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The emergence and spread of antibiotic resistance threat forced to explore 
alternative strategies for improving the resistance to pathogens in livestock 
production. Probiotic lactic acid bacteria represent an alternative for this 
objective. In this study, seven Lactiplantibacillus plantarum strains from porcine 
colostrum and milk were isolated, identified and characterized in terms of their 
abilities to modulate immunity in porcine intestinal epithelial (PIE) cells. Then, 
two potential immunoregulatory strains were studied in terms of their ability 
to utilize and grow in wakame (Undaria pinnafida). Isolates were identified 
by 16S rRNA gene and evaluated by studying their interaction with PIE cells. 
The expressions of peptidoglycan recognition proteins (PGRPs), nucleotide-
binding oligomerization domain (NODs), host defense peptides (pBD), and 
type I  interferons (IFNs) were evaluated by RT-qPCR. The strain 4M4417 
showed a remarkable capacity to differentially regulate the expression of 
PGRP1, PGRP3, NOD1, NOD2, and pBD1 in PIE cells. On the other hand, the 
strain 4M4326 was the most efficient to improve the expression of IFN-α and 
IFN-β in PIE cells challenged with poly (I:C). Both L. plantarum 4M4326 and 
4M4417 were characterized in terms of their ability to utilize wakame. Results 
demonstrated that both strains efficiently grew in wakame-based broth. Our 
results suggest that L. planatrum 4M4326 and 4M4417 are interesting candidates 
to develop immunomodulatory feeds based on wakame utilization. These new 
immunosynbiotic feeds could help to reduce severity of intestinal infections and 
improve immune health status in pigs.
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Introduction

Milk is considered as the main source of nutrients for neonates, 
providing optimal energy and bioactive compounds in their early life 
(Saha and Ara, 2012; Wang et al., 2022). In addition, it was reported 
that commensal bacteria from milk are key actors during the early 
stage of neonatal gut colonization, being major regulators of the host’s 
immune responses (Stewart et al., 2018). Newborn piglets suckle the 
sow and rely on the nutrients ingested with milk until weaning 
(Vodolazska et al., 2023). In general, weaning is performed in piglets 
around 3–4 weeks when the feeding changes from milk to solid feed. 
This practice induces a stressful condition to the pig’s life leading to 
the disruption the gut microbial compositions. This stress can induce 
alterations of the intestinal morphology and physiological functions 
and increase the susceptibility to enteric pathogens infections leading 
to diarrhea (Gresse et  al., 2017; Ding et  al., 2021). Post weaning 
diarrhea has been documented as a severe problem after weaning in 
swine industry globally, and it is one of the leading causes of the 
mortality observed during this stage. This infectious disease is usually 
caused by enterotoxigenic Escherichia coli, Salmonella spp., and 
rotavirus infection (Cremonesi et al., 2022). To curb post weaning 
diarrhea there has been a widespread and irrational use of antibiotics 
as feed additives (Pan et al., 2017) causing the increase of antibiotic 
resistance in the animals and in the consumers of their products. Thus, 
the use of antibiotics has been banned in many regions of the world, 
such as the European Union in 2006 (Chen et al., 2005) or its use has 
been limited in many countries such as USA, Japan, and China. In 
order to reduce the use of antimicrobials in livestock, several 
alternatives are being explored, including the use of 
immunomodulatory probiotics (immunobiotics) (Villena et al., 2018; 
Saha et al., 2023).

