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Introduction: The microbial genome-wide association studies (mbGWAS) have

highlighted significant host-microbiome interactions based on microbiome

heritability. However, establishing causal relationships between particular

microbiota and multiple myeloma (MM) remains challenging due to limited

sample sizes.

Methods: Gut microbiota data from a GWAS with 18,340 participants and MM

summary statistics from 456,348 individuals. The inverse variance-weighted

(IVW) method was used as the main bidirectional Mendelian randomization

(MR) analysis. To assess the robustness of our results, we further performed

supplementary analyses, including MR pleiotropy residual sum and outlier

(MR-PRESSO) test, MR-Egger, Weighted median, Simple mode, and Weighted

mode. Moreover, a backward MR analysis was conducted to investigate the

potential for reverse causation. Finally, gene and gene-set-based analyses were

then conducted to explore the common biological factors connecting gut

microbiota and MM.

Results: We discovered that 10 gut microbial taxa were causally related

to MM risk. Among them, family Acidaminococcaceae, Bacteroidales family

S24-7, family Porphyromonadaceae, genus Eubacterium ruminantium group,

genus Parabacteroides, and genus Turicibacter were positively correlated with

MM. Conversely, class Verrucomicrobia, family Verrucomicrobiaceae, genus

Akkermansia, and order Verrucomicrobiales were negatively correlated with MM.

The heterogeneity test revealed no Heterogeneity. MR-Egger and MR-PRESSO

tests showed no significant horizontal pleiotropy. Importantly, leave-one-out

analysis confirmed the robustness of MR results. In the backward MR analysis,

no statistically significant associations were discovered between MM and 10

gut microbiota taxa. Lastly, we identified novel host-microbiome shared genes

(AUTS2, CDK2, ERBB3, IKZF4, PMEL, SUOX, and RAB5B) that are associated with

immunoregulation and prognosis in MM through biological annotation.
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Discussion: Overall, this study provides evidence supporting a potential

causal relationship between gut microbiota and MM risk, while also revealing

novel host-microbiome shared genes relevant to MM immunoregulation and

clinical prognosis.

KEYWORDS

multiple myeloma, gut microbiota, Mendelian randomization, biological annotation,
immunoregulation

1 Introduction

Multiple myeloma (MM) is a clonal plasma cell malignant
tumor originating in the bone marrow, characterized by the
excessive production of monoclonal immunoglobulins (Joshua
et al., 2019). Its global incidence has steadily increased, making
it the second most prevalent blood cancer after leukemia.
Importantly, MM is not a single entity but rather a heterogeneous
disease (Owens, 2020). Clinical presentations vary from
asymptomatic cases to life-threatening conditions, with common
manifestations including fatigue, bone pain, hypercalcemia with
renal insufficiency, anemia, and hyperproteinemia (Angtuaco
et al., 2004). Diagnosis relies on multidisciplinary approaches
encompassing orthopedics, radiology, nuclear medicine,
hematology, and oncology (Caers et al., 2018). In recent decades,
patient survival rates have significantly increased due to the
implementation of proteasome inhibitors and immunomodulatory
drugs. However, these treatments are not curative, and MM often
recurs, necessitating further intervention (Laubach et al., 2015).
Consequently, the quest for optimized treatment strategies for MM
remains a significant long-term challenge.

The human intestine hosts a diverse and intricate microbial
community known as gut microbiota, which derives from various
sources, including dietary intake and probiotic supplements. These
microbiotas are essential for maintaining mucosal barrier integrity
and offering numerous other health benefits (Badgeley et al., 2021).
Currently, gut microbiota is recognized as both a contributor
to and a safeguard against various human diseases, including its
intricate involvement in the pathogenesis of MM (Park et al.,
2022). Conversely, cancer can influence the host’s gut microbiota,
potentially leading to microbiota disruption and tumor progression
(Yonekura et al., 2022). The gut microbiota within a human
host represents a partially heritable phenotype, and correlations
exist between the host’s genotype and gut microbiota variations
(Goodrich et al., 2014). The interactions between hosts and
microorganisms are intricate, with distinct mechanisms governing
gut microbiota’s impact on host health and disease. Current
scientific research is rapidly advancing toward enhancing cancer
treatment strategies by assessing human microbial composition and
function and subsequently implementing targeted regulation (Park
et al., 2022). Although limited sample sizes have hindered research
in this area, resulting in limited published mbGWAS studies,
mbGWAS have still revealed significant insights (Lopera-Maya
et al., 2022). Over the past 5 years, research into the relationship
between gut microbiota and MM has steadily progressed. The
latest research reveals that in MM patients, the gut microbiome’s

enrichment of Citrobacter freundii induces drug resistance by
increasing ammonium levels through the transmembrane channel
protein SLC12A2 (Zhu et al., 2024). Simultaneously, a potential
therapeutic strategy is proposed, utilizing furosemide sodium to
inhibit ammonium uptake and enhance treatment efficacy. Gut
microbiota diversity in autologous hematopoietic cell transplant
recipients is initially reduced, resembling allogeneic transplants
(Khan et al., 2021). Higher diversity during transplantation is
associated with a lower risk of progression or death, highlighting
a potential connection between gut microbiota and patient
outcomes. Gut microbiota alterations and changes in short-chain
fatty acid levels are associated with the progression of multiple
myeloma, indicating potential therapeutic targets and predictors
of treatment response (Rodriguez-Garcia et al., 2023). Thus,
understanding the role of gut microbiota in MM is crucial, as
investigating the causal relationship between gut microbiota and
MM holds significant implications for advancing our knowledge of
disease mechanisms and potential therapeutic interventions.

