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Aminopeptidase O Protein
mediates the association
between Lachnospiraceae and
appendicular lean mass

Bingjun Gao, Zhonghua Zhou, Junfei Chen, Shengling Zhang,

Shaobin Jin, Weiwei Yang, Yinghan Lei, Kunyao Wang, Jinxu Li

and Yan Zhuang*

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China

Objective: Investigating the causal relationship between Lachnospiraceae and

Appendicular lean mass (ALM) and identifying and quantifying the role of

Aminopeptidase O Protein (AOPEP) as a potential mediator.

Methods: The summary statistics data of gut microbiota composition

from the largest available genome-wide association study (GWAS) meta-

analysis conducted by the MiBioGen Consortium (n = 13,266). Appendicular

lean mass data were obtained from the UK-Biobank (n = 450,243). We

conducted bidirectional two-sample Mendelian randomization (MR) analysis

using summary-level data from GWAS to investigate the causal relationship

between Lachnospiraceae and ALM. Additionally, we employed a drug-targeted

MR approach to assess the causal relationship between AOPEP and ALM.

Finally, a two-step MR was employed to quantitatively estimate the proportion

of the e�ect of Lachnospiraceae on ALM that is mediated by AOPEP.

Cochran’s Q statistic was used to quantify heterogeneity among instrumental

variable estimates.

Results: In the MR analysis, it was found that an increase in genetically

predicted Lachnospiraceae [OR = 1.031, 95% CI (1.011–1.051), P = 0.002] is

associated with an increase in ALM. There is no strong evidence to suggest

that genetically predicted ALM has an impact on Lachnospiraceae genus [OR =

1.437, 95% CI (0.785–2.269), P = 0.239]. The proportion of genetically predicted

Lachnospiraceae mediated by AOPEP was 34.2% [95% CI (1.3%−67.1%)].

Conclusion: Our research reveals that increasing Lachnospiraceae abundance

in the gut can directly enhance limb muscle mass and concurrently

suppress AOPEP, consequently mitigating limb muscle loss. This supports the

potential therapeutic modulation of gut microbiota for sarcopenia. Interventions

such as drug treatments or microbiota transplantation, aimed at elevating

Lachnospiraceae abundance and AOPEP inhibition, synergistically improve

sarcopenia in the elderly, thereby enhancing the overall quality of life for

older individuals.
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1 Introduction

Sarcopenia is a progressive, systemic condition characterized
by the pathological deterioration of skeletal muscle strength,
quantity, and quality, and it is frequently observed in the elderly
population (Zhang et al., 2023). In individuals aged 60 and above,
the prevalence of muscle loss is estimated to be between 10 and
27%. Predictions indicate that by the year 2050, approximately two
billion people globally will be affected by muscle loss (Petermann-
Rocha et al., 2022). Muscle loss is associated with an increased
risk of various adverse conditions, including limited mobility,
heightened susceptibility to illnesses, increased hospitalization,
and elevated mortality rates (Cruz-Jentoft et al., 2010). However,
effective treatment methods are currently lacking (Cohen et al.,
2015). Therefore, it is essential to explore economically effective
treatment methods or provide a basis for therapeutic directions.

Recently, the concept of the “gut-muscle” axis regulation
has been proposed and three specific gut microbiota species
(Grahnemo et al., 2023) have been identified to be closely associated
with appendicular lean mass (Bäckhed et al., 2007). In mice, it
has been established that the gut microbiota can modulate muscle
mass (Janssen et al., 2004; Kim et al., 2017), and similar findings
have been corroborated in humans as well (Lv et al., 2021).
Research conducted by the Hunt study queue has demonstrated
an association between Coprococcus come, Dorea longicatena, and
Eubacterium ventriosumwith higher ALM (Grahnemo et al., 2023),
but the mechanism is unclear. The AOPEP play a pivotal role
in preserving skeletal muscle mass and myodystony (Schmidt
et al., 2009; Hsu et al., 2021). Changes in the abundance of
Lachnospiraceae are commonly associated with sarcopenia and
disorders of muscle tone (Sampson et al., 2016; Picca et al.,
2019; Ticinesi et al., 2020; Štorkánová et al., 2021). Consequently,
AOPEP might be a potential mediator between Lachnospiraceae

