitrate nitrogen and pH were the main driving 
factors of the microbial community, and metabolites were sensitive to changes 
in chemical factors. In short, the microbial community structure and function, 
soil physicochemical factors and soil metabolic processes were significantly 
affected by the altitudinal gradient in the early freeze–thaw period, while the 
microbial community diversity showed no significant response to the altitudinal 
gradient. Additionally, a high potassium content in the soil may promote the 
growth and reproduction of bacteria associated with carbon and nitrogen 
cycling, as well as the production of metabolites.
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1 Introduction

Soil microorganisms are important components and key driving 
factors of biogeochemical cycles (Bardgett and van der Putten, 2014; 
Thakur and Geisen, 2019), they are extremely sensitive to 
environmental changes (Shen et al., 2015; Deng et al., 2016), and their 
community characteristics have been used as key indicators of feedback 
climate warming (Davidson and Janssens, 2006). Freeze–thaw 
processes (periodic fluctuations in soil temperature and water phase) 
usually cause direct physical damage to soil microorganisms, and also 
change the ecological niche of soil microbial communities by affecting 
the soil microenvironment (Ren et al., 2018; Hou et al., 2020). Seasonal 
freeze–thaw soil has an abundance of microbial resources and rich soil 
nutrient content, with a remarkably wide distribution area (Wu et al., 
2022). In recent decades, the impact of global climate change has led 
to the degradation of some permafrost into seasonally frozen ground. 
Previous research has consistently shown that soil microorganisms 
exhibit distinct responses to seasonal freeze–thaw cycles. For example, 
Liu et al. (2022) discovered that the increase in temperature as soil 
thaws stimulates the proliferation of numerous bacteria and lead to 
changes in the ecological network of these microorganisms. Chen et al. 
(2023) conducted a study on the soil bacterial community in alpine 
wetlands during seasonal freeze–thaw cycles. Their results showed that 
in the Alpha diversity of the soil bacterial community steadily 
decreased throughout the freeze–thaw period and the dominant 
bacterial community remained unchanged. Shi et al. (2023) investigated 
the effects of biochar and freeze–thaw cycles on bacterial communities 
and their diversity in cold black soil areas. The results showed that 
biochar significantly increased the richness and diversity of soil 
bacteria before and after the freeze–thaw. The seasonal freeze–thaw 
cycle typically includes three distinct phases. In the early phase of 
freeze–thaw cycle, the frozen soil layer is relatively thin and is subject 
to frequent freeze–thaw cycles. At the same time, temperature and 
moisture are subject to rapid fluctuations (Chen et al., 2023). The soil 
microenvironment is also changing rapidly, which has further effects 
on soil microorganisms. In addition, in the context of global climate 
change, the content of various soil carbon and nitrogen species in the 
soil may continue to increase during the initial freeze–thaw period (Liu 
et al., 2023). Therefore, it is imperative to study the characteristics of 
the soil microbial community during the initial freeze–thaw period.

As an important topographic factor, elevation change will cause 
changes in climate factors and soil physical and chemical properties, 
which will directly or indirectly lead to significant changes in 
biological and abiotic factors (He and Chen, 1997; Long et al., 2019) 
and further affect soil microorganisms (Zhou et al., 2021; Ma et al., 
2022). With the rapid development of sequencing technology, there 
have been many studies on soil microbial changes at different 
elevations, and the research results have varied. Nottingham et al. 
(2018) showed that temperature was the main driving factor of soil 
microorganisms at different altitudinal gradients, and the richness of 
soil microbial species decreased with increasing elevation, while the 

difference in community composition increased with increasing 
elevation. Li et al. (2018) systematically studied the pattern of soil 
bacterial diversity along the elevational gradients of Gongga Mountain 
with an altitudinal range of 1800 ~ 4,100 m and found that soil 
bacterial diversity was distributed in a stepped pattern along the 
altitudinal gradient, and the change in bacterial diversity was not 
obvious at higher elevations (2,800 ~ 4,100 m). Shen et  al. (2020) 
showed that bacteria and fungi had different diversity patterns along 
an elevational gradient. Bacterial diversity presented a U-shaped 
distribution, while fungal diversity decreased monotonically. Singh 
et al. (2014) studied the relationship between the bacterial diversity 
and community composition and elevation on Halla Mountain, Jeju 
Island, South Korea, and found that the bacterial community diversity 
and richness were correlated with the altitudinal gradient, which was 
mainly significantly affected by climate change. In summary, the 
regional differentiation of microorganisms is closely related to 
elevation, which is an important factor affecting the 
microbial community.