In recent years, the role of immunology in tumor pathogenesis
has gained widespread attention, introducing a new era in
cancer treatment through immunotherapy. Medical research has
elucidated the vital role of microbiota in regulating tumor
immune surveillance and participating in cancer pathogenesis and
progression (Liu et al., 2021). The latest findings demonstrate
that fiber-rich diets and fermented foods can modulate microbial
composition, activity, and host immune status (Wastyk et al.,
2021). Consequently, gut microbiota-targeted immunotherapy has
recently surfaced as an innovative approach in treating cancer
(Zhou et al., 2021). Calcinotto et al. (2018) discovered that the gut
microbiota plays a role in the progression of MM by affecting the
differentiation and migration of Th17 cells in the bone marrow.
Furthermore, an immunological connection between the gut and
the transition from asymptomatic to symptomatic MM has been
confirmed (Calcinotto et al., 2018). In MM patients, the gut
microbiome exerts influence not only on disease progression
but also on treatment response and treatment-related toxicity
(Ahmed et al., 2020). Recent research highlights microbiota’s
role in promoting inflammation and influencing MM’s disease
development, including transplantation (Pianko and Golob, 2022).

Despite the challenges of obtaining real-time microbiome
data in clinical practice, retrospective studies have started
illuminating the relationship between changes in particular
microbial characteristic and MM (Zhang et al., 2022). Due to
confounding factors such as lifestyle, environment, host gene
mutations, and potential reverse causality, the precise association
between genes in MM patients and gut microbiota remains
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underexplored. Mendelian Randomization (MR) using two-sample
analysis is a robust approach that leverages inherited genetic
variations as instrumental variables (IVs) to investigate causal
relationships between exposure and outcome traits. MR leverages
large GWAS data to study the associations between risk factors
and diseases while effectively controlling non-genetic confounding
variables, leading to more precise and reliable results. Currently,
MR is extensively utilized for investigating the causal link between
gut microbiota and diseases (Shi et al., 2023; Zeng Y. et al., 2023).
Although current research results suggest a potential interaction
between gut microbiota and MM, there is still considerable research
potential. Thus, we aim to delve deeper and comprehensively
explore the causal relationship between gut microbiota and MM
through MR analysis. Identifying therapeutic targets, promoting
precision medicine, and uncovering prognostic indicators are
crucial aspects in the diagnosis and treatment of MM.

In our study, we utilized bidirectional two-sample MR
analyses to investigate potential causal links between microbial
characteristics and MM. Furthermore, we offered a biological
annotation for the noteworthy connections between gut
microbiota and MM.

2 Materials and methods

2.1 Study design

Figure 1 depicts the comprehensive study design. In summary,
our study involved extracting genetic variants linked to the
respective exposure by analyzing GWAS summary statistics. We
meticulously selected instrumental variables based on stringent
criteria. We then conducted a bidirectional two-sample MR
analysis using five distinct MR methods in a sequential manner.
Next, a comprehensive series of sensitivity analyses, comprising
the examination of heterogeneity, pleiotropy, and the leave-one-
out test, were conducted to scrutinize the robustness of statistically
significant associations. Lastly, we explored positional mapped
genes and gene-set-based analyses using biological annotation.

2.2 Data sources

In this study, we acquired summary statistics for human MM
from a previously published GWAS.1 This GWAS incorporated
data from the UK Biobank and encompassed 456,348 individuals
with European ancestry (Jiang et al., 2021). This dataset includes
564 cases of European ancestry and 455,784 controls of European
ancestry. Additionally, summary statistics concerning the human
gut microbiome in this study were derived from a GWAS involving
18,340 participants.2 Our study encompasses 24 cohorts, samples
from single-ancestry cohorts include European (16 cohorts,
N = 13,266), Middle-Eastern (1 cohort, N = 481), East Asian (1
cohort, N = 811), American Hispanic/Latin (1 cohort, N = 1,097),

1 http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90042001-GCST90043000/GCST90042760/

2 https://mibiogen.gcc.rug.nl

and African American (1 cohort, N = 114). Additionally, four
cohorts were multi-ancestry (N = 2,571). The gene expression
data for 138 samples were downloaded from the Gene Expression
Omnibus (GEO)3 database with accession number GSE13591. To
ascertain the relationship between the expression of hub genes
and the overall survival of patients with MM, we utilized the
Kaplan-Meier plotter database.4 Note: The acquisition dates for
databases used in this study are as follows: MM GWAS data
(August 20, 2023), gut microbiome data (September 7, 2023), GEO
data (September 10, 2023), and Kaplan-Meier plotter database
(September 12, 2023).