and ALM.
However, the results regarding the Lachnospiraceae and its

relation to limb muscle mass have been controversial to date
(Vacca et al., 2020). Observational studies have indicated that
in elderly individuals with sarcopenia, the abundance of the
Lachnospiraceae is significantly lower compared to control groups
(Picca et al., 2019; Ticinesi et al., 2020; Štorkánová et al., 2021).
Conversely, other studies have shown that within the Firmicutes

phylum, the Lachnospiraceae is positively correlated with body fat
and waist circumference, while being negatively associated with
muscle mass and physical activity levels (Palmas et al., 2021).
These discrepancies may arise from limited sample sizes, study
design limitations, and confounding factors beyond the scope of
existing research.

Mendelian randomization (MR) (Beeghly-Fadiel et al., 2020;
Titova et al., 2020; Ahmed et al., 2021; Lu et al., 2021)
represents a promising causal inference approach employing
genetic variation as an instrumental variable to ascertain the
impact of exposure factors on outcomes within observational
datasets. This method has the capacity to mitigate the influence
of non-measurement errors and confounding variables, all while
circumventing issues of reverse causality by leveraging the
principles of Mendelian inheritance. Our primary objectives
encompass (i) the investigation of a potential causal relationship

FIGURE 1

Study flow chart. (A) “c” represents the total e�ect when genetically

predicted Lachnospiraceae serves as the exposure variable and ALM

as the outcome. “d” signifies the total e�ect when genetically

predicted ALM is the exposure variable and Lachnospiraceae is the

outcome. (B) (i) Indirect e�ect, which was assessed using a two-step

approach that involves “a” as the total e�ect of Lachnospiraceae on

AOPEP and “b” as the e�ect of AOPEP on ALM. (ii) Direct e�ect (c
′

=

c – a × b).

between Lachnospiraceae and ALM and (ii) the evaluation of the
degree to which AOPEP mediates the effects of Lachnospiraceae
on ALM.

2 Materials and methods

2.1 Study design

In this research, we conducted a two-sample MR study utilizing
summary data from GWAS datasets to assess the relationship
among gut microbiota, AOPEP expression and ALM in Figure 1.
We also performed sensitivity analyses to validate the reliability
of our findings. MR hinges upon three fundamental assumptions:
(1) the instrumental variable must exhibit a strong association
with the exposure factor; (2) the instrumental variable should
not be correlated with any confounding factors associated with
the “exposure-outcome” relationship; (3) the instrumental variable
should only influence the outcome variable through the exposure
factor. These assumptions are integral to the validity of MR and are
rigorously tested throughout our study (Bandres-Ciga et al., 2020;
Chen et al., 2020; Feng et al., 2020; Jones et al., 2020; Larsson et al.,
2020; Saunders et al., 2020; Scheller Madrid et al., 2020; Zhu et al.,
2020).

2.2 Data source

The genetic variation data for gut microbiota were derived
from the Meta-analysis conducted by the MiBioGen Consortium,
representing the most extensive investigation to date into the
genomic scope of gut microbiota composition (Kurilshikov et al.,
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2021). This expansive study encompassed a cohort of 18,340
individuals drawn from 24 distinct cohorts, with the majority being
of European descent (n = 13,266). In the MiBioGen Consortium
research, the genus was the lowest taxonomic level. A total of
131 genera were identified, each with an average abundance
exceeding 1%, including 12 unknown genera (Li et al., 2022).
GWAS data concerning ALM were procured from the UK Biobank
(https://www.ukbiobank.ac.uk/), with access facilitated through the
IEU_Gwas platform. This dataset encompassed 450,243 samples
and comprised a staggering 18,071,518 SNP loci, furnishing a
robust foundation for our investigation (Pei et al., 2020).