The temperature increase rate of the Qinghai-Tibet Plateau is 
significantly amplified with increasing elevation (Liu et al., 2009), 
which makes the freeze–thaw effect sensitive to climate change. The 
freeze–thaw pattern changes obviously with climate change (Borken, 
2008), which further affects microbial community characteristics 
(Wang et al., 2013; Luo et al., 2014). While previous studies have 
provided valuable insights into the relationship between the freeze–
thaw process or elevation and microbial community characteristics, 
there has been a lack of a comprehensive analysis combining the 
repeated freeze–thaw cycles with the vertical differentiation of 
microbial distribution patterns during the early phage of freeze–thaw 
cycle at high elevations. The Qinghai Lake Basin, located in the 
northeastern part of the Qinghai-Tibet Plateau, is ecologically 
sensitive and vulnerable to global climate change, which is crucial to 
maintaining the ecological balance of the region (Chen et al., 2009; Li 
et al., 2012). The basin is characterized by perennial low temperatures, 
long winters and short summers. Permafrost occurs mainly in the 
northwestern part of the region, while seasonal permafrost occurs in 
the central and eastern parts of the basin (Gao and Zhang, 2019).

Therefore, in this study, to explore the influence of different 
elevations on soil microorganisms in the early freeze–thaw period of 
the Qinghai Lake Basin, soil microorganisms at different elevations 
(3,200 ~ 4,100 m) in the early freeze–thaw period of the Qinghai Lake 
Basin were studied. The diversity index, community structure and 
functional groups of microbial communities under five altitudinal 
gradients were analyzed, and LC–MS untargeted metabolism was used 
to analyse the differential metabolites between groups and the 
corresponding KEGG enrichment pathway. Our objectives were to (1) 
study the dynamic changes in microbial communities and soil 
metabolites at different points along an altitudinal gradient in the early 
freezing–thawing period, (2) assess the response of microbial 
communities and soil metabolites to environmental factors under the 
influence of elevation gradients, and (3) analyse the interaction 
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between microbial community changes and soil differential 
metabolites. The results can provide a theoretical basis for 
understanding the microbial mechanism of carbon and nitrogen 
cycling in the ecosystem of the Qinghai Lake Basin.

2 Materials and methods

2.1 Overview of the sampling sites

The Qinghai Lake basin (36°15′ ~ 38°20’N, 97°50′ ~ 101°20′E) is 
located on the northeastern Qinghai-Tibet Plateau at the intersection 
of the northwest arid area, eastern monsoon area and Qinghai-Tibet 
Plateau. Under climate warming, the land surface ecosystem of the 
basin, which is a typical plateau continental climate, changes 
dramatically. Surrounded by mountains, the basin is low in the 
southeast and high in the northwest, with an elevation between 3,194–
5,174 m (Ren et al., 2020) and a drainage area of 29,661 km2 (Li et al., 
2017). In this region, the diurnal temperature difference is large, the 
average annual temperature is −1.5 ~ 1.5°C, the precipitation is mainly 
concentrated in May–September, and the maximum rainfall is in July 
August. The distribution pattern of precipitation has obvious spatial 
and temporal heterogeneity, with the average annual precipitation 
ranging from 252 to 514 mm and the average annual evaporation 
ranging from 1,300 to 2,000 mm (Wang et al., 2022). The vegetation 
and soil types in the basin vary significantly with increasing elevation, 
and the vegetation types are divided into warm steppe, alpine steppe, 
alpine shrub and alpine meadow, and the soil types are chestnut soil, 
alpine meadow soil and alpine desert soil (Li et  al., 2014). The 
distribution of sampling points is shown in Figure 1.

2.2 Experimental design, sample collection, 
and indoor processing

Five typical sample sites along Qinghai Lake and its tributaries 
were selected in combination with the elevation. Samples were 
collected in October 2021 at the early freezing–thawing stage of daily 
night soil freezing in the Qinghai Lake basin. The elevation interval of 
the sample points was approximately 200 meters, and they were 
named ND, TJ, WY, TA and TB in order of elevation 
(Supplementary Table S1). At each sampling site, five plots (1 m × 1 m) 
with flat terrain and uniform plant distribution were randomly 
selected. Five sampling points were randomly selected in each plot 
along an “S”-shaped curve. A soil auger with a diameter of 5 cm was 
used to collect topsoil samples from 0 to 10 cm. Each soil sample was 
evenly mixed, after which visible roots and other plant residues were 
removed, and then, the soil samples were passed through a 2-mm 
sieve and divided into two parts. One part was stored in a 10-mL 
Eppendorf tube and placed in a liquid nitrogen tank for high-
throughput sequencing of soil-denitrifying microorganisms. The 
other part was stored at 4°C for the determination of soil-available 
potassium (AK), total potassium (TK), ammonium nitrogen (AN), 
nitrate nitrogen (NN), available phosphorus (AP), organic matter 
(OM), total nitrogen (TN), total carbon (TC), temperature (Tem), 
moisture (Moi), total phosphorus (TP) and pH.