Recent research has shown that human breast milk is an excellent 
source of beneficial lactic acid bacteria (LAB) that are vertically 
transferred to the infant gut (Martín et  al., 2007; Qi et  al., 2022). 
Remarkably, some of the LAB strains isolated from breast milk can 
reduce the severity of infections and inhibit the growth of pathogenic 
bacteria by competitive exclusions and/or the production of 
antimicrobial compounds such as bacteriocins or organic acids 
(Martín et al., 2009). Recent studies have demonstrated that such 
bacteria could be transferred from the maternal gut to the mammary 
gland during late pregnancy and lactation through an immunologically 
based internal route that involves dendritic cells and macrophages: the 
entero-mammary pathway (Rodríguez, 2014; Selvamani et al., 2021; 
Qi et al., 2022). The beneficial effects of probiotic LAB in the gut are 
associated with several mechanisms, including the increase of mucus 
production, enhancement of epithelial barrier, the competition with 
harmful microbes for attachment and nutrients in the mucosa, as well 
as the modulation of the local and systemic immune systems (Elean 
et al., 2021; Kober et al., 2022). In terms of immunomodulation, it has 
been demonstrated that the oral administration of probiotic strains 
can prime the host immune system allowing a faster and more 
effective response to microbial infections, suggesting that these strains 
could be used as dietary supplements to enhance innate and adaptive 
immune system response (Sandes et al., 2017; Abramov et al., 2020).

In general, human breast milk contains approximately 103 to 104 
colony forming units/mL of microbes such as Lactobacilli, Lactococci, 
Enterococci, and Leuconostoc spp. (Keddar et  al., 2023). Among 
bacteria present in breast milk, Lactiplantibacillus plantarum strains 

have been identified as potential probiotics (Mollova et al., 2023). 
L. plantarum can survive in the gastrointestinal tract of humans and 
other mammals including pigs (de Vries et al., 2006; Masumizu et al., 
2019; Mollova et al., 2023). In addition, several L. plantarum strains 
have shown to possess beneficial properties for the host, including 
their ability to beneficially modulate the immune system (Villena 
et  al., 2018). In this regard, we  found that different strains of 
L. plantarum such as CRL1506, CRL681, and MPL16 have a 
remarkable ability to modulate antibacterial and antiviral immune 
responses (Albarracin et al., 2020; Zhou et al., 2020; Baillo et al., 2022). 
Considering these facts, we  hypothesized that, sow milk contains 
probiotic Lactobacillus strains which may have the capacity to 
beneficially modulate the immune system of piglets. Few studies have 
explored the potential probiotic properties of bacterial strains from 
sow milk (Martín et al., 2009; Gyawali et al., 2015).

In the present work, we aimed to isolate and characterize the 
immunomodulatory properties of L. plantarum from sow milk, 
particularly focused on their ability to modulate the expression of 
antimicrobial factors in the context of poly (I:C) challenge in porcine 
intestinal epithelial (PIE) cells. Considering that research has 
demonstrated that some prebiotic seaweed can enhance the beneficial 
effects of probiotic lactobacilli (Makkar et al., 2016; Masumizu et al., 
2019), we also evaluated the ability of the strains to grow in wakame 
(Undaria pinnafida), with the aim of developing an immunosynbiotic 
feed to improve immune health of pigs in the future.

Materials and methods

Animals and sow milk sample collection

All pregnant sows (Landrace × Yorkshire × Duroc) were kept at 
Tsubonuma Farm, Faculty of Food Industry, Miyagi University, Japan. 
Animals were reared according to the guidelines of the Japanese 
Association of Laboratory Animal Science (JALAS) for care and use 
of animals in research. The protocol was approved by the laboratory 
health and safety committee of Miyagi University (Japan) with an 
approved protocol no. 2016–2023. The milk sample was collected from 
healthy pig. Corn-soybean based diet fed to the animals.

Milk samples were collected in a sterile tube. During milk 
sampling, sterile gloves were worn, nipple and the surrounding area 
were soaked with 75% ethyl alcohol to avoid the contamination by 
skin bacteria. The milk samples were immediately refrigerated at 4°C 
and transferred to the laboratory of Animal Food Function, Tohoku 
University. After transportation, milk samples were dispensed into 
serum tubes, mixed with equal amount of 60% (v/v) glycerol (final 
concentration was 30% glycerol sample stock) and stored at −80°C for 
the cultivation of bacteria.

