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A recent focus has been on the recovery of single-cell protein and other 
nutritionally valuable bioproducts, such as Coenzyme Q10 (CoQ10) from purple 
non-sulfur bacteria (PNSB) biomass following wastewater treatment. However, 
due to PNSB’s peculiar cell envelope (e.g., increased membrane cross-section 
for energy transduction) and relatively smaller cell size compared to well-
studied microbial protein sources like yeast and microalgae, the effectiveness 
of common cell disruption methods for protein quantification from PNSB may 
differ. Thus, this study examines the efficiency of selected chemical (NaOH 
and EDTA), mechanical (homogenization and bead milling), physical (thermal 
and bath/probe sonication), and combined chemical–mechanical/physical 
treatment techniques on the PNSB cell lysis. PNSB biomass was recovered 
from the treatment of gas-to-liquid process water. Biomass protein and CoQ10 
contents were quantified based on extraction efficiency. Considering single-
treatment techniques, bead milling resulted in the best protein yields (p  <  0.001), 
with the other techniques resulting in poor yields. However, the NaOH-assisted 
sonication (combined chemical/physical treatment technique) resulted in 
similar protein recovery (p  =  1.00) with bead milling, with the former having a 
better amino acid profile. For example, close to 50% of the amino acids, such 
as sensitive ones like tryptophan, threonine, cystine, and methionine, were 
detected in higher concentrations in NaOH-assisted sonication (>10% relative 
difference) compared to bead-milling due to its less disruptive nature and 
improved solubility of amino acids in alkaline conditions. Overall, PNSB required 
more intensive protein extraction techniques than were reported to be effective 
on other single-cell organisms. NaOH was the preferred chemical for chemical-
aided mechanical/physical extraction as EDTA was observed to interfere with 
the Lowry protein kit, resulting in significantly lower concentrations. However, 
EDTA was the preferred chemical agent for CoQ10 extraction and quantification. 
CoQ10 extraction efficiency was also suspected to be adversely influenced by 
pH and temperature.
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1 Introduction

In the past decade, there has been a growing interest to reduce the 
pressure on scarce natural resources like fresh water, arable land and 
forage fish by exploiting microbial biotechnologies to substitute 
conventional protein sources like soybeans (Santillan et al., 2024). 
Early single-cell protein (SCP) biotechnologies have included yeasts 
and microalgae (Wada et al., 2022). More recently, SCP derived from 
purple non-sulfur bacteria (PNSB) has emerged as a more desirable 
protein source due to its comparatively higher biomass protein 
content, carotenoid and coenzyme Q10 (CoQ10) content, high 
nutrient recovery rate, metabolic versatility and anti-pathogen 
properties (George et al., 2020; Koukoumaki et al., 2024).

Methods for disrupting cells to accurately extract and quantify 
biomass protein content have been extensively explored for microalgae 
and yeast biotechnologies (Halim et al., 2022; Rahman et al., 2022; 
Gautério et  al., 2023). These cellular disruption techniques can 
be broadly classified into mechanical treatment (such as bead milling 
and homogenization), physical treatment (heating and sonication) 
and chemical/biological treatment (alkali, acids, and enzymes) (Soto-
Sierra et al., 2018). Mechanical treatment breaches the cell envelope 
using shear force and is regarded as a non-selective lysis method (Liu 
et al., 2016). It is the most common method due to its comparatively 
higher lysing efficiency (Islam et al., 2017). Non-mechanical treatment 
techniques are gentler and more targeted, thereby increasing the 
selectivity of cellular constituents (Liu et al., 2016).

The effectiveness of these cell lysis techniques is dependent on the 
composition of the layers enclosing the cell and the size of the 
microbes of interest (Burden, 2012; Li et  al., 2020). For example, 
Mielko et al. demonstrated that the optimal extraction method varied 
between six different bacteria belonging to both gram positive-and 
gram-negative cell wall groups (Mielko et al., 2021). Similar reports 
exist for microalgae, where some species have simple cell membranes 
consisting of mostly phospholipid bilayer and proteins, while others 
have additional layers of intracellular or/and extracellular materials 
leading to fundamental differences in preferred cell disruption 
methods (D’Hondt et al., 2017).

Compared to yeast, bacteria have a fundamentally different cell 
wall composition. Yeast’s cell wall consists of chitin, layers of 
mannoproteins and fibrous glucans, making them more difficult to 
breach than bacteria’s peptidoglycan layers (Utama et al., 2023). PNSB 
are gram-negative bacteria. Their cell envelope consists of the 
cytoplasmic membrane holding the cell contents; the peptidoglycan 
layer, which consists of lipoproteins, phospholipids, porin proteins, 
lipopolysaccharide, and other proteins; and an external outer 
membrane that provides mechanical strength (Weckesser et al., 1995; 
Rojas et al., 2018). This enables gram-negative bacteria to withstand 
lysozyme cell lysis better than gram-positive bacteria (Naveed et al., 
2023). Moreover, photosynthetic bacteria like PNSB have an additional 
intracytoplasmic membrane (ICM) adjoined to the inner membrane 
to facilitate energy harvest from light, potentially increasing the cells’ 
resistance to cellular disruption (Oikonomou and Jensen, 2021). Even 
among phototrophs, there are differences in the cell envelope; for 
example, algae and cyanobacteria’s membrane lipid layer consists 
mainly of glycolipids, which are reportedly vulnerable to heat stress, 
while PNSB’s membrane contains mostly phospholipids like 
phosphatidylglycerol and phosphatidylethanolamine which are 
reportedly heat tolerant (Su et al., 2009; Nagatsuma et al., 2019). In 