2.3 Instrumental variables

In order to maximize the utility of instrumental variables (IVs),
the following selection criteria were employed: (1) SNP significance
threshold: SNPs within loci demonstrating a significant threshold
(P < 1.0 × 10−5) with each genus were considered as potential
instrumental variables. (2) Reference panel utilization: The 1000
genomes project European sample data served as the reference
panel for calculating linkage disequilibrium (LD) between SNPs.
Among SNPs with an LD coefficient (R2) < 0.01 within a 30 kb
window, only those with the lowest P-values and an F-statistic >10
were retained. (3) Handling of Palindromic SNPs: in cases involving
palindromic SNPs, allelic frequency information was used to infer
the forward strand alleles (Sanna et al., 2019; Li et al., 2022).
In this study, only cis-eQTLs (expression quantitative trait loci)
in the trans configuration were considered for generating genetic
instruments. These were defined as eQTLs located within 1Mb
on either side of the target gene. To maximize the instrumental
strength for each genus, SNPs used as instruments were allowed
to exhibit low linkage disequilibrium with each other (R2 < 0.30)
(Willer et al., 2013; Huang et al., 2021).

2.4 Statistical analysis

2.4.1 Primary analysis
Figure 1 provides a schematic overview of our analysis. We

conducted a bidirectional two-sample MR to assess the reciprocal
causation between Lachnospiraceae and ALM (Figure 1A),
representing the total effect. To estimate MR effects, we employed
various methods to ensure robustness. The Inverse Variance
Weighting (IVW) method, which combines Wald ratios of causal
effects for each SNP through meta-analysis, was utilized as the
primary approach. In addition to IVW, we complemented our
analysis with the MR-Egger and weighted-median methods,
each catering to different assumptions of instrument validity.
The IVW method relies on the assumption that all SNPs are
valid instrumental variables, enabling accurate estimation results.
MR-Egger, on the other hand, assesses directional pleiotropy of
instrumental variables, with the intercept offering an estimate of
the average pleiotropy of genetic variation. The weighted median
method boasts higher precision, indicated by a smaller standard
deviation, when compared toMR-Egger. Importantly, the weighted
median method provides consistent estimates even in the presence

of horizontal pleiotropy, even if up to 50% of the genetic variants
are deemed invalid instruments.

2.4.2 Mediation analysis
We further employed a two-step MR design for conducting

a mediation analysis to explore whether AOPEP mediates the
causal pathway from Lachnospiraceae to the ALM outcome
(Figure 1B). We took examples from drug target MR analysis to
investigate the effect of AOPEP on ALM. The overall effect can be
decomposed into indirect effects (mediated through the mediator)
and direct effects (effects without mediation). The total impact of
Lachnospiraceae on ALM can be separated into (1) the direct effect
of Lachnospiraceae on ALM (c

′

in Figure 1B) and (2) the indirect
effect of Lachnospiraceae on ALM mediated through AOPEP (a
× b in Figure 1B). We calculated the percentage mediated by the
mediation effect by dividing the indirect effect by the total effect,
simultaneously computing the 95% confidence interval.

This study employed the Summary Data-based Mendelian
Randomization (SMR) method, utilizing eQTLs as instrumental
variables to generate effect estimates (Zhu et al., 2016). This
approach investigates associations between gene expression levels
and the outcomes of interest, utilizing summary-level data from
GWAS and eQTL studies. SMR software version 1.3.1 was used for
allele harmonization and analysis. The IVWmethod was primarily
employed for effect estimation. Allele harmonization and analysis
were conducted using the TwoSampleMR package in R software
version 4.3.0. All statistical tests were two-tailed, with statistical
significance defined as P < 0.05.

