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Leishmaniasis is a vector-borne disease caused by the protozoan parasite of 
Leishmania genus and is a complex disease affecting mostly tropical regions of 
the world. Unfortunately, despite the extensive effort made, there is no vaccine 
available for human use. Undoubtedly, a comprehensive understanding of 
the host-vector-parasite interaction is substantial for developing an effective 
prophylactic vaccine. Recently the role of sandfly saliva on disease progression 
has been uncovered which can make a substantial contribution in vaccine 
design. In this review we try to focus on the strategies that most probably meet 
the prerequisites of vaccine development (based on the current understandings) 
including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative 
approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free 
selection are now available to promisingly compensate for intrinsic drawbacks 
associated with these platforms. Our main goal is to call more attention toward 
the prerequisites of effective vaccine development while controlling the disease 
outspread is a substantial need.
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Leishmaniasis: what we know

Neglected tropical diseases (NTDs) are diseases of poverty that impose a high socio-
economic burden on more than 1 billion people worldwide, mainly in tropical and subtropical 
areas. Despite substantial progress in reducing the overall burden, the current road maps 
toward full eradication still need further improvement. Among the 20 different diseases in this 
category, leishmaniasis remains an unresolved threat to global health with an estimated annual 
rate of 700,000 to 1 million new cases leading to 20,000–30,000 deaths each year.1

Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania 
genus and is a complex disease affecting mostly tropical regions of the world. The parasite with 
a dynamic genome has evolved to advantage a vector (sand fly) mediated transmission for 

1 https://iris.who.int/bitstream/handle/10665/363155/9789240052932-eng.pdf
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successful disease establishment. Decades of labor-intensive hard 
work has partially deconvoluted the host-pathogen interaction which 
is partly controlled by different components deposited into the human 
skin through sand fly proboscis (Serafim et al., 2021). These include 
sand fly salivary proteins (Lestinova et al., 2017), parasite secretory gel 
(Sainz and de la Maza, 2014), exosomes carrying virulence factors 
(Dong et al., 2019, 2021), parasite associated double-stranded RNA 
viruses including Leishmania RNA Viruses (LRVs) (Rossi and Fasel, 
2018) or non-LRV (Grybchuk et  al., 2020) viruses inoculated by 
parasite or parasite exosomes, and even the gut microbiota of sand fly 
(Omondi and Demir, 2021). Sand fly saliva, is composed of different 
immunomodulatory components among which chemotactic factors 
for neutrophils are recently characterized (Guimaraes-Costa et al., 
2021), LRVs trigger TLR-3 for pro-inflammatory cytokine production 
(Hartley et al., 2012), gut microbiota induces IL-1b production via 
inflammasome activation (Dey et al., 2018) and parasite dependent 
factors induce Toll-like receptors (TLR) including TLR-2, TLR-4, 
TLR-7, and TLR-9 (Masoudzadeh et al., 2020a,b). The cumulative 
consequence of this inflammatory response is the massive neutrophilic 
recruitment to the bite site early after infection (Peters et al., 2008). 
While some parasites are killed by neutrophils like Leishmania (L.) 
amazonensis, others are able to survive by skipping the killing 
mechanisms like L. major (Passelli et al., 2021). Depending on the 
parasite species, host related immune response and genetic 
background, neutrophil recruitment to the bite site can then affect the 
outcome of the infection (Peters and Sacks, 2009). Although 
neutrophil function has shown protective in some experimental 
leishmaniasis (de Souza Carmo et al., 2010; Carlsen et al., 2015), in 
other experiments, massive neutrophil recruitment has correlated 
with more prominent lesions by providing a permissive environment 
for disease establishment (Ronet et al., 2019; Chaves et al., 2020).

Vaccine development and current 
gaps in our knowledge

Unfortunately, despite the high burden of the disease around the 
world (more than 1 billion people live in areas endemic for 

leishmaniasis and are at risk of infection with an annual estimation of 
30,000 new cases of VL and more than 1 million new cases of CL), 
there is no vaccine available for human use. All we know so far is that 
full protection against Leishmania parasite-induced infection generally 
requires CD4+-Th1 response. Therefore, extensive effort has been 
made to generate memory Th1 response advantaging so many 
different vaccine platforms with promising experimental results 
(Costa et al., 2011; Dinc, 2022).