addition, PNSB has a smaller cell size (0.3–1.7 μm) compared to 
commonly explored SCP microbes like Saccharomyces cerevisiae 
(8–10 μm), Spirulina sp. (>100 μm) and Chlorella vulgaris (2–10 μm) 
(Becker, 2013; Novak et al., 2017; Vander Wiel et al., 2017; Zakhartsev 
and Reuss, 2018; Teiba et al., 2020).

Despite the extensive research on cell disruption techniques for 
microalgae and yeast, there remains a significant gap in understanding 
the effectiveness of these methods when applied to PNSB, given their 
unique cellular architecture and size (Madigan and Jung, 2009). The 
gram-negative membrane composition, additional intracytoplasmic 
membrane, and smaller cell size provide possible resistance to 
lysozomes, heat and mechanical stress. Therefore, this study aims to 
fill this crucial research gap by evaluating the effectiveness of various 
cell disruption methods, including mechanical (homogenization with 
mortar and pestle, bead milling), physical (thermal and sonication), 
chemical (alkali and EDTA), and combined treatments, specifically for 
quantifying protein and CoQ10 content in PNSB biomass. As PNSB 
biotechnology is evolving to become a more commonly explored 
choice for wastewater treatment and bioresource recovery of microbial 
protein (Wada O. Z. et al., 2023), optimizing characterization methods 
specifically for this organism type is crucial.

2 Materials and methods

2.1 Biomass production and processing

Using 1 L Duran bottles, a PNSB-dominated mixed culture 
(50 mg/L) was inoculated in organic-rich industrial process water 
originating from the Fischer-Tropsch process with a chemical oxygen 
demand (COD) of 6 g/L. The process water was augmented with 
nutrients (NH4Cl, KH2PO4), trace minerals and vitamin supplements. 
A mixed culture was used since there is a growing trend in the 
integration of SCP production with wastewater treatment, where 
PNSB-enriched systems are of interest due to the ability to enrich the 
target organism under non-axenic conditions easily (Delamare-
Deboutteville et al., 2019; Wada O. et al., 2023). PNSB dominance was 
confirmed via the distinctive reddish color of the culture and microbial 
community analysis using next-generation sequencing. 
Rhodopseudomonas sp. had an OTU abundance of 35%, accounting 
for over one-third of the culture, while the remainder mostly consisted 
of heterotrophic anaerobic bacteria like Plaudibacter sp. and 
Lentimicrobium sp. Continuous light was supplied using LED grow 
lamps transmitting ~75% of the spectral power within the 400–800 nm 
range at an irradiance of 18 W/m2. Mixing at 200 rpm was provided 
via magnetic stirring. At the end of the culture period, the cells had a 
biomass concentration of about 1.8 g/L and were harvested via 
centrifugation at 10,000 g (Sorvall Lynx 6000, ThermoScientific). The 
biomass was stored at-80°C until freeze-drying was performed 
(FreeZone 6, Labconco). The freeze-dried biomass was then 
homogenized using a mortar and pestle and aliquoted based on the 
cellular disruption methods examined.

2.2 Cellular disruption techniques

Eight different cellular disruption techniques successfully utilized 
for microalgae and Escherichia coli biomass processing, were 
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examined. These can be categorized into mechanical, chemical, and 
combined mechanical/physical–chemical treatments. The mechanical 
treatment methods examined were homogenization and bead milling, 
and the physical treatment methods used were thermal lysis, bath 
sonication, and probe sonication. The chemical treatments were 
performed using either 0.04 M EDTA or 0.4 M NaOH. The combined 
chemical and physical/mechanical treatments trialed each 
combination of the incorporated methods (i.e., for each mechanical 
cell disruption method both a 0.04 M EDTA and 0.4 M NaOH 
chemical addition were tested separately). For mechanical and 
physical techniques, samples were suspended in distilled water 
before processing.

EDTA is commonly used to weaken the cell wall by increasing 
its permeability. In E. coli, optimal cellular lysis was achieved at 
0.04 M EDTA (Anand et al., 2007); hence, this concentration was 
adopted. However, EDTA has been identified as an interfering 
substance for the modified Lowry protein assay in concentrations 
above 1 mM (Thermo Scientific, 2020). NaOH has also been 
identified as an effective lysis agent and has been successfully used 
for microalgae studies (Safi et al., 2014). Microalgae studies have 
recommended NaOH molarity >0.25 M and <1.0 M to avoid 
incomplete extraction and protein loss (Rausch, 1981; Safi et al., 
2014). Besides its role in membrane permeation, high alkalinity 
(>pH 12) has been reported to fully solubilize biomass protein 
(Gerde et  al., 2013). A summary of all treatment techniques 
examined is provided in Table 1.