3 Results

3.1 The association between
Lachnospiraceae and AOPEP

Incorporating relevant SNPs associated with the gut microbiota
of the Lachnospiraceae from MiBioGen and cis-eQTLs for AOPEP
gene expression from eQTLGen resulted in a total of 1,197 and
722 SNPs, respectively. Out of these, four instrumental variables
suitable for MR analysis were identified, each with an F-statistic
exceeding 10, indicating a strong association with the exposure
factor. This rigorous selection process minimized the potential bias
introduced by weak instrumental variables. Based on predictive
outcomes, a close relationship between gut microbiota and AOPEP
gene expression was revealed. The IVW method estimated an
effect size with an OR of 0.141 [95% CI (0.118–0.167), P =

5.879 × 10−108] in Figure 2. The Weighted Median method also
demonstrated a similar causal relationship with an OR of 0.144
[95%CI (0.007–0.264), P= 4.482× 10−10], while SimpleMode and
Weighted Mode yielded results consistent with the aforementioned
methods. However, the Mr-Egger method did not yield comparable
findings in Figure 3A. To assess the stability of these results,
additional Mr-Egger and Mr-PRESSO tests were conducted on
the included SNP loci. No potential horizontal pleiotropy (P >

0.05) was detected in either test, and funnel plots (Figure 3D)
revealed no evidence of bias in the study. Corrected Cochran’s
Q statistics indicated no significant heterogeneity in the effects
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FIGURE 2

Forest plot to visualize the causal e�ects of AOPEP with Lachnospiraceae and ALM.

of the included SNPs (P > 0.90). Furthermore, leave-one-out
sensitivity analyses were employed to evaluate the influence of
each SNP locus on the overall causal relationship. The results
demonstrated no significant differences in the observed causal
relationship when systematically removing individual SNPs and
reanalyzing, underscoring that the estimated effect could not be
attributed to any single genetic instrument.

3.2 The association between AOPEP and
ALM

A total of 722 cis-eQTLs pertaining to the AOPEP gene were
identified from the eQTLGen, with 78 of these exhibiting significant
associations. SMR analysis results unveiled a significant correlation
between increased AOPEP gene expression and decreased ALM
[OR = 0.835, 95% CI (0.793–0.878), P = 3.81 × 10−12]. This
suggests that suppressing AOPEP gene expression may lead to
an increase in ALM. The same causal relationship was also
demonstrated in the IVW-MR analysis [OR = 0.95, 95% CI
(0.943–0.956), P = 1.04 × 10−48] as shown in Figures 2, 3B. The
other MR methods results and the results of SMR are shown in
Supplementary material.

3.3 The association between
Lachnospiraceae and ALM

A total of 1,197 SNPs related to the Lachnospiraceae from
MiBioGen and 1,193 SNPs associated with limb muscle mass
from GWAS studies were incorporated for investigation. Among

these, nine SNPs were selected for MR analysis. All SNPs
exhibited F-statistics exceeding 10, signifying strong associations
with the exposure factor. This rigorous selection process minimized
potential bias introduced by weak instrumental variables. Based
on IVW-MR predictions, there was causal association between the
Lachnospiraceae and ALM [OR = 1.031, 95% CI (1.011–1.051), P
= 0.002]. The other methods did not provide any indication of
a causal relationship from Lachnospiraceae to ALM in Figure 3C.
In the reverse MR analysis, the IVW method [OR = 1.437, 95%
CI (0.785–2.269), P = 0.239] indicates that there is no causal
relationship from ALM to Lachnospiraceae. Considering the IVW
as the primary effect estimation indicator, it can be concluded
that there is only causal relationship between the Lachnospiraceae
and ALM. The proportion of genetically predicted Lachnospiraceae
mediated by AOPEP was 34.2% [95% CI (1.3%−67.1%)].

At last, various sensitivity analyses were employed to examine
and rectify the presence of pleiotropy in causal estimates in
Figure 4. IVW and MR-Egger were used to estimate the causal
relationship between genetically predicted among Lachnospiraceae,
AOPEP and ALM in Figure 5. Cochran’s Q test and funnel
plots (Figures 3D–F) indicated that there was no evidence of
heterogeneity and horizontal pleiotropy among these SNPs in the
causal relationships (Supplementary Tables 2, 4, 6, 8, 10, 12).