It was not until recently when it was realized that vector derived 
compounds abrogate vaccine efficacy in sandfly-derived infection 
(Peters et al., 2009). This has been concluded from the comparisons 
made between leishmanization and different killed or multiprotein 
subunit formulations (already accepted as promising candidates) 
taking into account the sand fly versus needle challenge (Seyed et al., 
2018). ALM-CpG (Autoclaved Leishmania major adjuvanted with 
CpG oligonucleotide) as killed vaccine (Peters et al., 2009) in addition 
to KSAC-GLA.SE [recombinant protein adjuvanted with stable 
emulsion (SE) formulation of glucopyranosyl lipid A (GLA)] and 
L110F-GLA.SE as poly-protein vaccines (Peters et al., 2012) have been 
compared in protection efficacy to leishmanization in natural sand fly 
challenge of C57BL/6 mice. Although all these formulations 
potentially protect against needle Leishmania challenge when it comes 
to parasite load, but none of them are able to emulate the protection 
conferred by leishmanization after sand fly challenge in C57BL/6 
mice. Of note, the same KSAC-GLA-SE formulation examined in 
BALB/c mice conferred protection against Leishmania major 
transmitted by sand fly bites (regarding lesion size and parasite 
burden) due to a strong immune response to Leishmania antigens by 
memory T cells after sand fly transmission of the parasite (Gomes 
et al., 2012). The sustained and massive neutrophilic recruitment up 
to 28 days post sand fly infection in C57BL/6 mice was the major 
complicating factor compared to needle challenge which inversely 
dampens the vaccine’s protection potential. It was postulated that 
leishmanization potentially modulates these early inflammatory 
events post sand fly challenge by a rapid and robust IFN-γ mediated 
intervention. It was recently unraveled that this rapid and robust 
IFN-γ response cannot be provided by memory Th1 cells at the time 
of infection since they are activated and proliferate at later time points 
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(Seyed and Rafati, 2021). Generally speaking, this means that for 
achieving a potential vaccine against leishmaniasis, we  have to 
recognize the correlates of protective immunity besides Th1 memory 
T cells.

“Ongoing chronic infection” is the key 
to vaccine development against 
vector-born leishmaniasis

Among the different platforms examined so far (Kaye et al., 2021; 
Volpedo et  al., 2021), leishmanization remains the only vaccine 
formulation effective against Leishmania infection in endemic areas 
(although not approved for general use in humans) (Pacheco-
Fernandez et al., 2021). The lessons learned from leishmanization has 
led to the “concomitant Immunity” concept which means “ongoing 
chronic infection” (Sacks, 2014). This primary subclinical chronic 
infection with life-long persistent parasites at low levels after healing, 
induces major subsets of effector and memory T cells which play a 
critical role early after sand fly bite at secondary infection site. The 
immune correlates associated with “concomitant Immunity” include 
skin-resident memory T cells (TRM) and effector Ly6C+ T cells (TEFF) 
besides Th1 central (TCM) and effector memory (TEM) cells (Hohman 
and Peters, 2019; Seyed and Rafati, 2021). Ly6C+ TEFF cells (Peters 
et al., 2014), and TRM cells (Glennie and Scott, 2016; Scott, 2020) play 
an indispensable role in protection against sand fly deposition of the 
parasite. They promote a non-permissive environment for parasite 
growth in inflammatory monocytes recruited to the bite site by 
providing early (within hours) and robust local IFN-γ. This means 
that timing is everything. Hohman et al. clearly demonstrated that 
permissive phagocytic host cells’ activation by pre-activated Ly6C+ 
TEFF cells is the pre-requisite for Th1 induced protection (Hohman 
et al., 2021). Otherwise, delayed Th1 central memory cell activation 
does not confer full protection after the permissive environment is 
established by skin-deposited immunomodulatory sand fly 
components (Hohman et al., 2021). These cells are well characterized 
in mouse models and we still need to identify the human counterparts. 
Mouse TEFF cells which rapidly accumulate at the bite site, are ready to 
take action without proliferation and produce large amounts of IFN-γ 
to provide a timely and robust response. These cells are very much 
antigen dependent and disappear in the absence of antigen. TRM cells 
instead are non-circulating tissue resident memory cells which 
mediate CCL2 dependent recruitment of inflammatory monocytes 
highly expressing MHCII molecules and producing active anti-
leishmanial metabolites mainly nitric oxide and reactive 
oxygen derivatives.