For all samples, biomass was initially homogenized with a mortar 
and pestle before further processing with different cellular disruption 
methods. For all treatment groups, a biomass weight of 15 mg and 
solution volume of 10 mL was used to maintain extracted protein 
concentrations within the calibration curve limits (1,500 μg/mL) of the 
Lowry method. The effect of each treatment method was assessed in 
replicate. Details of each treatment process are provided below.

2.2.1 Chemical treatment
This was performed by suspending 15 mg of homogenized 

biomass in 10 mL of 0.04 M EDTA (at pH 8) or 0.4 M NaOH. After 
suspension, the samples were vortexed and mixed at room temperature 

for 2 h at 100 rpm using a compact digital rocker (JIKT20022, 
ThermoScientific). This was to allow enough time for the chemicals to 
weaken the cell walls and induce lysis. The cells were subsequently 
centrifuged at 8,000 g, and the supernatant was collected for 
protein quantification.

2.2.2 Thermal and chemical-assisted thermal 
treatment

A known weight of homogenized PNSB biomass (15 mg) was 
placed in glass vials. The glass vials were then separated into four 
different groups depending on the suspension solution employed. The 
cells were suspended in 10 mL of distilled/deionized water, 0.04 M 
EDTA or 0.4 M NaOH. The samples were thoroughly vortexed to 
ensure homogeneity. Using a compact digital rocker, all chemical 
treatment methods were also assessed for reaction (mixing) time, 
considering rapid (vortexing for 1 min) and extended (1 h at 100 rpm) 
mixing intensities. Thermal treatment was performed with a block 
digester (DRB 200, Hach). The samples were heated at 90°C for 1 h 
and left to cool at room temperature. After cooling, the samples were 
centrifuged at 8,000 g, and the supernatant was collected for 
protein quantification.

2.2.3 Sonication and chemical-assisted 
sonication treatment

This method was examined by suspending 15 mg of biomass in 
10 mL of distilled water, 0.04 M EDTA, or 0.4 M NaOH. After 
suspension, the samples were vortexed and mixed for 1 h, as 
described in Section 2.2.2. The efficiency of bath and probe 
sonication were compared. Bath sonication was performed at a 
frequency of 40 kHz and temperature of 80°C (WUC-D10H, 
Daihan Scientific). In comparison, probe sonication was performed 
at an output frequency of 20 kHz, and the probe had a tip diameter 
of 13 mm (Model 150VT Ultrasonic Homogenizer, Biologics Inc.). 
For all samples, sonication was performed for a duration of 1 h. The 
impact of shorter sonication duration (30 min) was also examined. 
After sonication the samples were left to cool at room temperature 
and centrifuged at 8,000 g before processing the supernatant for 
protein quantification.

TABLE 1 Summary of cellular disruption techniques applied.

Techniques Key process/method Treatment solutions Treatment variations

Mechanical

Crude homogenization Mortar and pestle Distilled water, EDTA and NaOH Instantaneous mixing and 1 h mixing

Bead beating Bead milling at 2,000 rpm Distilled water, EDTA and NaOH

Physical

Thermal Block digester at 90°C Distilled water, EDTA and NaOH Instantaneous mixing and 1 h mixing

Probe sonication Frequency of 20 kHz and 13 mm tip 

diameter

Distilled water, EDTA and NaOH 0.5 h sonication and 1 h sonication

Bath sonication Frequency of 40 kHz and 80°C 

temperature

Distilled water, EDTA and NaOH 0.5 h sonication and 1 h sonication

Chemical

0.04 M EDTA Mixing for 2 h at 100 rpm EDTA

0.4 M NaOH Mixing for 2 h at 100 rpm NaOH
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2.2.4 Bead milling and chemical-assisted bead 
milling

Biomass samples of 15 mg were suspended in 10 mL of distilled 
water, 0.04 M EDTA, or 0.4 M NaOH. The samples were vortexed for 
homogeneity and mixed for 1 h, as described earlier. Subsequently, the 
samples were transferred to a high-energy ball milling chamber 
(Emax, Retsch), which was filled to 65% capacity with 2 mm diameter 
stainless steel beads weighing 98.5 g (product 22.455.0010, Retsch). 
Bead milling was performed for 30 min at 2000 rpm. The maximum 
milling chamber temperature was set to 70°C. The bead miller 
automatically stopped to cool once the maximum temperature was 
attained. After milling, the samples were collected into a container, 
centrifuged at 8,000 g and processed for protein analysis.

2.3 Protein and amino acid quantification

The modified Lowry protein assay is one of the most referenced 
protein quantification methods. The assay is based on the ability of 
proteins to react with copper(II) sulfate and tartrate to yield copper-
protein complexes. Upon reaction of the Cu-protein complex with 
Folin–Ciocalteu’s reagent, a reduction reaction occurs. The extent of 
reduction is directly proportional to the amount of chelated Cu 
complexes giving a blue color, which can be  measured 
spectrophotometrically around 750 nm.

For this study, protein quantification was performed following the 
recommended protocol of the Pierce™ Modified Lowry protein kit 
23240 (Thermo Scientific). In short, 10 protein standards were 
prepared at different concentrations using the reference albumin stock 
provided and distilled water as diluent. The Folin-Coicalteu reagent 
was prepared by diluting it in an equal portion of distilled water. 
Subsequently, 1 mL of Modified Lowry reagent was added to 0.2 mL 
of the standards and samples. After mixing and incubating, 100 μL of 
Folin-Coicalteu reagent was added to the standards and samples. The 
mixture was then vortexed, incubated for 30 min and analyzed using 
a UV-3600 plus UV–Vis–NIR spectrophotometer (Shimadzu) at 
750 nm. After obtaining the readings, a standard curve was generated, 
and sample protein content was determined from the standard curve.