4 Discussion

While recent research has validated the relationship between
Lachnospiraceae and ALM, the evidence has been limited to
observational studies, which could be influenced by confounding
factors. Our study aimed to establish the causal effect of
Lachnospiraceae on ALM. We utilized MR analysis to investigate
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FIGURE 3

Scatter and funnel plot. (A–C) are scatter plots, the horizontal axis represents the SNP e�ect on exposure, while the vertical axis illustrates the SNP

e�ect on the outcome. The IVW method represents the causal relationship between exposure and outcome through the slope of the line. A positive

slope indicates a positive correlation, while a negative slope suggests a negative correlation. Each point in (A–C) represents a SNP used for MR

analysis, with the length of the line segment indicating the standard error. (D–F) are funnel plots employed to assess heterogeneity in SNP. The

horizontal axis representing the e�ect of SNP and the vertical axis representing precision.

the association between Lachnospiraceae and ALM based on
existing GWAS data and to demonstrate whether their relationship
is mediated through AOPEP. Our results indicate a genetically
predicted increased risk in ALM associated with Lachnospiraceae

(a 1 SD increase in Lachnospiraceae is linked to a 3.1% increase in
ALM risk), with 34.2% of this effect being mediated by AOPEP.

To our knowledge, this is the first time that MR methods
have been employed to study the causal relationship between
Lachnospiraceae and ALM, and it confirms Aminopeptidase
O Protein as the mediator. Our findings are consistent with
results from observational studies. Nikkhah et al. (2023) showed
through a meta-analysis of the results of seven human studies
and five animal studies that the genera that decreased in
individuals with age-related sarcopenia were Lachnospiraceae,
Fusicatenibacter, Roseburia, Eubacterium, Lachnoclostridium, and
Slackia. Observational studies have shown that Lachnospiraceae

and Aminopeptidase O Protein co-regulate angiotensin andmuscle
metabolism (Bai et al., 2021; Bajaj et al., 2021; Schulz et al., 2021;
Sun et al., 2021). Additionally, research has identified pathogenic
genes related to muscle atrophy, such as AOPEP (Fevga et al., 2022;
Garavaglia et al., 2022; Menden et al., 2022; Zech et al., 2022; Lin
et al., 2023; Thomsen et al., 2023), suggesting a potential novel

approach for patients with cachexia to improve muscle symptoms
by altering the composition of gut microbiota. Both investigations
adopted an observational design. Firstly, they exhibited relatively
low response rates across the two groups. Secondly, the outcomes
were susceptible to greater influence from reverse causality and
other potential confounding effects compared to MR analyses.

The human gastrointestinal tract harbors a vast and intricate
microbial community known as the gut microbiota, comprising as
many as thousands of bacterial species in adults (Matijašić et al.,
2020). Notably, the phyla Firmicutes and Bacteroidetes collectively
dominate about 95%, exerting substantial influence over the overall
gut microbiota’s functionality (Deng and Swanson, 2015). This
intricate symbiotic relationship between the gut microbiota and
the human host has evolved over millennia, with the microbiota
playing a pivotal role in various aspects of human health. The gut
microbiota and its metabolic byproducts contribute significantly to
functions such as aiding in food digestion and nutrient absorption,
synthesizing vitamins and energy, safeguarding the integrity of
the intestinal mucosal barrier, and playing essential roles in
crucial metabolic processes, immune regulation (Brusca et al.,
2014; Sathyabama et al., 2014), and defense against pathogenic
invaders. A plethora of studies has linked alterations in the
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FIGURE 4

Forest plot to visualize the impact of removing a single SNP on the overall e�ect. (A) Represents the MR analysis between Lachnospiraceae and