AK and TK (flame photometry) were measured using an FP6410-
flame photometer (Shanghai Instrument and Electronics Analytical 

GmbH, China). AN (sodium salicylate method) and NN (hydrazine 
sulfate reduction method) were measured using a continuous flow 
analyser (FUTURA, France). AP was measured using the double acid 
extraction - molybdenum antimony resistance colorimetric method 
(ultraviolet visible spectrophotometer UV-1900i, Shimadzu, Japan). 
OM was measured with the potassium dichromate-concentrated 
sulfuric acid external heating method (Plander Titrette Titrator, 
Germany). TN and TC were measured with an elemental analyser 
(Vario EL III, Elemental Analysis System GmbH, Germany). 
Temperature and moisture were measured with a TZS-1 K soil 
temperature and moisture meter (Zhejiang Top Technology Co., LTD, 
China). TP was measured using the sodium hydroxide melting  - 
molybdenum-antimony resistance colorimetric method (ultraviolet 
visible spectrophotometer UV-1900i, Shimadzu, Japan). Soil pH (soil 
to water ratio 1:2.5) was measured with a pH meter (Mettler Toledo, 
Switzerland).

2.3 DNA extraction, polymerase chain 
reaction (PCR) amplification, and soil 
metabolomics

DNA was extracted from 0.25 g of homogenized soil sample, using 
a PowerSoil DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, 
CA, USA) according to the manufacturer’s recommendation. To 
eliminate as much error as possible, DNA was extracted three times 
from each sample, mixed, and then subjected to 40 min of agarose gel 
electrophoresis at a 1% gel concentration. A NanoDrop UV–Vis 
spectrophotometer (ND-2000c, NanoDrop Technologies, 
Wilmington, DE, USA) was used for the determination of DNA purity 
and integrity. The PCR was performed with 16S rRNA-specific 
primers 341F (5’-CCTAYGGGRBGCASCAG-3′) and 806R 
(5’-GGACTACNNGGGTATCTAAT-3′) to amplify highly variable 
V3-V4 region sequences (Huse et al., 2008). The PCR process was 
performed using a 20 μL PCR system. The PCR instrument model was 
ABI GeneAmp® 9,700, and the specific PCR process was carried out 
as previously described (Tian et al., 2018). The PCR products were 
purified according to the standard of the AxyPrep PCR purification 
kit (AxyGen, San Francisco, CA, USA). Finally, amplicon sequencing 
was performed using the Illumina HiSeq platform from Shanghai Ling 
Biological Co., LTD. The total number of Circular Consensus 
Sequencing reads for 15 samples was 679,658.

2.4 Liquid chromatography–tandem mass 
spectrometry

Accurately weigh the correct amount of soil sample and place it 
into a 2 mL centrifuge tube. 600 μL of methanol–water was added 
(V:V = 7:3 with L-2-chlorophenylalanine, 4 μg/mL), steel ball was 
added and placed in the tissue grinder, grinding at 55 Hz for 90 s for 
30 min at room temperature ultrasonicated, placed on ice for 30 min, 
centrifuged for 10 min at 12000 rpm and 4°C. The supernatant was 
filtered through a 0.22 μm membrane, and the filtrate was added to the 
test bottle for LC–MS detection. In addition, the quality control (QC) 
samples were prepared by uniformly mixing the extracts from each 
sample, and metabolites were extracted simultaneously with the 
experimental samples. LC/MS analyses were performed using the 
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UHPLC-Q-Orbitrap HRMS® system (Thermo Fisher Scientific™, 
USA) and an ACQUITY UPLC BEH® C18 column (2.1 × 100 mm, 
1.7 μm, Waters™, USA). In the positive ion mode, the mobile phase 
consists of 0.1% acetonitrile (B) and 0.1% formic acid water (A), and 
in negative ion mode, the mobile phase consists of acetonitrile (B) and 
5 mM ammonium formate water (A). The gradient elution method 
was referred to the relevant literature (Li et al., 2022).

2.5 Sequencing and data analysis

Bioinformatics analysis of microbiome disembarkation data was 
conducted through the QIIME 2 (2019.4) process (Bolyen et al., 2019). 
Read labels and primers were removed from the original sequence 
data by the cutadapt plug-in (Martin, 2011), and then the DADA2 
plug-in (Callahan et al., 2016) was used to obtain error-free biological 
sequences through quality control, error correction and chimaera 
removal for sequence noise reduction. The amplicon sequence variants 
(ASVs) obtained after deduplication were taken as the minimum taxa. 
Finally, taxonomic identification of each representative ASV sequence 
was conducted by the Ribosomal Database Project (RDP) classifier 
(Quast et  al., 2012) based on the Silva Release138.1 (http://www.
arb-silva.de) bacterial database (Wang et al., 2007). ASV numbers and 
annotation results were sorted through the Phyloseq package with R 
software (version 4.1.2).