Subsequently, a 100 μg fraction of protein was subjected to 
thorough enzymatic hydrolysis in a controlled environment devoid of 
oxygen, utilizing a PAL sample autoprocessor (CTC Analytics). The 
resulting hydrolyzed protein was utilized for amino acid identification 
using LC–MS/MS, employing an Acquity UPLC system (Waters) 
coupled with a Quattro Premier tandem mass spectrometer, following 
the protocol described by Rabbani and Thornalley (2020).

2.4 CoQ10 quantification

CoQ10 detection was performed using the Human coenzyme Q10 
ELISA kit MBS165643 (MyBiosource). The assay is based on the 
competitive inhibition enzyme immunoassay technique. In brief, five 
different standard concentrations were prepared by diluting with the 
provided sample diluent. Then, 50 μL of standards were added to the 
microwell plates, followed by 40 μL of samples. 10 μL of anti-CoQ10 
antibody were then added to sample wells, after which 50 μL of 
streptavidin-horseradish peroxidase-conjugate to all wells. The 
microplate was covered and incubated at 37°C for 60 min before 

washing the wells using the provided wash buffer and aspirating five 
times. After aspirating, 50 μL of solution A and B were simultaneously 
added to the wells and incubated in the dark at 37°C for 10 min, 
followed by adding 50 μL of “stop solution.” Optical density 
measurements at 450 nm were taken using a Spark multimode 
microplate reader (Tecan). The standard curve was derived from the 
readings, and the sample concentrations were determined.

2.5 Statistical analysis

Descriptive analysis was performed using Microsoft Excel, while 
inferential statistics were performed using JASP  0.14.1.0. All 
inferential statistics were measured at the 95% confidence interval, 
with statistical significance at p < 0.05. After verifying the test 
assumptions’ validity, the independent t-test was used to determine if 
statistically significant differences existed between two groups and the 
one-way analysis of variance test when more than two groups were 
assessed. Due to the limited replicate number, a conservative 
Bonferroni post-hoc test was utilized. When Levene’s test was 
statistically significant, Welch’s test was used in place of ANOVA and 
the Games-Howell post hoc test was used in place of the Bonferroni 
post hoc test.

3 Results and discussion

3.1 Chemical treatment

Chemical treatments with alkali are often appraised due to their 
low energy use, ease of scaleup and cost efficiency (Hu and Bassi, 
2020). The protein extraction performance of both chemical methods 
(EDTA and NaOH) on the PNSB biomass was significantly greater 
than the control treatment with distilled water (p < 0.001) but 
significantly less (p < 0.003) than all the combined chemical–
mechanical treatments examined. The inefficiency of water has also 
been reported in microalgae studies (Gerde et al., 2013). The reduced 
extraction efficiency of chemical treatment compared to chemical-
assisted mechanical treatments is probably because the chemicals 
cannot fully lyse the cells and release intracellular proteins. Their 
common mechanism of action is to make the cell wall more permeable 
for selective proteins to seep through, which can be enhanced through 
cellular disruption processes (Ren et al., 2007; Callejo-López et al., 
2020). Incomplete extraction of total biomass protein has also been 
reported in other microalgae studies that utilized alkaline treatment 
in isolation (Rausch, 1981; Callejo-López et  al., 2019, 2020). 
Additional physical/enzymatic treatment was employed to increase 
protein extraction efficiency. The EDTA treatment group (27.1 ± 0.1% 
biomass protein) had a slightly higher extraction efficiency compared 
to the NaOH group (23.0 ± 1.1% biomass protein). Similar results were 
obtained in studies that examined chemical methods for extracting 
protein and extracellular polymeric substances from Arabidopsis cells, 
Rhodopseudomonas acidophila, and activated sludge (Sheng et  al., 
2005; Liang et al., 2010; Tsugama et al., 2011). Other studies with 
S. cerevisiae have reported that solely using NaOH as a lysis agent only 
breaches the cell wall partially, therefore requiring additional 
treatment steps to ensure full cellular lysis (Vitaly, 2000; von der Haar, 
2007). This implies that NaOH is probably more suitable when used 
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with a mechanical cell disruption method, as affirmed in the 
subsequent sections. However, the downside of alkaline treatment is 
lysinoalanine formation, which results in the loss of the essential 
amino acid lysine and toxicity in consumption-related application 
(van den Berg et al., 2022; McKerchar et al., 2023).