Milk microbiome analysis

For DNeasy Blood & Tissue Kit (Qiagen, United States), 0.2 mL 
milk sample were centrifuged at 6000 × g for 3 min, total DNA was 
isolated from its pellet using according to the manufacturer’s 
instructions for gram positive bacteria and then sent for 
Bioengineering Lab. Co., Ltd. (Kanagawa, Japan). Total DNA was 
subjected to 16S rRNA analysis, and read counts were calculated. DNA 
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was amplified using the 2-step tailed PCR to target the V3–V4 regions 
of bacterial 16S rRNA. 1st PCR was performed with the 1st-341f_MIX 
(5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-NNNNN-
CCTACGGGNGGCWGCAG-3′) and the 1st-805r_MIX (5′-GTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCT-NNNNN-GACTA 
CHVGGGTATCTAATCC-3′) primers. Subsequently, 2nd PCR 
was performed with the 2ndF (5′-AATGATACGGCGACCACC 
GAGATCTACAC-Index2-ACACTCTTTCCCTACACGACGC-3′) and 
the 2ndR (5′-CAAGCAGAAGACGGCATACGAGAT-Index1-
GTGACTGGAGTTCAGACGTGTG-primers). A 16S rRNA 
metagenomic sequencing library was prepared according to 
manufacturer’s instructions (Illumina, San Diego, CA, United States). 
The PCR products were pooled to construct the sequencing library 
and the quality of the library was confirmed using Fragment Analyzer 
and dsDNA915 Reagent Kit (Advanced Analytical Technologies). 
Sequencing was performed using the MiSeq Reagent Kit v3 (Illumina, 
United States) under the condition of 2 × 300 bp. The paired raw fastq 
data were merged and quality filtered. The FASTQ data from four 
breasts underwent analysis within the Quantitative Insights into 
Microbial Ecology version 2 (Qiime2) platform.1 Initially, the dada2 
plugin in Qiime2 was employed to filter and denoise the raw FASTQ 
data. The passed forward and reverse sequences were then merged. 
Then the chimera sequences were eliminated from the merged 
sequences to construct the amplicon sequence variant (ASV) table. 
The ASV tables from four breasts were combined to create one ASV 
table. Finally, taxonomy analysis was performed by classifying each 
ASV using the SILVA 138 database (Quast et al., 2012).

Isolation of Lactobacillus from sow milk

To isolate Lactobacillus strains, primarily, collected milk samples 
were thawed and 50 μL of samples were 10-fold serially diluted with 
sterile phosphate buffered saline (PBS) solution. Later, an aliquot 
(50 μL) of mixtures was plated onto de Man, Rogosa and Sharpe 
(MRS, Becton Dickinson Company, United States) and incubated at 
37oC for 48 h. Single colonies were collected, and pre-cultured onto 
MRS broth for up to 24 h and stored at −80°C with equal 60% glycerol 
solution for further experiments. The morphology of isolates was 
examined by Gram staining, and Gram-positive bacteria were used 
for 16S rRNA gene sequencing.

Identification of Lactobacillus strains by 
using 16  s rRNA sequencing

Genomic DNA was extracted from selected bacterial isolates 
using DNeasy Blood & Tissue Kit (Qiagen, United States) by following 
the manufacturer’s protocol for gram positive bacteria. The DNA was 
measured with a Nanodrop ND-2000 spectrophotometer (NanoDrop 
Technologies Wilimington, DE). 16S rDNA fragment was amplified 
by PCR using the bacterial universal primers 27f (5´-AGAGTTTGA 
TCCTGGCTCAG-3′) and 1492r (5´-GGTTACCTTGTTACGAC 
TT-3′) (Ref). After amplification, PCR products were purified by gel 

1 https://doi.org/10.1038/s41587-019-0209-9

electrophoresis and the purified PCR products were sequenced by 
BigDye Terminator v1.1 Cycle Sequencing Kit (Thermo, Co., Ltd., 
Foster City, CA, United  States). The obtained sequences were 
examined by basic Local Alignment Search Tool (BLAST, https://blast.
ncbi.nlm.nih.gov/Blast.cgi) through the alignment of 16 s rRNA gene 
sequences of isolates with the 16 s rRNA gene sequences of known 
bacteria in GeneBank database. More than 95% of sequence with a 
type of strain were used to identify the isolates.