The MicrobiotaProcess package was used to plot sample dilution 
curves and calculate alpha and beta diversity indices. The alpha 
diversity index was plotted by ggbox, PCA was plotted by ggordpoint, 
and p values between groups were calculated by the Wilcoxon rank 

sum test. ANOSIM results were calculated based on Bray–Curtis 
distance in the Vegan package, variance analysis with the aov function 
was performed to calculate p values of phylum level and genus level 
species abundance between different groups, and FAPROTAX (Liang 
et al., 2019) predicted the function of microflora. The LinkET package 
calculated the correlation and plotted the correlation network 
heatmap. After determining data in the Vegan package, redundancy 
analysis (RDA) was conducted based on a linear model to reveal the 
correlation among sample distribution, denitrification microbial 
community and environmental factors.

The mixOmics package was used to perform PLS-DA (Partial 
Least-Squares Discriminant Analysis), the ropls package was used to 
calculate VIp values between groups, and aov functions were used to 
calculate P values of metabolite abundance in different groups. The 
clusterProfiler package was used to count the number of metabolites 
in the KEGG pathway. Boxplots, species composition maps, 
differential species histograms, PLS-DA, metabolite expression 
calorigrams and enrichment pathway maps were all drawn by ggplot2. 
The psych package was used to calculate correlations between the data, 
and Cytoscape 3.9.1 was used to plot the network.

3 Results

3.1 Soil microbial diversity index at different 
elevations

To determine the response of the soil microbial community to 
the altitudinal gradient, the Illumina platform was used to conduct 

FIGURE 1

Sampling point distribution.
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high-throughput sequencing. Figure 2A shows that the sequencing 
dilution curve of each sample tended to be flat, indicating that the 
amount of sequencing data was reasonable and that the current 
sequencing depth was sufficient to reflect the microbial community 
composition. In addition, the number of bacterial ASVs was the 
highest in the TB sample site and the lowest in the ND sample site. 
Alpha diversity analysis of soil microorganisms at different 
elevations in the early freeze–thaw period of the Qinghai Lake 
watershed (Figure 2B) showed that the species richness indices of 
microorganisms (ACE, Chao1, observed) showed an increasing 
trend with the increase in elevation. The Shannon index also 
showed the same rule. The Pielou index and Simpson index showed 
a U-shaped change with the increase in elevation, which first 
decreased and then increased, but the alpha diversity index showed 
no statistically significant difference among different groups 
(p > 0.05). The results of the PCoA (Figure 3A) showed that WY 
and TA had high soil heterogeneity, and the soil microbial 
community structure in the early freeze–thaw stage of the Qinghai 
Lake basin changed along the altitudinal gradient. The ANOSIM 
results (Figure  3B) further confirmed that this change was 
statistically significant (p = 0.001) and that grouping was 
significantly effective.

3.2 Soil microbial community structure at 
different elevations

The soil microbial communities varied greatly at different 
elevations in the Qinghai Lake basin (Figure  4A). In general, 
Proteobacteria (43.99–50.64%), Actinobacteria (22.40–26.77%), 
Firmicutes (18.11–26.10%) and Spirochaetes (0.72–3.96%) were the 
four dominant phyla. With increasing elevation, the relative 
abundance of Spirochaetes showed an increasing trend (Figure 5A), 
and the relative abundance of Firmicutes in the TJ group was the 
highest. The variation trend of Proteobacteria with the altitudinal 
gradient showed that it first increased and then decreased.

At the genus level (Figure  4B), Azospirillum had the highest 
abundance, followed by Lactobacillus (16.71–24.80%), Streptomyces 
(10.63–15.20%), Cutibacterium (8.16–15.80%), Treponema (0.71–
3.94%) and Pararhodospirillum (0.89–1.99%). Figure 5B shows that 
the relative abundance of Pararhodospirillum showed a U-shaped 
trend with increasing elevation, the relative abundance of Treponema 
and Streptomyces showed an increasing trend, and the relative 
abundance of Cutibacterium showed the opposite trend. The relative 
abundance of Lactobacillus in group TJ was significantly higher than 
that in other elevation gradients, and the relative abundance of 
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Azospirillum showed a trend of first increasing and then decreasing 
with increasing elevation.