Not all vaccine platforms can provide 
concomitant immunity

As described, the prominent characteristic of leishmanization-
induced protection is the persistence of parasite after cure (Belkaid 
et al., 2001). In other words, long-lasting antigen presentation remains 
the key challenging point for the alternative platforms other than 
leishmanization and mainly the subunit vaccines. In the absence of 
distinguished TRM and Ly6C+ TEFF cells, permissive phagocytic cells 
lead to parasite propagation and disease establishment early after sand 

fly bite. Therefore, for a vaccination strategy to succeed, pre-activated 
Ly6C+ TEFF (Hohman and Peters, 2019) and TRM (Glennie et al., 2015) 
cells are necessary without which the formulation will most likely fail 
in field trials even in the presence of memory T cells. Although it still 
remains elusive how to best generate TRM and Ly6C+ TEFF cells by 
vaccination, live attenuated parasites and subunit multivalent DNA 
vaccines are here suggested as alternatives of leishmanization for long 
term antigen presentation. We have discussed the advantages and have 
suggested the dendritic-cell based vaccines in another paper (Seyed 
et al., 2018). Here, we summarize the evidence why live attenuated 
parasites and subunit multivalent DNA vaccine strategies can 
be  attractive for more intensive investigation. Several innovative 
approaches including reverse genetics, CRISPR/Cas9 (clustered 
regularly interspaced palindromic repeats) technology and antibiotic 
free selection are now available to overcome the intrinsic drawbacks 
of these platforms and make waves in the future of vaccination against 
leishmaniasis. The rest of the vaccination platforms, although 
examined in experimental models or even in clinical trials, remain to 
address the question whether they can provide a long-lasting antigen 
presentation or not.

Live attenuated parasite vaccines most 
likely can replace leishmanization

Live attenuated vaccines of different pathogens have successfully 
eradicated many intracellular pathogens such as poliovirus and 
smallpox (variola virus) and have controlled many others such as 
measles, mumps and rubella viruses (Plotkin, 2014). Mimicking the 
normal course of the infection with natural molecular patterns to 
induce innate immunity, complete set of antigens delivered and above 
all, subclinical infection which lasts longer than any protein subunit 
formulation, are among the major factors which prioritize the live 
vaccines (Silvestre et  al., 2008). These traits are in-line with the 
Leishmania vaccination goal and has led to the intensive effort for 
attenuating different parasite species. So far various genes have been 
explored as targets of attenuation both in cutaneous (Zabala-Penafiel 
et al., 2020) and visceral (Pandey et al., 2020) leishmaniasis with the 
aim of generating long-lived non-virulent parasites unable to revert 
back to the wild type parental parasite. Among others, lpg2−/− L. major 
has shown a long persistence up to 2 years in BALB/c mice without 
pathology (Spath et al., 2003). This mutant strain is cleared easily 
within macrophages and is assumed to persist in cells other than 
macrophages in vivo. This model increased hopes for a protective 
vaccine with encouraging results in mouse models (Uzonna et al., 
2004) but the dreams were ruined when the compensatory mutants 
(lpg2−/− REV) were detected (Spath et al., 2004). This means that a 
major concern for a parasite with a dynamic genome is the ability to 
compensate for the mutant gene and revert back into the pathogenic 
parasite which is the top concern of regulatory authorities regarding 
live attenuated pathogens. Thus, in addition to the persistence without 
pathology, choosing for virulence genes which cannot be compensated 
by other genes is of paramount importance in generating live 
attenuated Leishmania strains.