In vitro evaluation of immunomodulatory 
properties of L. plantarum isolates

The porcine intestinal epithelial cell lines (PIE) were used as an in 
vitro cellular model. PIE cells were initially derived from the intestinal 
epithelium of neonatal unsuckled piglets, previously developed by our 
research group (Moue et al., 2008), and was maintained in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with fetal calf serum 
(10%), penicillin (100 U/mL), and streptomycin (100 μg/mL). The PIE 
cells cultures were grown in a flask. 75 cm2 flask at 37°C with 5% CO2. 
The cultures were passaged routinely to reach the confluent 80%–90% 
and used for experiments between 25th and 35th passages. PIE cells 
were counted and later seeded at 3.0 × 104 cells in Type I collagen 
coated 12-well plates (SUMILON, Tokyo, Japan) and incubate at 37°C 
with 5% CO2 for 3 days. On the day 3, L. plantarum isolates 5 × 107 
cells/well (2.5 × 108 cells/mL) were added and stimulation was 
continued for 48 h at 37°C with 5% CO2.

For TLR3 activation experiments, PIE cells were seeded at 3.0 × 104 
cells per well in 12-well type I collagen-coated plates and cultured for 
3 days. After changing medium, lactobacilli (2.5 × 108 cells/mL) were 
added, and 48 h later, each well was washed vigorously with medium 
at least three times to eliminate all stimulants. Then, cells were 
stimulated with 5 μL of poly (I:C) (100 ng/mL) (Sigma-Aldrich, St. 
Louis, MI, United States) for 12 h.

After the treatment with lactobacilli (basal expression) and 12 h 
after poly (I:C) stimulation, PIE cells were washed twice PBS, treated 
with 500 μL of TRIzol reagent (Invitrogen, CA, United States) per well, 
and transferred to a 1.5 mL microtube for RNA extraction according 
to the manufacturer’s protocol.

Quantitative real-time PCR analysis

Total RNA was extracted from treated and control PIE cells using 
TRIzol reagent (Invitrogen, Carlsbad, CA, United States) and reverse 
transcribed into cDNA using the PrimeScript™ RT reagent Kit with 
gDNA Eraser (Takara Bio Inc., Shiga, Japan) by following the 
manufacturer’s protocol. The synthesized cDNA was then used for 
quantitative PCR analysis using Platinum SYBR Green qPCR Super 
Mix UDG with ROX (Invitrogen, Carlsbad, CA, United States) on a 
7,300 real-time PCR system (Applied Biosystems, Warrington, 
United Kingdom). In brief, cDNA 2.5 μL, Syber MIX 7.5 μL (reverse 
primer 1.25 μL (1 pM), Platinum SYBR Green qPCR SuperMIX-UDG 
with POX 5 μL) into each well of the dedicated 96 well plates. Primers 
used in this study are described in Supplementary Table S1. 
Amplification was carried out at the following conditions: 50°C for 
2 min and 95°C for 5 min, followed by 40 cycles consisting of 95°C for 
15 s, 60°C for 30 s, and 72°C for 30 s. β-actin was used as an internal 
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standard to normalize cDNA levels for differences in total cDNA levels 
in the samples. The samples were run thrice for each experimental 
condition and the average values were used to statistical analysis.

Bacterial growth assay

Bacterial growth assay was performed according to our previous 
publication (Masumizu et al., 2019). In brief, 0.1% (w/v) of wakame 
powder was suspended in water and the suspension was autoclaved at 
121°C for 15 min. The wakame solution adjusted to pH 5 with 1 mol/L 
HCl and incubated with the two enzymes: 0.25% (w/v) cellulase and 
0.25% (w/v) hemicellulose (Mitsubishi-Chemical Foods Corporation, 
Tokyo, Japan) at 50°C for 24 h. The hydrolyzed wakame was again 
autoclaved at 121°C for 15 min, and the supernatant was separated by 
centrifugation at 6,000 rpm for 20 min. The supernatant containing the 
wakame extract was further supplemented with 0.6% (w/v) Trypticase 
soy broth and 0.5% (w/v) NaCl. The pH was adjusted to 6.8 and the 
broth was autoclaved at 121°C for 15 min. This wakame broth obtained 
at the end of these procedures was considered as ready for use.