3.2 Thermal treatment

The effect of thermal treatment alone and chemical-assisted 
thermal treatment was assessed under two conditions: rapid mixing 
(1 min vortexing) and extended mixing (1 h at 100 rpm). Thermal 
treatment of the PNSB biomass preceded by rapid mixing with 
distilled water resulted in inefficient extraction, which was depicted 
by the low levels of protein quantified (3–4%). This is probably because 
the high temperature could not successfully breach the protective 
outer membrane layer and the thick peptidoglycan layer in the cell 
wall (Islam et al., 2017). Another study that examined thermal lysis on 
E. coli cells reported optimal membrane permeability and protein 
release at the same temperature of 90°C with 60 s of heating (Packard 
et  al., 2013). This provides evidence of PNSB’s membrane 
thermotolerance compared to other gram-negative bacteria. PNSBs 
have been reported to have high thermotolerance, with some species 
growing optimally in environments with temperatures as high as 65°C 
(Charlton, 2002; Okamura et al., 2007). Their comparatively higher 
heat tolerance is also supported by the presence of heat-tolerant 
membrane phospholipids (Su et al., 2009; Nagatsuma et al., 2019).

Significantly higher yields (p < 0.001) were obtained for all the 
chemical-assisted thermal treatment groups, with the NaOH-assisted 
thermolysis proving the most efficient. This is most likely due to 
increased permeability or softening of cell membranes as a result of 
chemical pretreatment (Callejo-López et  al., 2020). Several other 
studies have reported that NaOH-aided thermolysis was very effective 
in breaching the cell walls of other gram-negative bacteria like E. coli 
and microalgae like Chlorococcum infusionum, Scenedesmus sp. and 
Synechococcus sp., releasing substantial protein (Rausch, 1981; Watson 
et al., 1987; Ren et al., 2007). However, a downside to combining 
heating with alkaline treatment is that protein properties could 
be altered via denaturation or racemization (Schwass and Finley, 1984; 
Callejo-López et al., 2020). These could significantly affect amino acid 
characterization, as susceptible amino acids will be underestimated.

Overall, the groups with only 1 min biomass-chemical reaction 
time had significantly less (p < 0.006) protein recovery when compared 
to the groups with 1 h biomass-chemical reaction time (Figure 1). For 
instance, the EDTA-assisted thermal treatment with 1 min biomass-
chemical reaction time had an average protein yield of 9.1 ± 0.1%, 
while the group with a 1 h reaction time had an average of 32.3 ± 0.4%. 
A similar pattern was observed with the NaOH-assisted thermal 
treatment. The benefit of reaction time has also been reported in other 
studies that employed alkaline-assisted treatments (Gerde et al., 2013; 
Callejo-López et  al., 2019). In one study, protein extraction in 
Nannochloropsis sp. increased significantly as the biomass reaction 
time with NaOH increased from 1 h to 5 h (Gerde et al., 2013). The 
reaction time between the chemical and biomass, temperature, and 
heating duration are important variables to consider for extraction 
studies because the cell membrane of different cells has varying 
degrees of permeability. For instance, the highest protein extraction 
efficiency in recalcitrant microalgae Scenedesmus sp. using 

NaOH-aided thermolysis was reported at 80°C for 90 min, while in 
more fragile microalgae like Synechococcus sp., the best protein yield 
was reported within 5 to 15 min at 90°C, and in activated sludge, 
optimal protein extraction is obtained at 100–140°C within 1.5–4 h 
(Rausch, 1981; Yan et al., 2022). Comparing the chemical-assisted 
treatment groups, the NaOH-assisted treatment resulted in the highest 
protein yields both with 1 h (36.4 ± 0.7%) and 1 min (24.5 ± 0.2%) 
biomass-chemical reaction time, followed by the EDTA-
assisted treatment.

3.3 Sonication treatment

All experiments in this group were performed after a 1 h reaction 
time. Protein extraction with bath and probe sonication was more 
efficient than thermal treatment. However, protein yield (8–13%) was 
still significantly lower (p < 0.001) when compared to the chemical-
aided sonication techniques (Figure  2A). PNSB’s resistance to 
sonication can be attributed to their rigid cell membrane (Weckesser 
et  al., 1995) and small cell size, resulting in a low surface area 
susceptible to sonic ruptures. The inefficiency of ultrasonication 
treatment alone for cellular disruption has also been reported in 
microalgae studies with Chlorococcum sp., Botryococcus sp., and 
C. vulgaris biomass, also known to have thick cell walls (Lee et al., 
2010; Halim et al., 2012). Similar to the thermal treatments, chemical-
aided cellular disruption was more effective. Moreover, protein 
extraction efficiencies were significantly higher (p < 0.006) in the 
NaOH-assisted sonication groups (42–43% biomass protein) 
compared to the EDTA-assisted groups (31–32% biomass protein). 
This was also observed in the chemical-aided thermal treatment 
studies. This could be because proteins are highly solubilized in very 
alkaline solutions (Gerde et al., 2013), but are more likely because 
EDTA is an interfering compound (could impede color change) for 
the modified Lowry assay (Thermo Scientific, 2020). This was 
confirmed by comparing the impact of distilled water, NaOH and 
EDTA diluent on preparing 1 mg/mL of albumin standards (BSA). The 
results revealed that the EDTA diluent group resulted in a significantly 
lower (p < 0.001) BSA concentration of 0.62 ± 0.03 mg/mL, compared 
to the distilled water (1.07 ± 0.01 mg/mL) and NaOH (1.03 ± 0.02 mg/
mL) diluent groups.