Recently, genetically modified live attenuated Centrin−/− (Cen−/−) 
L. donovani (Bhattacharya et al., 2016), L. major (Zhang et al., 2020) 
and L. mexicana (Karmakar et  al., 2022) mutants have generated 
promising results as vaccine candidates (Volpedo et al., 2022). Centrin, 
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a calcium-binding cytoskeletal protein, is concerned with the basal 
body duplication and segregation in lower eukaryotes (Salisbury, 
2004). The lack of basal body formation and cytokinesis leads to 
apoptosis and G2/M phase cell arrest. Therefore, Centrin mutation 
inhibits amastigote proliferation in macrophages leading to 
immunological clearance as suggested (Selvapandiyan et al., 2001, 
2004). LmCen−/− parasites represent an equally effective but safer 
alternative to leishmanization for the protection induced against 
L. major transmitted by sand fly bite (Silvestre et al., 2008) and also 
cross protection against more virulent L. donovani (Karmakar et al., 
2022). In particular, mice immunized with LmCen−/− parasites 
compared to mice healed from L. major leishmanization, have 
generated a significantly higher pro-inflammatory immune response, 
characterized by CD4+CD44highLy6C+T-bet+ IFN-γ+ effector T cells 
(Zhang et al., 2020) and tissue resident memory (TRM) T cell responses 
(Ismail et  al., 2022). This is the first report of a live attenuated 
formulation that enables Ly6C+ TEFF and TRM induction without a 
compensatory reversion. Owing to the fast-growing CRISPR/Cas9 
gene editing technology, LmCen−/− mutant is now at the front line to 
initiate human clinical trials since the parasite lacks antibiotic 
resistance genes which is another top concern of regulatory authorities 
about genetically modified pathogens (Zhang et al., 2020). CRISPR/
Cas9-mediated gene targeting and editing facilitates deletion of 
essential genes (either single or multigene families) to observe the 
functional and phenotypic effects on living cells in a time-dependent 
manner (Zhang and Matlashewski, 2015; Adaui et al., 2020). The fast 
development of this technology will certainly accelerate the 
production of knockout mutants in Leishmania instead of homologous 
recombination-based gene replacement making more live attenuated 
parasites available in near future (Singh et  al., 2022; Moreira 
et al., 2023).

With the advent of reverse instead of forward genetics and with 
complete parasite genomes now available due to new technologies for 
whole genome sequencing, new horizons have appeared. 
Non-pathogenic lizard-isolated Leishmania (L.) tarentolae is a 
precious tool with the whole genome sequence now available. In a 
study by Azizi et al. searching for virulence factors in L. tarentolae, it 
was realized that the lack of pathogenicity is not LPG3, CPB, GP63 
and Amastin dependent (Azizi et  al., 2009) which reflected the 
importance of other genes either unique to L. tarentolae or missing 
from this species for the nonpathogenic potential of this lizard 
parasite. Later, the whole genome of this non-pathogenic parasite was 
sequenced and compared to L. major, L. infantum and L. braziliensis 
by Reymond et al (Raymond et al., 2012). This “subtractive genomics” 
study identified 95 predicted coding sequences unique to L. tarentolae 
and 250 genes present in the pathogenic species but absent in 
L. tarentolae which are mainly associated with the amastigote stage. 
This explained in part why L. tarentolae proliferates less well in human 
macrophages and why these parasites are mostly reported as free 
organisms in the lizards. Fortunately, reverse genetics tools can unveil 
new virulence factors out of these unique or missing genes associated 
with non-pathogenic L. tarentolae. Duncan et al. have described these 
reverse genetics tools in different categories (Duncan et al., 2017) 
including tools for assessing if Leishmania genes are essential for 
cellular proliferation like plasmid shuffle (McCall et al., 2015), DiCre 
(dimerizable Cre) recombinase (Madeira da Silva and Beverley, 2010; 
Schindler et al., 2015) and CRISPR/Cas9 (Zhang et al., 2017) or tools 