The lactobacilli strains used for the study of wakame assimilation 
were first grown in MRS agar at 37°C for 24 h. A single colony was 
picked for the pre-culture. After growth, 2% (v/v) of bacteria culture 
broth was added 5 mL of wakame broth or non-sugar MRS and 
incubated at 37°C for 48 h. Optical density was monitored for 48 h 
(measurement interval: 30 min, penetration rate: 60 rpm, total 
operation time: 48 h) using spectrometer system (TVS026CA, 
Advantec, Tokyo, Japan).

Thin layer chromatography

Wakame solution with or without enzyme treatment, the 
supernatant of the wakame broth fermented with L. plantarum strains, 
and 1% (w/v) of standard saccharides solutions (glucose, galactose, 
fructose, lactose, mannose, raffinose, alginate, and cellobiose) were 
dropped on TLC Silica gel 60 (Merck kGaA, Darmstadt, Germany). 
Butyl alcohol, isopropyl alcohol, and water (3:12:4) mixture was used 
as the solvent. After 2 times developing, 5% (v/v) sulfuric acid in 
methanol was sprayed on the plate and it was heated at 150°C for 
10 min until spot visualizing.

Statistical analysis

The statistical analyses were performed by using Bell Curve for 
Excel (Social Survey Research Information Co., Ltd., Tokyo, Japan). 
Data were presented as the mean ± SD. Differences between the 
control were assessed using one-way ANOVA followed by the 
independent two-tailed t-test. Differences were considered as 
significant when p < 0.05.

Results and discussion

Isolation of LAB from sow milk

The analysis of the microbial composition of porcine colostrum 
revealed the presence of a complex bacterial community (Figure 1A). 

Chryseobacterium and Staphylococcus were abundant genera, with 
Lactobacillus comprising approximately 2% of the colostrum 
microbiome (Figure 1B). Our results are consistent with previous 
studies that have identified porcine milk as a rich source of 
Lactobacillus (Martín et al., 2009; Wang et al., 2022). In a study by 
Chen et al. (2018) demonstrated that the microbial composition and 
diversity of the porcine colostrum changed significantly but was 
relatively stable in transitional and mature milk. The work described 
that the genera Corynebacterium and Streptococcus were significantly 
higher in colostrum while the bacterial groups Lactobacillus, 
Ruminococcaceae, unclassified Lachnospiraceae, and unclassified 
Clostridiales were more abundant in milk. In addition, L. reuteri was 
the most dominant species in milk (Chen et al., 2018). However, it 
should be  noted that the milk microbiota of sows has not been 
systematically investigated, therefore there is not enough information 
to compare similarities and differences between studies and draw 
robust conclusions.

Next, we aimed to isolate LAB strains for samples using MRS 
plates. Most of the isolated strains belonged to the species 
W. thailandensis, W. cibaria, W. paramesenteroides, and L. lactis 
(Supplementary Table S2). The identification by 16S rDNA PCR of 
isolated colonies revealed that among lactobacilli all the strains 
belonged to the species L. plantarum (Supplementary Table S2). Thus, 
our experimental procedures did not allow the isolation of other 
lactobacilli species present in the porcine milk. Similarly, the study of 
Wang et al. (2022) showed that from a total of 1,240 isolates from 
porcine milk, 922 belonged to the group of Lactobacillales, which was 
dominated by L. lactis. In addition, L. reuteri, L. salivarius, 
L. plantarum, L. paraplantarum, L. brevis, and W. paramesenteroides 
were the most abundant species isolated from sow milk (Martín et al., 
2009). Considering that we were interested in L. plantarum strains 
because of their potential higher capacity to grow in wakame 
(Masumizu et al., 2019), we selected seven strains belonging to this 
species of lactobacilli (4cs321, 4cs331, 4M4326, 4M4338, 4M4346, 
4M4347, and 4M4417) for the evaluation of the immunomodulatory 
properties in PIE cells.