3.3 Functional groups of soil 
microorganisms

To clarify the functions of microbial communities under different 
altitudinal gradients, we predicted 38 functional groups of microbial 
communities in the early freeze–thaw stage of the Qinghai Lake basin 
through FAPROTAX (Figure 6A). The function of microflora was 
mainly chemoheterotrophy (24.64% ~ 28.07%), followed by aerobic 
chemoheterotrophy (17.80% ~ 20.35%), nitrogen fixation 
(13.32% ~ 14.86%), ureolysis (13.31% ~ 14.85%) and fermentation 
(6.84% ~ 9.54%). There were 20 functional groups related to the 
carbon-nitrogen cycle in the biogeochemical cycle (Figure 6B), and 25 
genera-level microorganisms belonged to 8 phyla. Proteobacteria and 
Firmicutes were the main phyla. The main functional group of 
Westiellopsis was phototrophy, and chemoheterotrophy was the main 
functional group of other bacteria. Azospirillum, Lactobacillus, 
Streptomyces and Treponema had high relative abundances. Further 
analysis of the relationship between different allocational gradients 
and CN cyclic functional groups with relative abundances greater than 
0.1% showed that 6 functional groups were significantly responsive to 
the allocational gradient (Figure 7), and the ND group had the lowest 
relative abundance of these functional groups. The relative abundance 
of aromatic_compound_degradation showed a gradual increase with 
elevation. The highest relative abundance in group TJ was significantly 
higher than that in group ND, and the remaining 4 functional groups 
showed a trend of first increasing and then decreasing with elevation.

3.4 Relationship among soil physical and 
chemical properties and microbial 
communities

The physical and chemical properties of soil in the Qinghai Lake 
basin were significantly affected by the altitudinal gradient, and 

different soil environmental factors had different responses to different 
elevations (Figure 8). The AK and TK contents in the TJ group were 
significantly higher than those in the other groups. The pH and Tem 
values of the ND group were the highest among all groups. The AP 
content of the ND group was not significantly different from that of 
the WY group but was significantly higher than that of the other three 
groups. The Moi value of the TA group was the highest. In addition, 
the contents of NN, AN, OM, TC, TN, and TP in the WY group were 
the highest, and the contents of these 6 chemical factors were many 
times those in the other groups and showed a trend of first increasing 
and then decreasing with the gradual increase in elevation.

The results of the correlation analysis showed that there was a 
significant positive correlation between TN, TC, TP, OM, NN and AN 
(Figure 9A), a significant negative correlation between TN, TC, TP, 
OM, AN, Moi and pH, a significant positive correlation between AK 
and NN, AP and Tem, and a significant negative correlation between 
TK and Tem. Moi was significantly correlated with the dominant 
bacterial phyla but not with other physicochemical factors, and the 
dominant genera were significantly affected by TN, TC, TP, OM, NN, 
and AN. Furthermore, RDA showed that TP and NN were the most 
important influencing factors of dominant bacterial genera 
(Figure 9B). pH also plays an indispensable role in influencing the 
dominant microflora at the genus level. In addition, TN, TC, and TK 
also had a certain influence on the dominant microflora at the 
genus level.

3.5 Characteristics of soil microbial 
metabolism

To further explore the response mechanism of microorganisms at 
different elevations in the early freezing–thawing period, 
metabolomics analysis was performed using LC–MS. The PCA results 
showed that the QC samples were tightly clustered (Figure  10A), 
indicating the reproducibility of the experimental method and the 
stability of the instrumental analysis system. The data were stable and 
reliable and could be used for subsequent analysis. Partial least squares 
discriminant analysis (PLS-DA) was used to reveal the differences in 
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Soil microbial Beta diversity at different elevations in the early freezing–thawing stage of the Qinghai Lake watershed. (A) PCA principal component 
analysis; (B) Analysis of differences between ANOSIM groups.
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metabolic profiles among the groups (Figure  10B). There were 
significant differences between the ND, TJ, and WY groups and the 
TA and TB groups, and the differences among the former groups were 
statistically significant, but the differences between the TA and TB 
groups were relatively small. With VIP greater than 1, absolute value 
of log2 (FC) greater than 1, P less than 0.05, and relative abundance 
greater than 0.1% as the screening conditions for metabolites, 26 
qualified metabolites were found, and expression calorimetry maps 
were drawn (Figure  11A). The results showed that the relative 
abundance of most metabolites first increased and then decreased 
with the elevation gradient. The relative abundance of six metabolites 
(Inosine, N6-acetyl-L-lysine, tetracycline, 4-pyridoxic acid, 
hypoxanthine, and N-acetyl-D-galactosamine) was the highest in 
group TJ. In addition, the relative abundances of the 10 metabolites 
(2′-deoxyguanosine, adenosine, cytosine, uridine, L-glutamic acid, 
thymidine, guanine, methylmalonic acid, trehalose and uracil) were 

highest in the WY group. However, the relative abundance of dulcitol, 
verbascose and stachyose reached the maximum in the TA group. In 
addition, the relative abundance of 4-oxoproline, pantothenic acid, 
choline, adenine and cytarabine increased with the elevation gradient. 
Furthermore, the relative abundance of betaine and salicylic acid 
decreased gradually with increasing elevation.