for regulating gene expression such as RNAi (de Paiva et al., 2015), 
Tetracycline inducible gene expression (Ishemgulova et al., 2016) or 
“DiCre recombinase inducible gene expression” (Santos et al., 2017). 
Tools for endogenous tagging and regulating protein levels are also 
introduced such as “endogenous tagging” and “conditional protein 
destabilization” (Damerow et al., 2015; Dean et al., 2015). Fortunately, 
all of these new technologies are applicable for manipulating 
pathogenic Leishmania genomes and/or proteomes with the hope of 
finding novel virulence factors in comparison to non-pathogenic 
strains such as L. tarentolae.

Non-pathogenic Leishmania 
tarentolae parasite can take over as 
vaccine

Leishmania tarentolae has also been investigated as vaccines 
against human pathogenic Leishmania species (Bandi et al., 2023). 
After Breton et al. showed that intra-peritoneal administration of live 
L. tarentolae in BALB/c mice induces a Th1 pathway with significant 
protection against L. donovani infectious challenge (Breton et  al., 
2005), non-engineered live L. tarentolae promastigotes were assayed 
as candidate vaccines adjuvanted with CpG oligonucleotides 
(Keshavarzian et al., 2020), or chitin microparticles against L. major 
(Haghdoust et al., 2022; Noroozbeygi et al., 2023). Others employed 
genetically modified strains of L. tarentolae, engineered for 
overexpression of antigens from human pathogenic Leishmanias 
(Saljoughian et al., 2013; Topuz Ata et al., 2023) or antigens from the 
vector saliva (Katebi et al., 2015; Lajevardi et al., 2022). These studies 
generally showed that L. tarentolae induces protection in animal 
models against pathogenic species, including L. infantum and L. major 
(Mendoza-Roldan et al., 2022). We still need to further address the 
induction of Ly6C+ TEFF and/or TRM cells by this platform. L. tarentolae 
is able to enter human phagocytic cells and differentiate into 
amastigote like forms. However, there is no clear evidence for their 
efficient replication within macrophages (Raymond et  al., 2012). 
Therefore, the top priority is to determine whether the parasite persists 
in vivo and if yes for how long and in which cells. A recently published 
paper has detected L. tarentolae in blood samples from dogs and 
lizards in an endemic area of southern Italy and also in sand flies. 
Amazingly, at the cytology of lizard blood, Leishmania spp. 
amastigote-like forms were detected in erythrocytes (Mendoza-
Roldan et al., 2021).

DNA vaccines are among the subunit 
strategies that most likely provide 
durable immunity

With the advent of molecular genetics and recombinant 
technologies, DNA-based vaccines (also called genetic vaccines) 
which advantage the bacterial plasmid constructs, moved to the 
frontline to pioneer for vaccine design against infectious diseases 
(Gary and Weiner, 2020). They are more stable in biological 
systems and induce strong and long-lasting antigen-specific cell-
mediated immune responses due to the sustained in vivo 
expression of antigen, efficient antigen presentation and the 
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presence of in-built innate immunity-stimulatory CpG motifs as 
adjuvant (McCluskie et al., 2000; Lee et al., 2018). Plasmids are 
small circular structures engineered to accommodate genes from 
different organisms for in vivo production. The plasmid backbone 
is composed of eukaryotic sequences for protein production in 
eukaryotes and also prokaryotic sequences for replication and 
selection in laboratory production steps.

Remarkable advantages of DNA vaccines include induction of a 
prolonged cellular and humoral immunity, ease of large-scale 
production, adaptability to encode several antigens and above all self-
adjuvanicity. DNA vaccines are currently licensed for several animal 
diseases (Kutzler and Weiner, 2008). In many cases of cancer, they are 
also used as therapeutic vaccines and they have even reached the 
second and third phases of human preventive vaccine in clinical trials 
(Lopes et al., 2019). However, the potential of DNA vaccines has not 
been realized due to the poor cellular uptake of DNA in vivo, resulting 
in poor immunogenicity. Innovative delivery systems are now 
available to improve cellular uptake and consequently the 
immunogenicity (Lim et al., 2020; Ho et al., 2021).