Immunoregulatory properties of 
L. plantarum isolates

We demonstrated previously that PIE cells are a useful in vitro tool 
to evaluate the ability of beneficial bacteria to modulate the innate 
immune responses, which has a high correlation with posterior in vivo 
studies (Shimazu et al., 2012; Suda et al., 2014; Albarracin et al., 2020). 
Then, in a first set of experiments we  assessed whether the 
pre-stimulation of PIE cells with lactobacilli differentially modulate 
the expression of immune genes in PIE cells stimulated with the 
isolates of L. plantarum (Figure 2). A clear strain-dependent effect was 
observed when the expressions of PGRPs, NODs, and pBDs genes were 
analyzed, which is in line with our previous reports evaluating LAB 
strains of different origins (Villena et al., 2016; Masumizu et al., 2019; 
Mizuno et al., 2020; Baillo et al., 2022).

L. plantarum 4M4326 was the only strain able to increase PGRP4 
expression. This strain also upregulated PGRP1 and PGRP3. 
L. plantarum 4cs331 increased PGRP1 while the 4M4321 strain 
upregulated PGRP3 (Figure 2A). The most remarkable effect was 
found for L. plantarum 4M4417 that enhanced the expression of 
PGRP1, and PGRP3 in PIE cells. PGRPs possess antibacterial and 
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immunomodulatory properties that allow them to actively participate 
in the interaction of host’s cells with the intestinal microbiota. It was 
reported that mice lacking any of the four genes coding for PGRPs 
are more susceptible to dextran sulfate sodium (DSS)-induced colitis 
(Saha et al., 2010). Furthermore, stools from mice deficient in PGRPs 
when transferred to wild type germ-free mice can increase the 
severity of colitis when compared to the stools from normal mice 
(Jing et al., 2014). Although significant advances have been made in 
the biology of PGRPs in human and mice, their functions in pigs have 
been less explored. Our group demonstrated that the four PGRPs are 
expressed in PIE cells and that their expression can be modulated by 
probiotic microorganisms (Iida et  al., 2019). Our data provided 
evidence of the potential capacity of the modulation of PGRPs by 
beneficial microbes to enhance resistance and reduce inflammatory 
damage severity during intestinal infections.

The results showed that L. plantarum 4cs321 significantly 
upregulated the expression of pBD3 while the 4cs331 strain increased 
pBD1 in PIE cells stimulated with the isolates of L. plantarum when 
compared to controls (Figure 2B). The expression of pBD1 was also 
enhanced by the strains 4M4326 and 4M4347. L. plantarum 4M4417 
significantly increased the expression of pBD1 (Figure  2B). The 
secretion of host defence peptides by the intestinal epithelium is of 
importance since these factors can exert both antimicrobial and 
immunomodulatory activities, providing an early response to bacterial 
infections in the gut (Veldhuizen et  al., 2008). Interestingly, the 
treatment of weaned piglets with synthetic host defence peptides was 
shown to improve their growth performance, nutrient digestion, and 
intestinal health (Yoon et  al., 2013). An alternative to the 
administration of synthetic peptides is the induction of their 
expression using beneficial microorganisms. Some studies have shown 
the ability of L. plantarum strains to differentially modulate the 
expression of host defence peptides in porcine intestinal epithelial 
cells. The probiotic strain L. plantarum ZLP001 was shown to 
upregulate the expression of pBD2 (a β-defensin) and PG1-5 
(a cathelicidin) in IPEC-J2 cells (Wang et al., 2018) in a TLR2/MAPK/
AP-1 signaling dependent pathway (Wang et al., 2019). This effect has 
been described as one of the mechanisms involved in the augmented 
growth performance in post-weaning piglets upon the treatment with 
the ZLP001 strain (Wang et  al., 2012). Similar studies have 
demonstrated the ability of lactobacilli to modulate host defence 
peptides in porcine intestinal epithelial cells including L. reuteri I5007 
(Liu et al., 2017), L. salivarius B1 (Zhang et al., 2011), and L. plantarum 
Lac16 (Zhou et al., 2021).