2.3 Instrumental variable (IV)

At first, we omitted 15 microbial characteristics that did
not have specific names, resulting in 196 microbial features.
Later, we chose IVs using a less strict significance threshold of
p < 1.0 × 10−5 (Liu et al., 2023; Zeng C. et al., 2023), which
was determined to be the best p-value threshold for choosing
genetic predictors that account for a greater amount of variance
in the outcome. Additionally, we employed several alternative
thresholds 5.0 × 10−6 (He et al., 2022; Nolde et al., 2022) and
5.0 × 10−8 (Papiol et al., 2021; Yuan and Larsson, 2022) to
choose IVs for gut microbial (Supplementary Table 1). To prevent
biased results stemming from linkage disequilibrium (LD), we
performed clumping analysis on European samples from the 1000
Genomes project using the TwoSampleMR package, with stringent
criteria (R2 < 0.001 and a window size of 10,000 kb). With an
R2 value of less than 0.001, we retained only the single nucleotide
polymorphism (SNP) possessing the lowest p-value. Additionally,
we excluded SNPs not found in the LD reference panel. To gauge
the strength of the IVs, we computed F-statistics using the provided
equation R2 = 2 × MAF × (1-MAF) × β2, F = R2

× (N–1–k)/
k (1–R2), where R2 represents the variance explained by the IVs,
"N" denotes the data sample size, and "k" represents the count of
SNPs included in the instrument (Bowden et al., 2016). Ultimately,
we opted for independent SNPs linked to MM as IVs, employing
a threshold of 1.0 × 10−5 (Supplementary Table 2), which we
utilized in subsequent MR analyses. In the backward MR analysis,
we chose IVs linked to MM at various cutoff levels (1.0 × 10−5,
5.0× 10−6, and 5.0× 10−8) (Supplementary Table 3). In contrast
to the forward analyses, the results at a threshold of 5.0 × 10−8 as
the discovery set, while treating the other thresholds as validation
criteria.

2.4 Statistical analysis

In this study, we employed various approaches to investigate
potential causal connections between gut microbiota and MM, such
as MR-PRESSO, IVW, weighted median, MR-Egger regression,
simple mode, and weighted model. Our primary MR analysis
relied on the IVW method (Yavorska and Burgess, 2017). The

3 https://www.ncbi.nlm.nih.gov/geo/

4 http://kmplot.com/analysis/index.php?p=service&cancer
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FIGURE 1

Visual depiction of the research study. GWAS, genome-wide association study; IV, instrumental variables; MR, Mendelian randomization; IVW,
inverse-variance weighted; MR-PRESSO, MR pleiotropy residual sum and outlier; GEO, gene expression omnibus.

IVW method integrates the Delta method and Wald estimates for
every SNP, producing a holistic assessment of the gut microbiota’s
influence on MM (Song et al., 2023). Without horizontal
pleiotropy, IVW results stay unbiased. We assessed the presence
of overall horizontal pleiotropy by measuring genetic variant
heterogeneity using the Q statistic and examining the intercept
in the MR-Egger test to validate MR assumptions (Bowden
et al., 2015). To address horizontal pleiotropy, we conducted
sensitivity assessments employing simple mode, weighted median,
and weighted mode. We also used the MR-PRESSO approach
to conduct global and outlier tests in order to detect potential
outliers. Subsequently, we obtained corrected association results
by excluding these potential outliers (Verbanck et al., 2018). To
assess the potential prevalence of particular variants in the process
of estimating causality, we conducted leave-one-out examinations.
This involved systematically omitting each SNP from the

evaluation and subsequently reassessing the causative connection
(Corbin et al., 2016).

Additionally, we explored the potential impact of directional
pleiotropy by investigating the secondary phenotypes associated
with each of the SNPs utilized as instrumental variables. This
analysis was conducted using the PhenoScanner database, and the
data was accessed on August 30, 2023, via the following link:
http://www.phenoscanner.medschl.cam.ac.uk/. After confirming
the connection between microbiota features and MM through
MR methods, we proceeded with backward MR analyses. In this
analysis, we examined MM as the exposure variable and assessed
microbial features as the outcomes. "Mendelian Randomization,"
"TwoSampleMR," and "MRPRESSO" packages in the open-source
statistical software R (version 4.2.3) were employed for our MR
analyses. The connections between the human gut microbiota and
MM risk were quantified using odds ratios (ORs) accompanied
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by 95% confidence intervals (CIs). Statistical significance was
confirmed when two-sided p-values were below 0.05.