In Leishmania vaccine research, DNA vaccines have made an 
important contribution because of long-lasting Th1 immunity 
conferred against the parasite. One of the major factors in 
sustained Th1 response differentiation is IL-12 cytokine produced 
by dendritic cells which is well provided by DNA vaccination 
instead of protein plus IL-12 (Gurunathan et al., 1997). In 2001, 
Mendez et  al. compared the DNA vaccination versus protein/
recombinant IL-12 conferred protection in low dose infectious 
challenge with L. major (intradermal inoculation of 100–1,000 
metacyclic promastigotes). Three months post-immunization a 
potential sustained protective immunity due to DNA vaccination 
versus a partial protection due to protein/IL-12 vaccination was 
observed (Mendez et al., 2001). The durable protection in mice 
vaccinated with DNA was associated with the recruitment of both 
CD8+ and CD4+ T cells to the site of intradermal challenge and 
with IFN-γ production by CD8+ T cells in challenge draining 
lymph nodes. This is attributable to the sustained IL-12 
production besides low levels of persistent antigen produced by 
DNA structures (Gurunathan et al., 2000). Although these results 
might well correspond with the long-lived memory T cells which 
potentially protect against sand fly components-free challenge, 
but are invaluable respecting the more sustained antigen 
presentation by DNA structures compared to naked-recombinant 
protein formulations.

After introducing the role of sand fly proteins in protection 
against sand fly transmitted infection (Kamhawi, 2000; Kamhavi 
et al., 2018), other groups evaluated the durability of protection 
conferred against more natural infection. Salivary Gland 
Homogenates (SGH) of the vector was co-injected with 
intradermal low dose parasite after DNA vaccine immunization 
encoding Phlebotomus (Ph.) papatasi Sp15 protein (a 15 kilodalton 
protein). Three months post booster immunization, the protection 
was quite comparable to that achieved 2 weeks post vaccination 
with a significant reduction in both lesion size and parasite 
number (Valenzuela et  al., 2001). Although this group never 
evaluated the biomarkers of long-lasting protection (Ly6C+ T cells 
and TRM cells) required for protection against SGH-induced 
inflammatory response, but the results raised the hope.

Recently Davarpanah et  al. advantaged the Lactococcus lactis 
based-DNA transfer technology to evaluate the protection against Ph. 
papatasi SGH co-injected with L. major parasite. Six months following 
immunization with Ph. papatasi Sp15 expressing L. lactis, the lesion 
size and parasite number was significantly lower in Sp15 vaccinated 
animals as compared to control groups due to a Th1 polarized immune 
response (Davarpanah et  al., 2020). Again, the SGH-required 
protection biomarkers were not evaluated, however a significant 
protection almost comparable to the early detected protection (within 
2 weeks post challenge) could be a good sign.

Luise et al. recently conducted an experiment to evaluate the claim 
that intradermal (i.d.) immunization or scarification effectively 
generates TRM cells in the skin (Sangare et al., 2009). To address this 
issue, they have compared the generation of skin-resident T cells and 
protection against L. major induced cutaneous leishmaniasis following 
intra-muscular and intra-dermal DNA immunizations routes. A 
plasmid DNA encoding Leishmania phosphoenolpyruvate 
carboxykinase was injected intradermaly by electroporation and also 
intramuscularly. As indicated, intradermal immunization better 
protected against L. major challenge. Of note, the protection level was 
comparable to the leishmanized-immune mice previously infected 
with parasites both in lesion size and parasite burden. They concluded 
that the intradermal route may be most efficient at generating TRM cells 
and protection against Leishmania parasites (Louis et al., 2019). This 
robust document indicating the TRM generation following DNA 
immunization by intradermal route, further pushes the DNA vaccine 
strategy to the top of the list of candidate vaccine formulations 
against leishmaniasis.