We also investigated the effect of L. plantarum isolates on the 
expression of NOD1 and NOD2 in PIE cells (Figure  2C). The 
expression level of NOD1 was increased in PIE cells treated with the 
4cs331 strain while L. plantarum 4M4417 was the only one with the 
capacity to improve the expression of both NOD1 and NOD2. The 
modulation of the expression of NOD1 and NOD2 in the intestinal 
epithelium has been connected to the ability of the intestinal 
microbiota and probiotics to beneficially modulate the inflammatory 
response. Studies in specific pathogen-free Nod1−/− and Nod2−/− mice 
showed that both receptors are necessary for the intestinal microbiota 
or probiotics to reduce the severity of colitis (Natividad et al., 2012).

On the other hand, we evaluated the ability of the seven L. plantarum 
strains from porcine milk to modulate TLR3-mediated immune 
responses in PIE cells. For this purpose, cells were stimulated with 
lactobacilli, challenged with the TLR3 agonist poly (I:C), and then the 
expression of IFN-α and IFN-β was evaluated (Figure 3A). Like the 
experiments with L. plantarum stimulation (Figure 2), a clear strain-
dependent effect was observed when the expressions of type I IFNs genes 
were analyzed, which is in line with our previous reports evaluating LAB 
strains of different origins (Albarracin et al., 2020; Zhou et al., 2020). 
Most of the strains had no effect on the expression of IFN-α and IFN-β 
in PIE cells stimulated with poly (I:C) (Figure 3A). The strain 4cs331 
increased the expression of IFN-α while the most remarkable effect was 
detected for L. plantarum 4M4326 that significantly enhanced both 
IFN-α and IFN-β. We previously reported that L. plantarum MPL16 and 
L. plantarum CRL1506 had the capacity to enhance the expression of 
type I IFNs and antiviral factors in poly (I:C)-challenged PIE cells, an 
effect that is not sheared by strains of the same species (Albarracin et al., 
2017, 2020). Of note, both CRL1506 and MPL16 strains efficiently 
regulate the production of IFN-α and IFN-β in the gut of mice challenged 
with poly (I:C), which indicates that results obtained in PIE cells could 
be extrapolated to in vivo situations (Albarracin et al., 2020).

Taken together, our results show that some of the L. plantarum 
strains isolated from porcine milk have an excellent potential to 
be  used in the formulation of immunomodulatory feeds and to 
be  tested in vivo in pigs. To establish the best strains for further 
studies, we  jointly analyzed gene expression changes in the two 
experiments (L. plantarum strains and poly (I:C) stimulation) using a 
heat map (Figure 3B). All the strains were clearly differentiated from 
each other, observing the most notorious effect for L. plantarum 
4M4417. This strain was selected for the following studies. In addition, 
the strain 4M4326 was selected because was the only one with a 
noticeable effect on the modulation of antiviral immunity.

FIGURE 1

Microbial composition of porcine colostrum (day0) at Phylum level (A) and Genus level (B). Microbiome data from four breasts were combined in a 
single bar plot. The arrow indicates Lactobacillus.
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Wakame utilization ability of L. plantarum 
strains

Wakame, an edible brown alga, contains various biologically 
active components that regulate the immune function (Jimenez-
Escrig et  al., 2011). Therefore, wakame has been proposed as a 
potential prebiotic feed supplement, however, only some 

microorganisms have the capacity to utilize its polysaccharides to 
grow (Tang et al., 2007). Our previous in vivo studies demonstrated 
that the administration of wakame to pigs as a feed significantly 
elevated the abundance of Lactobacillus spp. in the gut (Masumizu 
et al., 2019). Indeed, some L. plantarum strains isolated from the feces 
of wakame fed pig showed well growth in the presence of wakame in 
vitro (Masumizu et  al., 2019). Therefore, wakame is expected to 