2.5 Biological annotation

Initially, we annotated the genes mapped to instrumental
variants’ positions between gut microbiota and MM utilizing
the GWAS catalog provided with FUMA (Welter et al., 2014).
We then employed integrated hypergeometric tests within the
FUMA platform, further enhancing our understanding of the
previously reported associations between mapped genes and
various phenotypes (Watanabe et al., 2017). Subsequently, we
constructed protein–protein interaction (PPI) networks using
genes mapped to instrumental variants for both MM and our MR
analysis results for mbGWAS. We utilized STRING version 12.05

and Cytoscape (version 3.8.2) to obtain and visualize the connected
PPI network. We have determined the top ten hub genes through
the Maximal Clique Centrality (MCC) approach, given that genes
with numerous interconnecting links are pivotal for maintaining
network stability (Xiao et al., 2023). Furthermore, we examined
the gene expression profiles of central genes within bulk tissue
through the FUMA portal. We assessed the impact of these hub
genes on a wide range of characteristics by conducting phenome-
wide association studies (PheWAS). We explored their pleiotropic
effects in summary data for 4,756 complex traits and illnesses across
28 different domains, utilizing the GWAS ATLAS (Watanabe et al.,
2019). To perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis for the hub
genes, we used the "ClusterProfiler" and "org.Hs.eg.db" package
in R software (version 4.2.3). In this study, we employed both
p-value = 0.05 and q-value = 0.05 as filtering criteria for the analysis
of GO terms and KEGG pathways. Additionally, we utilized the
Kaplan-Meier plotter database to establish the association between
hub gene expression and the prognosis of MM patients. Finally, we
retrieved the expression data of hub genes from the GEO database
to investigate their immune regulatory functions in MM.

3 Results

3.1 Forward MR analyses

In our forward MR analyses, we employed the IVW method
to successfully identified potential causal links between 10 specific
bacterial traits and MM risk (Figure 2 and Supplementary
Table 4). Notably, we discovered positive relationships between
MM risk and the following: family Acidaminococcaceae (OR,
2.3947; 95% CI, 1.2937–4.4326; P = 0.0054), Bacteroidales
family S24-7 (OR, 1.7964; 95% CI, 1.0797–2.9890; P = 0.0241),
family Porphyromonadaceae (OR, 2.7848; 95% CI, 1.1246–6.8959;
P = 0.0268), genus Eubacterium ruminantium group (OR, 1.4440;
95% CI, 1.0016–2.0817; P = 0.0490), genus Parabacteroides (OR,
2.6896; 95% CI, 1.1425–6.3316; P = 0.0235), and genus Turicibacter
(OR, 1.6478; 95% CI, 1.0061–2.6986; P = 0.0472) (Figure 2). On

5 https://string-db.org/

the contrary, we found a negative association between MM risk and
the following: class Verrucomicrobia (OR, 0.5476; 95% CI, 0.3216–
0.9322; P = 0.0265), family Verrucomicrobiaceae (OR, 0.5476; 95%
CI, 0.3216–0.9324; P = 0.0266), genus Akkermansia (OR, 0.5476;
95% CI, 0.3216–0.9324; P = 0.0266), and order Verrucomicrobiales
(OR, 0.5476; 95% CI, 0.3216–0.9322; P = 0.0265) (Figure 2).
Furthermore, the association between Bacteroidales family S24-
7 and MM remained consistent when applying the weighted
median approach (OR, 2.0346; 95% CI, 1.0714–3.8635; P = 0.0300).
The scatter plot and funnel plot were displayed Supplementary
Figures 1, 2. Comprehensive genetic instruments for evaluating
causal effects can be found in Supplementary Table 2. Notably, The
lowest F-statistic observed among the instruments stood at 19.5,
signifying robust associations between all IVs and the microbiome
features. Results from the MR-PRESSO test corroborated our
findings (Table 1). Our findings did not suggest the existence of
horizontal pleiotropy in the intercept of the MR-Egger regression
analysis (Table 1). Additionally, heterogeneity tests showed no
noteworthy heterogeneity among these independent variables
(Table 1). Importantly, leave-one-out analyses failed to identify
any highly influential variants among the instrumental SNPs
(Figure 3). In an effort to address potential pleiotropy, we scanned
all SNPs used as IVs in our study using the PhenoScanner
database. This led to the identification of 8 SNPs associated with
secondary traits, and relevant literature was reviewed to explore
their connections to MM (Supplementary Table 5). While smoking
is associated with various cancers, its link to MM remains unclear
(Psaltopoulou et al., 2013). For the other traits in the table,
there is currently no substantial evidence linking them to MM.
Nevertheless, we conducted MR analyses using the IVW method
after excluding these pleiotropic SNPs. Our results continued
to support associations between family Acidaminococcaceae (OR,
2.2100; 95% CI, 1.1498–4.2479; P = 0.0174), Bacteroidales family
S24-7 (OR, 1.7948; 95% CI, 1.0779–2.9884; P = 0.0245), family
Porphyromonadaceae (OR, 3.71309; 95% CI, 1.2368–11.1471;
P = 0.01934), and genus Turicibacter.id.2162 (OR, 1.6475; 95%
CI, 1.0041–2.7032; P = 0.0481) with MM risk did not change
significantly in the IVW method. However, the relationships
between family Verrucomicrobiaceae (OR, 0.5891; 95% CI, 0.3383–
1.0257; P = 0.0614), genus Akkermansia.id.4037 (OR, 0.5892; 95%
CI, 0.3384–1.0259; P = 0.0615), and order Verrucomicrobiales (OR,
0.5891; 95% CI, 0.3383–1.0256; P = 0.0614) with MM appeared
less stable. These three unstable associations were influenced by
a common SNP (rs4936098), but direct evidence linking this
SNP’s traits to MM is lacking. Detailed information regarding
the results of MR analyses with updated SNPs are provided
in Supplementary Table 6.