Antibiotic-free plasmids might bring 
the DNA vaccines back into focus

Despite the fact that specific complications such as DNA insertion 
into the chromosome and autoimmunity or tolerance have not been 
reported (Liu, 2011), unfortunately no DNA-based vaccine is approved 
for human infections including Leishmaniasis. Although the 
immunogenicity of DNA vaccines as a major concern is under intensive 
investigation (extensively reviewed elsewhere) and major improvements 
have been achieved (Li and Petrovsky, 2016; Suschak et al., 2017), but this 
is not the real reason. In fact, the most important reason is the prokaryotic 
backbone of the plasmid which are advantaged in plasmid production 
steps only. Following DNA entry into the eukaryotic host cell, only the 
eukaryotic regions including promoter, enhancer sequences, and 
polyadenylation sequences are used, and the prokaryotic region has no 
use at all. Instead, these prokaryotic sequences can cause serious 
problems after transfection which are discussed as follows (Li and 
Petrovsky, 2016; Eusebio et al., 2021):

First, the presence of an antibiotic resistance gene can spread 
antibiotic resistance to other bacteria in the vaccinated person 
through horizontal transfer. Many plasmid structures use 
aminoglycoside resistance genes such as kanamycin and neomycin 
which have extensive clinical uses. Therefore, there is a risk of 
developing resistance to these antibiotics. Some other structures 
use beta-lactam resistance genes, such as ampicillin. Antibiotics 
remnants after the in vitro purification process, can lead to a 
severe anaphylactic reaction in susceptible individuals (Williams, 
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2013). Second, antibiotic resistance in large-scale culture of 
parasites reduces the plasmid production yield resulting from 
metabolic pressure on bacterial cells, because the antibiotic in the 
culture medium induces constitutive expression of the resistance 
gene which slows down the growth rate of bacteria (Rozkov et al., 
2004; Mairhofer et al., 2010). Third, the prokaryotic backbone can 
interfere with the expression of the gene while inside the 
eukaryotic cells. After entering the eukaryotic cell, the prokaryotic 
region becomes predominantly heterochromatin, which can 
spread to the target gene region. In addition, prokaryotic regions 
may have cryptic promoters that produce small RNA sequences 
in eukaryotic cells and block the expression of encoded gene’s 
mRNA (Lu et al., 2012; Gracey Maniar et al., 2013). Finally, first-
generation plasmids used for vaccines or immunotherapy, such as 
pcDNA, are relatively large in size, and much of this large 
structure belongs to prokaryotic regions that interfere with the 
efficiency of transfection. Comparison has evidenced the relation 
between the smaller DNA structure and the higher transfection 
efficiency. Although methods such as electroporation, gene guns, 
or liposomes and lipid nanoparticles help increase transfer from 
the membrane into the cell, the large size of the plasmid slows 
down the transfer from the cytoplasm to the nucleus (Lukacs 
et al., 2000; Yin et al., 2005; Rosazza et al., 2011).

New generation of plasmids devoid of antibiotic resistance 
marker with shorter prokaryotic backbones are now available to 
overcome these drawbacks (Vandermeulen et al., 2011). They are 
either based on complete elimination of the prokaryotic sequences 
to generate small-sized minicircles (which are not further 
plasmids) or selection systems other than antibiotic resistance. 
The latter include complementation of auxotrophic strains by 
suppressive tRNAs (Marie et al., 2008, 2010; Bakker et al., 2019), 
toxin–antitoxin systems (Bukowski et  al., 2011), operator–
repressor titration (Cranenburgh et al., 2001; Mwau et al., 2004; 
Ramos et al., 2009), RNA markers including RNA out (Luke et al., 
2009) and RNA I  (Pfaffenzeller et  al., 2006) systems, 
overexpression of a growth essential gene (Goh and Good, 2008) 
and enzyme-inhibitor ratios (Alcolea et  al., 2019). These are 
altogether known as marker-free plasmids.