Time was revealed to be an important factor for protein recovery. 
The groups that were subjected to 0.5 h of NaOH-aided sonication had 
significantly less protein yield (p < 0.009) compared to the groups 
subjected to 1 h of sonication (Figure 2B). This is logical as the PNSB 
cells are small and difficult to breach, so lengthier treatment time 
would have better yields. Overall, the probe sonication groups had 
only slightly higher extraction efficiency (p = 1.000) than the bath 
sonication groups. This is interesting as the bath sonicator transmitted 
waves at 40 kHz and 80°C instead of the probe’s 20 kHz. However, 
probe sonication is known to be more targeted, as the sonic waves are 
in direct contact with the cells. Bath sonication is generally considered 
less invasive than probe sonication (Mellado et al., 2019). In addition, 
the high temperature associated with bath sonication could contribute 
to the slightly lower protein yield. While most proteins can withstand 
exposure to high temperatures, a few food proteins reportedly degrade 
at temperatures below 100°C (Huang et al., 2011; Maria, 2019). This 
could also have impacted the protein yields in the thermal lysis 
treatment group, as the NaOH-assisted thermal treatment recorded a 
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lower yield (36.4 ± 0.7%) compared to any of the NaOH-assisted 
sonication groups.

3.4 Bead milling

Bead milling is often regarded as one of the most efficient cellular 
disruption and extraction techniques (D’Hondt et al., 2017; Hu and 
Bassi, 2020). As seen in Figure 3, it was the only technique where the 
protein extraction performance with distilled water was similar to 

chemical-aided treatment (p = 0.268 for NaOH and p = 0.137 for 
EDTA). This is because bead milling depends solely on shear force to 
breach the cell walls (Islam et al., 2017). This implies that bead milling 
could be a suitable alternative in scenarios where chemical treatment 
needs to be avoided. Interestingly, bead milling with DI water had a 
higher and more stable protein yield compared to the NaOH and 
EDTA-assisted milling trials, respectively. This was the only technique 
that yielded such results. This is most probably due to a reduced 
possibility of protein denaturation and the absence of 
interfering agents.

FIGURE 1

Cellular disruption efficiency using thermal lysis and chemical-aided thermal lysis at no biomass-chemical reaction time and 1 h reaction time.

FIGURE 2

(A) Cellular disruption efficiency of bath and probe sonication and chemical-assisted bath and probe sonication; (B) Influence of time on NaOH-aided 
bath and probe sonication.
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Hydrophilic bioproducts like proteins are susceptible to 
degradation due to factors such as high temperature and exposure to 
solvents, and non-neutral pH solutions (Postma et  al., 2016). For 
example, past studies have reported that alkaline and heat treatments 
of microbial biomass could alter protein properties via denaturation, 
racemization, and lysinoalanine formation (Schwass and Finley, 1984; 
Callejo-López et  al., 2019). Moreover, with EDTA primarily 
functioning as a chelating agent, it could potentially alter the solubility 
and stability of metalloproteins, leading to their precipitation or 
denaturation, eventually affecting the overall yield of soluble proteins 
(Janecki and Reilly, 2005). Results also revealed that the EDTA-
assisted bead milling produced a supernatant that interfered with the 
Lowry reagent. This created an orange-like complex at the bottom of 
the Eppendorf tubes (Figure  4). The formation of this complex 
resulted in over-amplified protein quantification results. This is most 
probably because of EDTA’s chelating properties, possibly reacting 
with the stainless-steel beads (Oviedo and Rodríguez, 2003).

However, a notable drawback of using a bead mill is the high 
energy consumption and rise in temperature, which could affect heat-
sensitive components like carotenoids and coenzyme Q10 (Hu and 
Bassi, 2020). Compared to the sonication techniques, the protein 
extraction efficiency of the bead mill was slightly lower. This is 
probably because of the 2 mm beads used in this study. Studies have 
reported that smaller bead sizes (<1 mm) are more efficient for cell 
lysis (Harrison, 1991; Prapulla and Karanth, 2014). Bead size will 
likely affect the efficiency of PNSB cellular disruptions because the 
cells are smaller than most of the microbes studied.

3.5 Impact of disruption methods on amino 
acid characterization

The amino acid characteristics of two of the best treatment 
methods (bead mill-distilled water and bath sonication-NaOH) were 
assessed to examine possible differences in the amino acid profiles. As 

seen in Table 2, all 21 essential amino acids were detected in both 
treatment groups, confirming the efficacy of the extraction methods. 
Eight of the amino acids (alanine, arginine, aspartic acid, cysteine, 
glutamic acid, glutamine, lysine, and threonine) were detected in 
similar portions, with less than a 1% difference. On the other hand, 11 
amino acids (asparagine cystine, histidine, isoleucine, leucine, 
methionine, phenylalanine, serine, tryptophan, tyrosine, and valine) 
were detected in higher concentrations (over 10% difference) among 
the bath sonication treatment group compared to bead mill treatment. 
In comparison, glycine and proline were detected in higher 
concentrations in the bead mill treatment group.