3.2 Backward MR analyses

We further conducted backward MR analyses to investigate
potential inverse associations between ten microbial characteristics
and MM. Utilizing the IVW method, our analysis failed to reveal
any substantiating evidence regarding the similar cause-and-effect
relationships between MM and the ten microbial characteristics.
We employed three distinct thresholds (SNP p-values less than
1.0 × 10−5, 5.0 × 10−6, or 5.0 × 10−8) to choose IVs linked to
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FIGURE 2

Forest plot depicting the forward MR findings. This forest plot illustrates potential causal connections between microbial characteristics and MM.
The information is displayed in the form of odds ratios (OR) accompanied by their respective 95% confidence intervals (CI). nSNP, number of single
nucleotide polymorphism.

TABLE 1 Effect estimates of the relationships between MM risk and gut microbiotas in the MR analyses.

Gut microbiota IVW MR-PRESSO Pleiotropy Heterogeneity

test (IVW) Test (IVW) Test (MR-Egger)

Class Verrucomicrobia 0.0265 0.8560 0.6543718 0.8330287

Order Verrucomicrobiales 0.0265 0.8536 0.6543718 0.8330287

Family Acidaminococcaceae 0.0054 0.7668 0.9276273 0.7405918

Bacteroidales family S24-7 0.0241 0.9683 0.2707392 0.9649069

Family Porphyromonadaceae 0.0268 0.5729 0.8650975 0.5399784

Family Verrucomicrobiaceae 0.0266 0.8528 0.6532106 0.8328674

Genus Eubacterium ruminantium group 0.0490 0.9377 0.6252739 0.9310561

Genus Akkermansia 0.0266 0.8515 0.6523758 0.8327713

Genus Parabacteroides 0.0235 0.5564 0.5362979 0.4810427

Genus Turicibacter 0.0472 0.3613 0.9869001 0.3164009

MM. These three thresholds are commonly used in current MR
analysis for SNP selection. Here, we opted for a lower threshold
of 1.0 × 10−5 and a higher threshold of 5.0 × 10−8 for analysis
and presentation of results. With a threshold of 5.0 × 10−8,
only 1 SNP remained, with no statistically meaningful correlations
were observed between MM and any of the ten bacterial traits
(Table 2). Our results indicate a lack of substantial evidence
supporting the notion that MM leads to changes in microbial
characteristics using thresholds of 5.0 × 10−8 and 1.0 × 10−5

(Table 2 and Supplementary Table 7). The findings remained
consistent across sensitivity analyses, as outlined in Table 2
and Supplementary Table 7.

3.3 Biological annotation

To elucidate the biological mechanisms linking gut microbiota
to MM, we annotated the instrumental variables mapping onto
74 genes (Supplementary Table 8). A tightly connected network
of 74 shared proteins was revealed through PPI network analysis
(Figure 4A). To gain further insights, we used the MCC method

to rank the top 10 nodes as hub genes in the PPI network
(Figure 4B and Supplementary Table 9). To uncover the possible
molecular mechanisms connecting gut microbiota and MM, we
performed gene-set enrichment analysis on these hub genes.
KEGG pathway enrichment analysis revealed that hub genes were
enriched in pathways related to Th17 cell differentiation and
sulfur metabolism (Figure 4C and Supplementary Table 10).
Additionally, we observed substantial enrichment in processes
associated with regulating T cell differentiation and activation
through GO analysis (Figure 4D and Supplementary Table 11).
Significantly, every hub gene displayed connections with numerous
characteristics, even when subjected to the stringent significance
threshold of 1.05 × 10−5. Gene-based PheWAS revealed that 9
out of 10 hub genes displayed heightened genetic signals associated
with immunological domains (Figure 5, Supplementary Figure 3
and Supplementary Table 12).