Minicircles were designed in 1997. Using homologous 
recombinant technology, the prokaryotic parts were removed 
from the parental plasmid after the completion of the in vitro 
amplification step (Darquet et  al., 1997). The use of these 
structures with a prokaryotic region below 100 base pairs, 
manipulated either before inoculation or within the cells after 
transfection, has generated promising results in vaccine studies of 
cancer (Pang et al., 2017), Hepatitis B virus (Li et al., 2016), HIV 
(Wang et al., 2014), Newcastle Disease (Jiang et al., 2019) and 
Listeria monocytogenes (Dietz et al., 2013). In all cases, an elevated 
protection level following long-term expression of the antigen has 
been observed when compared to the first-generation plasmids 
(Munye et al., 2016). However, the purification of these small-
sized constructs is much more labor intensive and complicated 
than the conventional plasmids. Although newer systems suggest 
the removal of the prokaryotic part in vivo (Jiang et al., 2019), this 
can leave a mixture of the parental plasmid and minicircles within 
the same cell.

Besides Minicircles, marker-free plasmids are also under 
investigation as vaccine or non-viral gene therapy tools. Among the many 

different antibiotic-free selection systems, RNA-based methods are 
currently more attractive. Recently, in a study published by Suschak, the 
effect of DNA vaccine against Ebola and against Venezuelan Equine 
Encephalitis Virus (VEEV) was compared using pWRG7077 plasmids 
and an RNA-OUT system along with immunostimulatory sequences 
(CpG and Immunostimulatory RNA) and it was determined that an 
RNA-OUT system as in the case of VEEV, the vaccine had a similar 
protective effect and in the case of the Ebola vaccine, it had a better effect 
than the pWRG7077 plasmid (Suschak et al., 2020).

Other selection systems are also under investigation with 
promising results. Alcolea et al. have examined the Th1 response 
induction levels against canine leishmaniasis using pPAL-LACK 
vector (an enzyme-inhibitor system). The protection was 
comparable to recombinant vaccinia virus in combination with 
standard mammalian expression plasmid vectors. The pPAL 
vector (3,899 bp in length) contains the cytomegalovirus enhancer 
and promoter for expression in mammalian cells and the E. coli 
fabI chromosomal gene as a selectable marker. The pPAL plasmid 
contains the essential elements for manipulation and expression 
of any cloned DNA sequence in prokaryotic and mammalian cells 
using an E. coli endogenous gene as a selectable marker, which 
also provides a long CpG island. This antibiotic resistance-free 
plasmid is a vaccine vector actively participating in protection 
against canine leishmaniasis, and may be potentially tested as a 
vaccine vector with other antigens against different pathogens 
(Alcolea et al., 2019).

Concluding remarks

Leishmaniasis is a vector-borne parasitic infection with an 
unresolved complex host-pathogen interaction. That is why a 
protective vaccine is missing for human use despite labor intensive 
hard work to reach the point. However, vaccination is still a hope 
and not hype referring to the field observations like asymptomatic 
infection in endemic areas. Apparently, the more we understand 
host pathogen interaction, the closer we get to a protective vaccine.

Knowing that the efficacy of the Th1 memory protection is 
abrogated following sand fly transmission of parasite, the vaccine 
options are more restricted particularly in non-endemic areas. 
Live attenuated, live nonpathogenic and DNA vaccines seem the 
best choices as long as they persist in the body and continue 
producing the pertinent antigens. Therefore, we can think of these 
choices in endemic areas where the immunization occurs within 
a few months before sand fly biting season. For sure, intradermal 
immunization and intradermal low dose sand fly challenge are of 
paramount importance respecting the TEFF and TRM cells for 
effective vaccine design. Hopefully, novel innovative approaches 
such as CRISPR/Cas9 technology and antibiotic-free plasmids 
will improve intrinsic drawbacks associated with live attenuated 
parasites or DNA vaccines.

Alternatively, raising neutralizing antibodies against sand fly 
derived factors could be applicable both for endemic and non-endemic 
areas. Of note some sand fly derived proteins are identified to recruit 
neutrophils to the bite site. Therefore, neutralization of these proteins 
by vaccination and antibody generation could be a good choice to 
restrict sand fly saliva mediated neutrophil recruitment. Albeit, the 
pre-requisites for the long-lived plasma cell and memory B cell 
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generation remain to be  fully addressed and are still under 
intensive investigation.
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