To clarify the mechanism of the relationship between differential 
metabolites in biological processes, we performed KEGG pathway 
enrichment analysis on 26 different metabolites, and bubble maps 
were drawn based on the first 20 pathways of differential metabolite 
enrichment (Figure 11B). Except for verbascose and cytarabine, 24 
metabolites were identified in these metabolic pathways. There were 
10 different metabolites enriched in the nucleotide metabolism 
pathway. These metabolites were uridine, thymidine, guanine, 
cytosine, 2′-deoxyguanosine, adenine, adenosine, hypoxanthine, 
uracil and inosine. Eight metabolites were enriched in the ABC 
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FIGURE 4

Composition of soil microbial species at different elevations in the early freeze–thaw period in the Qinghai Lake Basin. (A) Phylum level; (B) genus level.
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transporter pathway: trehalose, uridine, betaine, choline, 
2′-deoxyguanosine, adenosine, L-glutamic acid and inosine. Purine 
metabolism and biosynthesis of secondary metabolites were enriched 
with 6 metabolites. The differential metabolites guanine, 
2′-deoxyguanosine, adenine, adenosine, hypoxanthine and inosine 
were enriched in the former, and the differential metabolites enriched 
in the latter were trehalose, salicylic acid, tetracycline, adenine, 
L-glutamic acid and pantothenic acid. Five metabolites were enriched 
in the pyrimidine metabolism pathway, namely, uridine, 
methylmalonic acid, thymidine, cytosine and uracil. All of the above 
pathways were significantly enriched except biosynthesis of secondary 
metabolites. Moreover, five metabolites, uridine, 2′-deoxyguanosine, 
adenine, adenosine and inosine, play roles in multiple metabolic 
pathways. In the other pathways, only 1 ~ 3 different metabolites 
were enriched.

3.6 Correlation network analysis

RDA found that AP had the least effect on different metabolites, 
and soil temperature, moisture (Tem, Moi) and TK had little effect on 
different metabolites (Figure 12). TC, TN, TP, AN, NN, OM and AK 
were positively correlated with the vast majority of different 
metabolites, and pH was negatively correlated with most of the 
different metabolites. Correlation network analysis of different 
metabolites clarified the relationship between metabolites (Figure 13), 
and most metabolites were positively correlated with each other 
(r > 0.6). In the three metabolites with relative abundances greater than 
1% of trehalose, betaine and guanine, the correlation coefficient 
between trehalose and adenosine, methylmalonic acid, guanine and 
cytosine, thymidine, 2′-deoxyguanosine, and L-glutamic acid was 
greater than 0.8. In addition, there was a significant negative 
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correlation between some metabolites (r < − 0.6). Betaine was 
negatively correlated with adenine, cytarabine and stachyose, trehalose 
was negatively correlated with salicylic acid, and verbascose was 
negatively correlated with N6-acetyl-lysine and N-acetyl-D-
galactosamine. Furthermore, N6-acetyl-lysine was negatively 
correlated with stachyose, and the correlation coefficients among all 
the metabolites with negative correlations were less than 0.8. 
Moreover, 22 metabolites were associated with a significantly enriched 
bacterial group (|r| > 0.6) (Figure 14). Of the four genera associated 
with the CN cycle, Azospirillum was positively correlated with dulcitol 
and stachyose, Lactobacillus had a significantly negative correlation 
with inosine and hypoxanthine, and Streptomyces was positively 
correlated with trehalose, uridine, hypoxanthine, N-acetyl-D-
galactosamine, inosine and uracil. Treponema was significantly 
associated with most of the differential metabolites; among them, 
uridine, N-acetyl-D-galactosamine, trehalose, L-glutamic acid, 
hypoxanthine, uracil, inosine, methylmalonic acid, cytosine, 
2′-deoxyguanosine, adenosine, N6-acetyl-L-lysine and tetracycline 

were significantly positively correlated but significantly negatively 
correlated with verbascose and stachyose. Hypoxanthine, inosine, 
N-acetyl-D-galactosamine, uracil, uridine, trehalose and stachyose 
interact with two to three major bacterial communities of the carbon 
and nitrogen cycles, and they may play an important role in the 
carbon and nitrogen cycles of the soil ecosystem in the early freeze–
thaw period of the Qinghai Lake Basin under the influence of an 
altitudinal gradient.