FIGURE 2

Effect of porcine lactobacilli on the expression of peptidoglycan recognition proteins (PGRP) (A) PGRP1, PGRP3, PGRP4, (B) host defense peptides 
pBD1, pBD3, and nucleotide-binding oligomerization domain (NOD), (C) NOD1 and NOD2 in PIE cells. The cells were stimulated with different 
Lactiplantibacillus plantarum strains (4cs321, 4cs331, 4M4326, 4M4338, 4M4346, 4M4347, and 4M4417) and the expression of immune factors was 
evaluated. PIE cells without lactobacilli stimulation were used as control. Values are presented as mean  ±  SD of three independent experiments (n  =  3 
per experiment). *p  <  0.05 and **p  <  0.01.
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function as a natural prebiotic for selected L. plantarum strains. 
Accordingly, we conducted growth assay of L. plantarum 4M4326 and 
4M4417 isolated in this work, on a non-sugar MRS medium 
supplemented with wakame as a sole carbon source (Figure 4A). In 
the early growth phase, both strains showed fast growth in the 
non-sugar MRS (control) medium, but the OD600 values decreased 
within 24 h. By contrast, in the wakame-supplemented medium, both 
strains exhibited a continuous growth pattern even after 40 h 
cultivation. TLC analysis indicated that the spots corresponding to 
monosaccharide were decreased in the culture medium of strains 
4M4326 and 4M4417, compared to enzyme-treated wakame 
(Figure 4B). Of note, the Rf of the glucose standard did not match 
with the one from enzyme-treated wakame. Polysaccharide present 
in wakame seaweed is not completely degraded to pure 
monosaccharide like the standard glucose, and the glucose in the 

enzyme-treated wakame would be connected with some residues such 
as sulfates which are considered abundant in wakame. These results 
suggest that the wakame can enhance the growth of L. plantarum 
4M4326 and 4M4417, although more studies are needed to determine 
the sugars present in the enzyme-treated wakame that favor the 
growth of lactobacilli. Remarkably there were other sugars in the TLC 
analysis that were not to be consumed by lactobacilli. The enzyme-
treated wakame also contain disaccharides (cellobiose) and 
trisaccharide that cannot be assimilated by L. plantarum 4M4326 and 
4M4417 but could be fermented by other intestinal bacteria in the 
porcine host when orally administered. Investigating the ability of the 
wakame fermented with 4M4326 or 4M4417 strains to modulate the 
composition of the porcine intestinal microbiota would be of value to 
completely characterize the potential beneficial effects of the 
symbiotic wakame-lactobacilli.

FIGURE 3

Effect of porcine lactobacilli on the expression of type I interferons (IFNs) (A) IFN-α and IFN-β in PIE cells challenged with poly (I:C). PIE cells were 
stimulated with different Lactiplantibacillus plantarum strains (4cs321, 4cs331, 4M4326, 4M4338, 4M4346, 4M4347, and 4M4417) and then challenged 
with poly (I:C). PIE cells without lactobacilli treatment and challenged with poly (I:C) were used as controls. Values are presented as mean  ±  SD of three 
independent experiments (n  =  3 per experiment). *p  <  0.05 and **p  <  0.01. Heat map analysis (B) of the differentially regulated genes in PIE cells treated 
with L. plantarum strains and challenged with poly (I:C).
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Conclusion

In the present work, we demonstrated that sow milk can be an 
excellent source for the isolation of potential probiotic (immunobiotic) 
LAB strains. Our experiments indicated that two L. plantarum strains 
derived from pig milk have immunomodulatory activities in PIE cells 
since they are able to modulate the expressions of genes involved in 
innate immune responses. L. plantarum 4M4417 efficiently regulated the 
expression of PGRPs, pBD, and NODs indicating its potential to 
beneficially influence the innate defence mechanism of the porcine 
intestinal mucosa. On the other hand, L. plantarum 4M4326 improved 
the expression of type I IFNs in PIE cells indicating its potential to 
be used as a probiotic enhancer of antiviral immunity in the porcine gut. 
Further in vivo investigations are needed to document the 
immunomodulatory activities of the 4M4326 and 4M4417 strains in 
pigs. In addition, future in vivo research on the synergistic combination 
of the immunomodulatory effects of wakame and the L. plantarum 
strains selected here are necessary to advance in the development of a 
functional immunosymbiotic feed with the capacity to efficiently 
improve immune health status and reduce the severity of intestinal 
infections in weaned piglets.
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