Overall, the results indicate that extraction efficiency was higher 
in the alkali-assisted bath sonication group. This is likely due to the 
solubility characteristics and chemical environments facilitated by 
NaOH in the sonication process. The alkali solution may enhance the 
solubility and extraction of certain amino acids, increasing their 
concentrations in the resulting solution. For example, past literature 
has reported that amino acids like alanine, leucine, isoleucine, valine, 
phenylalanine, tyrosine, and serine are more soluble in alkaline 
solutions compared to neutral pH (Dalton et al., 1930; Needham et al., 
1971; Pradhan and Vera, 1998; Tseng et al., 2009). This is because 
amino acids are least soluble close to their isoelectric point (no net 
electric charge), which is facilitated by the distilled water treatment 
(Shaw et al., 2001; Tseng et al., 2009). All the amino acids expressed in 
higher concentrations in the alkali-assisted group have their isoelectric 
points between 5.41 and 6.01 (Liu et al., 2004). Thus, alkali-assisted 
extraction methods will favor the detection of such amino acids.

Furthermore, the sonication process may preserve the stability of 
sensitive amino acids like tryptophan, threonine, cystine, and serine, 
which are prone to degradation or modification during bead milling 
(ThermoScientific, 2001). In addition, methionine, an amino acid 
susceptible to oxidation, could be better preserved and extracted using 
sonication, since bead milling can induce oxidation reactions via 
mechanochemistry (ThermoScientific, 2001; Métro et al., 2014). The 
comparatively higher solubility of glycine and proline in water 

FIGURE 3

Summary of all treatment techniques at 1  h reaction time. The EDTA-assisted bead mill result is unreliable for reasons summarized in the text and 
Figure 4.
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probably contributed to their improved extraction efficiency under 
distilled-water bead milling than alkali-assisted bath sonication (Ji and 
Feng, 2008; Othman et al., 2018). Besides solubility characteristics, 
protein degradation could potentially contribute to the differences 

between both groups (Goldberg, 2015). Bead milling is a highly 
disruptive technique, potentially resulting in protein degradation 
because of high energy dissipation and fluctuating temperatures 
during milling (van Gaver and Huyghebaert, 1991; Phillips et  al., 

FIGURE 4

(A) EDTA-assisted bead milling sample interfering with modified Lowry reagent; (B) Representative image of other samples with no apparent 
interference.

TABLE 2 Amino acid characterization of alkali-assisted bath sonication and bead milling with distilled water treatment groups.

Amino acid (g/g) Bath sonication-NaOH 
treatment

Bead mill-distilled water 
treatment

Relative % increase in 
amino acids for sonication

Alanine 3.31 3.14 5.3

Arginine 1.78 1.84 −3.0

Asparagine 1.41 0.92 54.1

Aspartic acid 2.76 2.99 −7.6

Cysteine 0.13 0.14 −4.1

Cystine 0.25 0.20 23.1

Glutamic acid 2.28 2.23 2.1

Glutamine 0.61 0.61 −0.3

Glycine 4.39 5.35 −18.1

Histidine 0.87 0.79 11.0

Isoleucine 1.33 1.15 16.0

Leucine 3.40 2.69 26.6

Lysine 1.98 2.08 −4.8

Methionine 0.63 0.55 15.8

Phenylalanine 1.68 1.35 24.2

Proline 2.48 2.88 −14.0

Serine 4.30 3.81 13.0

Threonine 3.11 2.93 6.2

Tryptophan 0.65 0.49 31.5

Tyrosine 1.41 1.18 18.9

Valine 3.03 2.38 26.9

Bolded values are where extracted amino acid varied by 10% or more from the alternative extraction method.
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2021). On the other hand, sonication is generally less disruptive at 
reasonable intensities, leading to lower chances of protein 
denaturation. This hypothesis was supported by results in a recent 
study that examined total protein extracted from the microalgae 
Arthrospira plantensis. In that study sonication had the highest yield, 
which was more than double the protein yield obtained from 
beadmilling (Spínola et al., 2023).

3.6 Efficacy of extraction methods for 
CoQ10

CoQ10 is fat-soluble and is localized in the cell membrane around 
the lipid bilayer, where it functions as a cofactor for the electron 
transport chain (Aussel et al., 2014). Using minimum force during cell 
lysis is recommended to derive high CoQ10 yields due to its sensitivity 
(Wu and Tsai, 2013). Thus, enzyme and solvent extraction methods 
have been recommended over more disruptive and non-specific lysis 
methods like mechanical and physical disruption. The highest CoQ10 
content was obtained via chemical treatment with EDTA, followed by 
EDTA-assisted probe sonication, EDTA-assisted bath sonication and 
EDTA-assisted bead milling (Figure 5). EDTA treatment methods 
clearly outperformed distilled water and NaOH treatment techniques. 
This is probably due to the EDTA’s function as an emulsifier and 
solubilizer, considering CoQ10’s hydrophobicity and the strong 
hydrophilic nature of distilled water and NaOH.

A study comparing several extraction methods reported that the 
best single-step extraction was achieved using ethanol capable of both 
cell disruption and CoQ10 extraction (Wu and Tsai, 2013). Ethanol 
has been reported to be an ideal solvent for extraction due to the high 
solubility/stability of CoQ10 (Bule and Singhal, 2012). In this study, 
EDTA had similar features as it induced cell lysis and solubilized 
CoQ10, as opposed to NaOH, which induced cell lysis but could not 
efficiently extract the CoQ10. Another factor possibly responsible for 
EDTA’s superior performance is the lower pH of the EDTA solution 

(pH 8) compared to the NaOH solution (pH 13). This is due to the 
structural alterations sustained in alkaline media, leading to the 
formation of other quinone compounds (Bogeski et al., 2011; Petrova 
et al., 2014). In a previous study, the NaOH pretreatment method was 
also associated with poor CoQ10 yields, even though it was followed 
by a solvent extraction process (Wu and Tsai, 2013). This supports the 
notion that CoQ10 could be destabilized under basic conditions.