According to the above results, we hypothesize that hub genes
exert a substantial influence on the progression of MM. Thus,
we utilized the Kaplan-Meier plotter to investigate the association
between the expression profiles of hub genes and the overall
survival (OS) rates in individuals with MM. We found that higher
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FIGURE 3

Leave-one-out analysis for MR results. The leave-one-out analysis was conducted by iteratively recalculating MR estimates through the IVW
method, systematically omitting one SNP at each iteration. This process aimed to investigate whether any individual SNP with a substantial
horizontal pleiotropic effect could significantly impact the MR estimates.

expression levels of six genes were associated with improved OS
in MM patients, whereas high expression of RAB5B was linked
to poorer OS (Figure 6). Our GO, KEGG, and PheWAS analyses
indicate that hub genes may play a pivotal role in immunological.
We leveraged the GSE13591 dataset, which included 133 MM
samples and 5 normal donor samples (ND), as a validation
set. Gene expression levels underwent normalization through
the utilization of the "limma" package within the R software

environment. Immune cell infiltration in MM samples vs. normal
donors was assessed using the CIBERSORT method, and the
results are detailed in Supplementary Table 13. We investigated
the correlation between seven hub genes and the abundance of
distinct immune cell types within MM samples. The findings were
visualized using the "vioplot" packages. Our analysis revealed a
notable positive relationship between AUTS2 and activated Mast
cells as well as naive B cells, whereas it demonstrated an inverse
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TABLE 2 Effect estimates of the relationships between MM and gut microbiota were examined in the backward MR analyses.

Gut microbiota Threshold Methods nSNP OR 95% CI p-value p-value
(Intercept)

Class Verrucomicrobia 5× 10−8 Wald ratio 1 1.0301 0.9568–1.1091 0.4303 /

Order Verrucomicrobiales 5× 10−8 Wald ratio 1 1.0301 0.9568–1.1091 0.4303

Family Acidaminococcaceae 5× 10−8 Wald ratio 1 0.9911 0.9222–1.0652 0.808 /

Bacteroidales family S24-7 5× 10−8 Wald ratio 1 0.9667 0.8831–1.0581 0.4623 /

Family Porphyromonadaceae 5× 10−8 Wald ratio 1 0.9748 0.9180–1.0351 0.4048 /

Family Verrucomicrobiaceae 5× 10−8 Wald ratio 1 1.0301 0.9568–1.1091 0.4303 /

Genus Eubacterium ruminantium
group

5× 10−8 Wald ratio 1 1.0034 0.9156–1.0995 0.9427 /

Genus Akkermansia 5× 10−8 Wald ratio 1 1.0308 0.9574–1.1098 0.4207 /

Genus Parabacteroides 5× 10−8 Wald ratio 1 0.9859 0.9273–1.0482 0.6494 /

Genus Turicibacter 5× 10−8 Wald ratio 1 1.0162 0.9335–1.1062 0.7104 /

Class Verrucomicrobia 1× 10−5 IVW 9 1.0001 0.9672–1.0341 0.9959 0.0741

Order Verrucomicrobiales 1× 10−5 IVW 9 1.0001 0.9672–1.0341 0.9959 0.0741

Family Acidaminococcaceae 1× 10−5 IVW 9 1.0121 0.9827–1.0424 0.4249 0.3991

Bacteroidales family S24-7 1× 10−5 IVW 9 0.9867 0.9510–1.0237 0.4745 0.694

Family Porphyromonadaceae 1× 10−5 IVW 9 0.9992 0.9754–1.0235 0.9462 0.3557

Family Verrucomicrobiaceae 1× 10−5 IVW 9 1.0001 0.9672–1.0342 0.9932 0.0736

Genus Eubacterium ruminantium
group

1× 10−5 IVW 9 0.9688 0.9314–1.0078 0.1159 0.4394

Genus Akkermansia 1× 10−5 IVW 9 1.0004 0.9675–1.0344 0.9829 0.0742

Genus Parabacteroides 1× 10−5 IVW 9 0.9927 0.9686–1.0174 0.5584 0.9469

Genus Turicibacter 1× 10−5 IVW 9 1.0194 0.9846–1.0555 0.2778 0.3992

correlation with resting Mast cells (Supplementary Figure 4A).
CDK2 exhibited a positive association with M2 Macrophages and
Plasma cells while demonstrating a negative association with T
follicular helper cells (Figure 7A and Supplementary Figure 4B).
The expression of IKZF4 is positively associated with CD8 T cells
and inversely associated with M0 Macrophages and CD4 memory
resting T cells (Figures 7B, C and Supplementary Figure 4C). The
occurrence of plasma cells exhibited a favorable correlation with
PMEL, while it displayed an adverse link with neutrophils, CD4
memory quiescent T cells, memory B cells, and gamma delta T
cells (Figures 7D, E and Supplementary Figure 4D). Memory B
cells and eosinophils showed a positive correlation with RAB5B,
whereas activated mast cells exhibited a negative correlation with
RAB5B (Supplementary Figure 4E). SUOX exhibited a positive
correlation with memory resting T cells CD4 and Neutrophils, as
well as memory B cells, while displaying a negative association with
naive B cells and M0 Macrophages in our findings (Figure 7F and
Supplementary Figure 4F). These results suggest that these newly
identified hub genes are linked to various immune cells in MM,
with a particular emphasis on T cells.