4 Discussion

4.1 Response of the microbial community 
to altitudinal gradients

Elevation can regulate the of the environment, affecting nutrients 
in the soil and thus influencing the diversity of bacterial communities 
(Shen et al., 2020). The diversity index of soil microorganisms in the 
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Functional groups of soil microorganisms at different elevations in the early freeze–thaw period in the Qinghai Lake Basin. (A) Distribution of functional 
groups of samples; (B) CN circulating functional group-related microflora.
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Qinghai Lake Basin was less affected by the altitudinal gradient in the 
early freeze–thaw period, and the difference between groups was not 
statistically significant. The systematic investigation of a previous 
study on the pattern of soil bacterial diversity on Mount Gongga with 
an elevation gradient of 1800 ~ 4,100 m also showed that the variation 
in bacterial diversity was not obvious in the region with a higher 
elevation (2,800 ~ 4,100 m) (Li et al., 2018), which was consistent with 
the results of this study. Compared with other community 
characteristics of soil microorganisms, community composition is 
more sensitive to environmental changes (Papatheodorou et al., 2004). 
The changes in elevation did not affect the dominant bacterial species 
in the Qinghai Lake Basin (An et  al., 2019; Li et  al., 2019a), and 
Proteobacteria was still the most dominant bacteria at the phylum 
level. However, the relative abundance of Proteobacteria was 
significantly affected by the elevation gradient, and showed a trend of 
first increasing and then decreasing with the elevation gradient. 
Among the other dominant bacteria, the relative abundance of 
Actinobacteria did not change significantly. This stability is thought to 
be due to the microflora’s resistance to external pressures, their ability 
to absorb soil water and minerals, and also their promotion of the 
secretion of compounds that break down soil organic matter 
(Mackelprang et al., 2011; de Vries and Shade, 2013). Firmicutes can 
resist dehydration and extreme environments and enhance host 
metabolism (Zhao et al., 2018). Its relative abundance peaked at TJ 
and was significantly higher than that at ND and WY, which may 

be related to the high potassium content in TJ. The relative abundance 
of Spirochaetes was also significantly affected by elevation, and its 
relative abundance at WY was significantly higher than that at ND and 
TJ at lower elevations. In addition, the relative abundance of 
Azospirillum, as the dominant genus, first increased and then 
decreased with increasing elevation, and the change was significant. It 
is speculated that the microflora with significant changes in relative 
abundance may be  due to their rapid response (Davidson and 
Janssens, 2006), which can adjust their state in time to cope with the 
changes in the soil microenvironment caused by changes in elevation.

The soil microbial community composition is closely related to 
its ecological functions (Wei et al., 2018). We predicted the microbial 
community function using FAPROTAX and found that the number 
of functional groups of microorganisms in the Qinghai Lake Basin 
was 38. Among them, 20 functional groups were involved in the 
carbon and nitrogen cycling processes of the biogeochemical cycle, 
and the corresponding 25 genus-level microbial communities were 
obtained through reverse screening data. They are characterized by 
chemoheterotrophy and belong to eight phyla, with Proteobacteria 
and Firmicutes being the main phyla. Wei et al. (2018) compared the 
characteristics and functions of bacterial communities in forest soil 
in China and showed that Proteobacteria, Firmicutes and 
Actinobacteria have heterotrophic functions and play important 
roles in carbon and nitrogen metabolism, elemental geochemical 
cycling and organic degradation. Azospirillum, Lactobacillus, 
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Streptomyces and Treponema are abundant and may play an 
important role in soil carbon and nitrogen cycling in the early 
freeze–thaw period of the Qinghai Lake Basin. The six functional 
groups of carbon and nitrogen cycles were obviously responsive to 
the elevation gradient. The relative abundance of aromatic_
compound_degradation gradually increased along the elevation 
gradient, and the relative abundance of the TJ group was the highest, 

which may indicate that high potassium content favors the 
degradation of aromatic compounds. The relative abundance of the 
remaining functional groups showed a trend of first increasing and 
then decreasing, which was consistent with the trend of change in 
the relative abundance of Proteobacteria. It may be that changes in 
the soil microenvironment caused by elevation differences affect the 
function of soil bacteria (Li et al., 2016; Zhou et al., 2016).
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4.2 Interaction of physicochemical factors 
and microbial communities at different 
elevations

Soil environmental factors such as soil moisture and nutrient 
availability, play key roles in soil microbial community characteristics 
(Burns et al., 2013). Studies on soil environmental factors in the early 
freeze–thaw period of the Qinghai Lake Basin showed that there are 
differences in the ecological environment at different elevation 
gradations, and various indices of soil physiochemistry also change 
with elevation, but there was no unified rule. Temperature is an 
important factor affecting the soil microbial community (Zhou et al., 
2016), and generally decreases steadily with increasing elevation. In 
this study, it was found that the soil temperature at the WY sampling 
site increased sharply and significantly, and the temperature changes 
at the other sampling sites were consistent with this rule, which may 
due to the comprehensive influence of the parent material of the soil 
formation and the regional microclimate. The Moi first decreased, 
then increased and then decreased along the elevation gradient, 
without a corresponding rule, which was consistent with the results of 
Tan et al. (2021). Among the other environmental factors, soil pH and 
AP showed U-shaped changes along the elevational gradient. The 
contents of AK, TK, NN, AN, OM, TC, TN, and TP initially increased 
and then decreased with the gradual increase in elevation. This trend 
could be due to the decrease in temperature caused by the increase in 
elevation, which in turn reduces the CO2 flux on the soil surface, thus 
increasing the accumulation of its content (Zhang et  al., 2021). 
However, when soil temperature and moisture reach a certain value, 

it negatively affects the accumulation of soil chemical factors (Wang 
et al., 2018), resulting in a rapid reduction in their content.