AOPEP. (B) Represents the MR analysis between Lachnospiraceae and ALM. (C) Represents the MR analysis between AOPEP and ALM. The horizontal

axis represents beta values, while the vertical axis depicts the SNP ID and the cumulative e�ect size after the removal of individual SNP.

composition of the gut microbiota to the development of numerous
chronic diseases, including inflammatory bowel disease (Koboziev
et al., 2014), metabolic disorders (Fukuda and Ohno, 2014),
obesity, malnutrition, neurodegenerative diseases (de Theije et al.,
2014), cardiovascular disorders (Vinjé et al., 2014), and muscle
metabolism (Schmidt et al., 2009; Hsu et al., 2021).

Skeletal muscle is the largest organ in the human body,
accounting for ∼40% of body mass (Guridi et al., 2015).
Furthermore, skeletal muscle serves various other functions,
including acting as a reservoir for major macronutrients, protecting
internal organs, regulating core temperature, and communicating
with other organs within the body through the release of cytokines
and growth factors (Pedersen and Febbraio, 2008). The muscles of
the limbs constitute 75% of the total body muscle mass (Heymsfield
et al., 1990; Chaston et al., 2007). Therefore, muscular dystrophy

is largely manifested as a reduction in muscle mass in the limbs.
Existing research has demonstrated the correlation between ALM
and physical activity, bone density, and metabolic function. With
advancing age, there is a reduction in skeletal muscle mass,
accompanied by an increase in fat infiltration and muscle fibrosis.
Over time, this phenomenon can impact limb functionality and
lead to paralysis (Nikkhah et al., 2023). Therefore, preserving
muscle mass holds significant importance.

Systemic inflammation and resistance to metabolite synthesis
play a critical pathophysiological role in muscle atrophy (Holeček,
2017). Elevated levels of muscle TNF-α, NF-κB, and IL-6 can induce
muscle atrophy by activating muscle atrophy-related and protein-
hydrolyzing genes (MAFbx and MurF1). Lachnospiraceae has the
ability to synthesize short-chain fatty acids (SCFAs) (Ticinesi et al.,
2020; Štorkánová et al., 2021). Butyrate can increase the content of
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FIGURE 5

Forest plot to visualize causal e�ects of each single SNP on outcome risk. (A) Represents the individual e�ects of each single SNP on AOPEP

expression in the MR analysis comparing Lachnospiraceae and AOPEP. (B) Represents the individual e�ects of each single SNP on ALM risk in the MR

analysis comparing Lachnospiraceae and ALM. (C) Represents the individual e�ects of each single SNP on ALM risk in the MR analysis comparing

AOPEP and ALM. The horizontal axis corresponds to beta values, and the vertical axis displays SNP ID along with the overall e�ect size beta values

obtained through both MR-Egger and IVW methods.

tight junction proteins and plaque proteins involved in cell-to-cell
connections (Anderson and Van Itallie, 2009), thereby contributing
to the enhancement of intestinal barrier function and reducing
endotoxin entry into the bloodstream. Additionally, butyrate
can bind and activate the nuclear transcription factor PPARγ,
counteracting the NF-κB signaling pathway, thus alleviating
inflammation and preventing muscle loss (Alex et al., 2013). After
muscle tissue intake of acetate increases, the catalytic activity of
acetyl-CoA synthetase is enhanced, leading to the production of
a large amount of acetyl-CoA and an increase in cytoplasmic
AMP, resulting in an elevated AMP/ATP ratio (Itsuki-Yoneda
et al., 2007). This decrease in glycolysis reduces and increases
the storage of glycogen in skeletal muscles (Fushimi et al., 2001).

Furthermore, the increased AMP/ATP ratio leads to increased
AMPK phosphorylation, upregulation of lipolysis genes LCACD,
3 KACT, and PPAR, thereby reducing fat infiltration in the muscles
(Yamashita et al., 2009). The above mechanistic studies illustrate
that Lachnospiraceae can enhance limb muscle mass, consistent
with our findings.