4 Discussion

Our study conducted two-sample Mendelian randomization
analysis and biological annotation by utilizing the existing cost and
statistical power of mbGWAS. We obtained the gut microbiota

data from MibioGen and the GWAS summary statistics of MM
from GWAS Catalog. Next, we conducted a comprehensive
investigation into potential causal associations between microbiota
features and MM. Finally, we identified novel hub genes that
are associated with immunoregulation and clinical prognosis in
MM through biological annotation. The results of our forward
MR analyses unveiled compelling evidence of both positive and
negative causal effects of ten distinct microbial features on MM
risk. Specifically, we observed that family Acidaminococcaceae,
Bacteroidales family S24-7, family Porphyromonadaceae, genus
Eubacterium ruminantium group, genus Parabacteroides, and
genus Turicibacter exhibited positive correlations with MM risk.
Conversely, class Verrucomicrobia, family Verrucomicrobiaceae,
genus Akkermansia and order Verrucomicrobiales demonstrated
negative correlations with MM risk. While previous studies have
highlighted associations between intestinal microbiota and MM,
such as Klebsiella pneumoniae (Jian et al., 2020), Clostridium
butyricum (Jian et al., 2020), Faecalibacterium prausnitzii (Zhang
et al., 2019), Pseudomonas aeruginosa (Zhang et al., 2019),
and Prevotella heparinolytica (Calcinotto et al., 2018). The
microbiota revealed in our investigation has not been previously
documented in the milieu of MM. Acidaminococcaceae, a family
in the Firmicutes phylum, includes the beer-associated genus
Pectinatus. Despite being classified as low GC Gram-positive
bacteria, Pectinatus exhibits unique traits, such as a Gram-
negative-like outer membrane and distinctive lipopolysaccharides
with remarkable structural heterogeneity (Helander et al., 2004).
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FIGURE 4

Biological annotation of 74 mapped genes between MM and gut microbial. (A) PPI networks of 74 common genes from the STRING database were
visualized in Cytoscape, with disconnected nodes omitted for a concise overview. (B) The Maximal Clique Centrality (MCC) method implemented in
Cytoscape was utilized to ascertain the top 10 hub genes. (C) Enrichment analysis of hub genes using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. (D) Gene Ontology (GO) pathways analysis of hub genes. BP, biological process; CC, cellular component; MF, molecular
function.

IL-22 neutralization was found to lead to a reduction in the
abundance of the family Acidaminococcaceae (Nagao-Kitamoto
et al., 2020). Without innate immune defense mechanisms,
Porphyromonadaceae was discovered to thrive, and it exhibited
a higher presence within the male microbiota (Fransen et al.,
2017). Parabacteroides, a commensal bacterium identified in the
gut microbiota, plays a crucial role in mitigating acute pancreatitis,
particularly in the context of heparanase-induced exacerbation
(Lei et al., 2021). The administration of Parabacteroides has been
shown to alleviate acute pancreatitis by producing acetate and
reducing neutrophil infiltration in both wild-type and heparanase-
transgenic mice. Turicibacter has shown the ability to predict
both immune-related adverse events and the efficacy of immune
checkpoint inhibitors (Hamada et al., 2023). Verrucomicrobia,
Verrucomicrobiales, and Verrucomicrobiaceae are also related
to inflammation (Borton et al., 2017). Liu et al. (2022)
found that TLR4 has a substantial influence on RORγt++
regulatory T cell reactions. This interaction with Akkermansia

muciniphila was shown to exert a noteworthy influence on
susceptibility to colon inflammation (Liu et al., 2022). Although
our research indicates positive/negative correlations between the
aforementioned significant bacteria and MM risk, experimental
studies on significant gut microbiota in relation to MM are
currently lacking. Therefore, further empirical research is required
to substantiate the precise roles and mechanisms of these gut
microbiota in the development of MM.

Biological annotation analyses suggest that 74 shared genes
are mapped between 10 gut microbiomes and MM. Using the
STRING database for PPI network analysis and visualizing it
with Cytoscape, we identified top 10 shared genes as hub genes
connecting MM and gut microbiota. Enrichment analysis of genes
has uncovered connections between hub genes and processes such
as T cell differentiation and activation, Th17 cell differentiation,
and sulfur metabolism. Additionally, PheWAS analysis revealed a
correlation between hub genes and several characteristics, such as
metabolic and immunological characteristics, consistent with prior
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FIGURE 5

Gene-based phenome-wide association studies. Hub genes displayed heightened genetic signals associated with various domains.