The significantly higher CoQ10 extraction performance in the 
EDTA treatment and EDTA-aided probe sonication compared to the 
other EDTA-based treatment methods could be due to the effect of 
temperature on CoQ10. Past extraction studies have reported that 
CoQ10 is light, temperature and pH sensitive, and is stable at a 
temperature range of 4 to 60°C and a pH range of 6 to 9 (Fir et al., 
2009; Nguyen et al., 2015). In one study, the highest CoQ10 extraction 
was obtained at 40°C and continued to reduce as temperature 
increased (Bule and Singhal, 2012).

3.7 Overview of extraction techniques

Overall, the hybrid cellular extraction methods involving 
chemical–physical/mechanical pretreatments had the best protein 
extraction efficiency. Considering only chemical pretreatment, EDTA 
(27%) was associated with significantly higher protein yield than 
NaOH (21%) after a 2 h reaction time at 100 rpm. However, a longer 
reaction time and higher mixing velocity could increase protein yield. 
Considering mechanical and physical methods, only bead milling 
achieved an optimal protein yield (40%), which was almost at par with 
NaOH-bath sonication (42%) and NaOH-probe sonication (43%). 
When used solely, protein extraction efficiencies of thermal, bath 
sonication and probe sonication were poor: 3, 8, and 13%, respectively. 
This was attributed to PNSB’s small cell size and rigid cell wall. Thus, 
for PNSB studies, it is advised to employ highly disruptive treatment 
techniques like bead beating or chemical-assisted physical/mechanical 
methods to achieve optimal protein recovery.

FIGURE 5

Influence of cellular disruption techniques on coenzyme Q10 extraction and quantification.
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On the other hand, CoQ10 extraction was dependent on the 
disruption/extraction solution. The highest CoQ10 yields were 
obtained when EDTA was employed due to EDTA’s superior ability 
to solubilize CoQ10 over distilled water and NaOH. Other 
suspected contributing factors were temperature and pH, which are 
known to destabilize CoQ10 at elevated levels. Thus, pure chemical 
treatment with EDTA and EDTA-assisted probe sonication is 
recommended, as the two groups had the highest 
extraction efficiencies.

When the extraction efficiencies of both protein and CoQ10 are 
considered, the utilization of the EDTA pretreatment method and 
EDTA-assisted probe sonication pretreatment method can 
be considered. Finally, regarding energy considerations, the single 
EDTA chemical treatment method is preferred as it requires negligible 
energy for mixing. Among the physical/mechanical techniques, 
NaOH-assisted probe sonication generated the least energy (0.15 
kWh) as it transmitted waves at a frequency of 20 kHz, compared to 
the bath sonication (0.665 kWh) that transmitted a frequency of 
40 kHz and heating at 80°C. As expected, the highest energy 
consumption was associated with the high-energy bead mill 
(3.1 kWh).

4 Conclusion

The efficient disruption of PNSB for protein/coQ10 quantification 
presents a unique set of challenges when compared to more well-
studied organisms like gram-negative bacteria such as E. coli or 
autophototrophic Cyanobacteria. The distinct cellular characteristics 
of PNSB, notably their small size, have necessitated exploring 
disruption methods tailored to their specific properties. Here are the 
key findings from our study.

Unlike other commonly explored microbes, traditional techniques 
like chemical, thermal, and alkaline-assisted thermal treatment have 
proven ineffective for PNSB.

Likewise, probe and bath sonication, known to be  efficient 
disruption methods for other biomasses (Liu et al., 2013; Islam et al., 
2017), do not yield satisfactory results for PNSB.

The NaOH-aided sonication treatment was the most effective 
protein extraction technique for PNSB biomass.

Excluding bead milling, the chemical-assisted mechanical/
physical techniques achieved significantly better protein recovery than 
singular treatment techniques.

The reaction time between the chemical and biomass significantly 
affected cell disruption efficiency. For example, alkali-assisted 
sonication required over 30 min of reaction time, significantly longer 
than the reaction time employed for common bacteria and microalgae 
disruption techniques (5 to 25 min) (Monique et  al., 2008; Sierra 
et al., 2017).

NaOH was preferred to EDTA for protein quantification as EDTA 
was identified to interfere with the modified Lowry protein assay, 
resulting in significantly lower protein concentrations.

Amino acid characterization of two of the best methods (NaOH-
aided sonication and bead milling) revealed that about 50% of the 
amino acids were detected in higher concentrations in the NaOH-
aided sonication. This was likely linked to the increased solubility of 

amino acids in alkaline conditions and the non-disruptive mechanism 
of cell lysis employed by sonication.

For CoQ10 extraction, chemical treatment with EDTA was 
preferable, while harsher physical and mechanical treatments were 
harmful. The efficiency of coenzyme Q10 extraction was also 
suspected to be adversely influenced by high temperature and pH.
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