Aminopeptidase O Protein (AOPEP) is a protein-coding gene.
This gene encodes amember of theM1 zinc aminopeptidase family.
The encoded protein is a zinc-dependent metallopeptidase that
catalyzes the removal of amino acids from the N-terminus of
proteins or peptides. This protein plays a role in the generation
of angiotensin in the renin-angiotensin system, and its associated
pathways include peptide hormonemetabolism andmuscle protein
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metabolism (Wu et al., 2011). Mutations in AOPEP were found
to be associated with muscle atrophy and impaired muscle tone
in a large-scale multicenter study (Fevga et al., 2022; Garavaglia
et al., 2022; Zech et al., 2022; Lin et al., 2023). However, the
mechanism by which AOPEP acts on ALM is currently unclear.
Lachnospiraceae is involved in angiotensin and AOPEPmetabolism
(Sun et al., 2021). Therefore, AOPEP may lead to limb muscle
loss by mediating Lachnospiraceae role in muscle metabolism.
The above mechanisms, both directly and indirectly, elucidate
the relationship between Lachnospiraceae, AOPEP, and ALM,
providing support for our research findings.

Transplanting gut microbiota to increase the abundance of
Lachnospiraceae in patients has been shown to improve the
production of short-chain fatty acids (SCFAs) in the gut. This
modulation helps regulate inflammation and the systemic immune
environment, thereby alleviating hepatic encephalopathy caused by
cirrhosis (Bajaj et al., 2019) and severe acute malnutrition (Castro-
Mejía et al., 2020). As mentioned earlier, inflammation plays a
crucial role in muscular dystrophy. Therefore, modulating the
gut microbiota to enhance Lachnospiraceae abundance holds great
potential for treating muscular dystrophy. Our study provides a
basis for increasing Lachnospiraceae abundance in the gut as a
therapeutic approach for muscular dystrophy, further enriching
the understanding of the role of microbiota in disease treatment.
Additionally, AOPEP, as an intermediary factor, offers new
clues for exploring the pathophysiological mechanisms and drug
development. Furthermore, since muscular dystrophy is a risk
factor for cognitive impairment, treating muscular dystrophy may
contribute to reducing cognitive decline in the elderly (Shimada
et al., 2021; Du et al., 2022). Similar research approaches can be
employed to explore more intermediary factors, providing robust
evidence for investigating the pathophysiological mechanisms and
metabolic pathways of diseases.

However, there are still some limitations in our research.
Firstly, our analysis was conducted using a European population,
which limited its generalizability to other populations. Secondly,
the number of cases in the ALM GWAS dataset was relatively
small, and it was hoped that larger GWAS datasets will be available
for future validation. Thirdly, even though we took measures to
identify and eliminate outliers and variations, we cannot entirely
rule out the possibility of horizontal pleiotropy affecting our results.
Fourth, our study utilized summary-level statistics rather than
individual-level data, which prevented us from further exploring
causality between subgroups, such as females and males. Fifth, our
research indicated a genetic prediction rate of 34.2% for muscle
loss mediated by AOPEP, which was relatively low. Considering
the involvement of other factors like vitamins, exercise, fatty acids,
and immunoregulatory peptides in muscle metabolism, further
research is needed to quantify the contributions of these other
mediators. Finally, further in vivo and in vitro experiments are
needed to validate the role of AOPEP in the ALM.

5 Conclusion

Our study, utilizing MR analysis, demonstrates that increasing
the abundance of Lachnospiraceae in the gut can directly enhance
limb muscle mass and also suppress AOPEP, thereby indirectly

reducing limb muscle loss. This provides evidence for the
modulation of the gut microbiota as a therapeutic approach for
sarcopenia. Therefore, interventions such as drug treatments or
microbiota transplantation aimed at augmenting the abundance
of Lachnospiraceae and AOPEP inhibitor synergistically improve
sarcopenia in the elderly, thereby enhancing the overall quality of
life for older individuals.
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