studies (Fan and Pedersen, 2021). Among these hub genes, seven
genes (AUTS2, CDK2, ERBB3, IKZF4, PMEL, RAB5B, SUOX) were
identified as having prognostic significance in MM patients. AUTS2
demonstrated significantly higher mutation frequencies among
African American cases compared to Caucasians. A different
investigative study indicates that Hispanic individuals with AUTS2
mutations among MM patients exhibited poorer overall survival
(Peres et al., 2022). CDK2 plays a carcinogenic role in MM
by participating in multiple signaling pathways, and inhibitors
targeting CDK2 have the potential to inhibit the growth of MM
(Tu et al., 2011). The ErbB3 atypical expression in MM may have
potential effects on tumor cell growth or survival (Walters and
Jelinek, 2004). However, the roles of IKZF4, PMEL, RAB5B, and
SUOX in the pathogenesis of MM have not been reported yet. T
reg cell effector IKZF4 mediates biological processes such as Nr4a
factor maintaining T reg cell lineage stability and inhibitory activity
(Sekiya et al., 2015). PMEL, also known as gp100, participates in
cancer immune infiltration and tumor-specific immunotherapy,
especially in targeting T cell therapy (Scheffel et al., 2016). RAB5B,
a member of the RAB GTPase family, is pivotal in multiple

immune processes, including endocytosis, antigen presentation,
and immune signal transduction. SUOX has shown great promise
as a diagnostic and prognostic biomarker for various cancers, such
as oral squamous cell carcinoma (Nakamura et al., 2018), and
hepatocellular carcinoma (Jin et al., 2013). Further bioinformatics
analysis demonstrated that six hub genes have a strong connection
with different immune cells, particularly T cells, in MM samples.
For example, CDK2 exhibited a noteworthy inverse correlation
with T follicular helper cells, consistent with previous studies (Niu
et al., 2023). IKZF4 exhibited a robust positive correlation with
CD8 T cells but displayed a notable inverse relationship with CD4
memory resting T cells. PMEL displayed a significant negative
correlation with CD4 memory resting T cells and gamma delta
T cells. SUOX exhibited a noteworthy positive association with
resting memory CD4 T cells. Therefore, a potential mechanism for
the causal link between microbial features and MM may involving
the mediation of immune system changes by hub genes, particularly
in the context of T cell differentiation and activation.

Despite these valuable insights, it is crucial to recognize several
constraints inherent to the current study. To begin with, the

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1310444
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1310444 February 7, 2024 Time: 16:42 # 11

Feng et al. 10.3389/fmicb.2024.1310444

FIGURE 6

Kaplan Meier survival curves were utilized to evaluate overall survival (OS) among patients diagnosed with multiple myeloma, while also examining
the expression levels of hub genes (A–J). Statistically significant findings were determined when all of the following criteria were satisfied: FDR < 5%,
HR 6= 1, P < 0.01. FDR, false discovery rate; HR, hazard ratio.

examination of bacterial taxa was restricted to the genus category,
with no investigation conducted at finer levels like species or strain.
Next, although the majority of participants in this GWAS hail
from European backgrounds, it’s worth noting that the inclusion
of a limited number of individuals from diverse ethnicities could
potentially impact the outcomes. Consequently, it is important
to recognize that our findings may have certain constraints
when applied to different racial demographics. Individuals of
European ancestry constitute approximately 78% of the total

population, while other ancestries make up the remaining 22%.
Thus, a noteworthy limitation arises from the disparity in ancestral
backgrounds between the data in MiBioGen, which may pose a
potential threat to the independence assumption due to population
stratification. We chose IVs associated with gut microbiota at a
threshold of p < 1.0 × 10−5, which exceeds the conventional
genome-wide significance level (p < 5 × 10−8). This higher
threshold was necessary to ensure we had a sufficient number of
IVs for our MR analyses, as only one IV remained when selecting
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FIGURE 7

Analysis of immune infiltration in MM using seven hub genes. (A–F) Exploring the relationships between hub genes and immune cells. Statistical
significance is achieved when p < 0.05.

IVs at the genome-wide significance level (p < 5 × 10−8). In the
future, we anticipate achieving more dependable outcomes with
MR by significantly expanding the sample size while adhering to
stricter criteria. While we have pinpointed several possible causal
connections in our MR analyses, it is crucial to emphasize that
these findings demand additional confirmation. In our pursuit of
a more robust understanding, not only should we contemplate the
expansion of our sample size, but we must also direct our attention
toward the advancement of novel techniques aimed at bolstering
the statistical potency of mbGWAS. Furthermore, it is imperative
that we embark on further investigations into the biological
mechanisms at play, with a specific focus on elucidating the central
genes that act as pivotal links in the intricate interplay between the
host genome of patients with MM and their gut microbiome.

In summary, our study has identified several gut microbiota
that may possess the potential to impact the risk of MM. We
also identified novel host-microbiome shared genes linked to
immune regulation and clinical prognosis in MM. These results
could hold considerable clinical implications for MM prevention
and therapy. Nevertheless, further investigations are needed to
elucidate the specific mechanisms that could serve as potential
intervention targets for MM.
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