As important indices for assessing soil nutrient cycling in 
ecosystems (Shen et al., 2015; Deng et al., 2016), soil microorganisms 
are significantly affected by soil physicochemical variables (Li et al., 
2016; Bai et  al., 2017). Microbial communities are influenced by 
several environmental factors, and the study of Li et al. (2016) on the 
Qinghai-Tibet Plateau also found that soil nutrient conditions such 
as total soil carbon, total organic carbon, total nitrogen, total 
phosphorus and total potassium significantly affected the soil 
microbial community. Previous studies have shown that the 
composition and function of the soil microbial community are 
mainly affected by soil moisture, pH, temperature, soil organic 
carbon and nutrients (Li et al., 2019b; Yang et al., 2020). Among 
them, soil pH can change the nutrient availability in the soil and thus 
influence the structure of the bacterial community structure (Zeng 
et  al., 2016), which is considered an important factor affecting 
bacterial communities (Liu et al., 2020). In this study, TP and NN 
were found to be  the most important factors affecting the soil 
microbial community, and pH, TN, TC, and TK also had important 
effects on the microbial community in this area, but soil temperature 
and moisture had less influence on the microbial community, which 
differed from previous research results. This may be  due to the 
different optimal pH environments for microbial growth in different 
regions (Tripathi et  al., 2018), leading to certain differences. 
Furthermore, Na et al. found that the bacterial community was not 
affected by soil moisture but by other soil characteristics (Na et al., 
2019), which was consistent with the results of this study.
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4.3 Soil metabolism is driven by 
environmental factors and interacts with 
microbial communities

Soil microbial metabolic diversity is closely related to soil 
nutrient cycling (Liang et  al., 2016; Pang et  al., 2019). The 
redundancy analysis revealed that the different metabolites were 
influenced by the interaction of environmental factors. Soil pH was 
significantly negatively correlated with most different metabolites. 
It is possible that the change in pH directly affects the enzyme 
activity of soil microorganisms and thus affects the metabolic 
process of soil microorganisms (Zhang et al., 2015). TC, TN, TP, 
AN, NN, OM, and AK were positively correlated with most different 
metabolites, indicating that sufficient nutrient availability and 
relative balance of soil nutrients could promote microbial metabolic 
processes (Cui et  al., 2019). Most of the different metabolic 
pathways were enriched in pyrimidine metabolism, purine 
metabolism, biosynthesis of secondary metabolites, ABC 
transporters and nucleotides. Most metabolites in the five metabolic 
pathways also showed a significant positive correlation. This may 
be due to the allelopathy caused by microbial interaction, which 
promotes the metabolic process and results in most changes in 
metabolite content tending to be consistent. This study found that 
22 metabolites were significantly correlated with dominant bacteria 
at the genus level, and previous studies also confirmed that the 
relative abundance of these groups was closely related to functional 
genes of metabolic pathways such as carbohydrate metabolism, 
energy metabolism, amino acid metabolism and environmental 

adaptation (de Scally et al., 2016). In addition, Virgibacillus showed 
a significant negative correlation with verbascose and stachyose, 
which may be  related to the use of sugars by Virgibacillus acid 
production (Heyndrickx et al., 1950). Lactobacillus has a significant 
negative correlation with inosine and hypoxanthine, indicating that 
Lactobacillus has an inhibitory effect on purine metabolism (Wu 
et al., 2021), and this change is likely related to the maintenance of 
acid–base balance in the environment.

5 Conclusion

The species richness and Shannon index indices of 
microorganisms showed an increasing trend with increasing elevation. 
The Pielou index and Simpson index showed a U-shaped change with 
increasing elevation. Proteobacteria were the main microbiota 
associated with carbon and nitrogen cycle, and the trend of relative 
abundance was consistent with that of carbon and nitrogen content. 
Chemoheterotrophy was the main functional group of microorganisms 
associated with the carbon and nitrogen cycle. There were 26 different 
metabolites at different elevations, most of which were enriched in five 
metabolic pathways of KEGG, showing a significant positive 
correlation. Lactobacillus has an inhibitory effect on purine 
metabolism. Total phosphorus and nitrate nitrogen are the most 
important factors affecting microbial communities, and soil 
metabolites were mainly affected by soil chemical factors. Azospirillum, 
Lactobacillus, Streptomyces, and Treponema were the most dominant 
general-level microbial communities associated with the carbon and 
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nitrogen cycling, and they were significantly positively correlated with 
most metabolites.
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