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Soil nitrogen (N) availability is one of the limiting factors of crop productivity, 
and it is strongly influenced by global change and agricultural management 
practices. However, very few studies have assessed how the winter drought 
affected soil N availability during the subsequent growing season under chemical 
fertilization. We  conducted a field investigation involving snow removal to 
simulate winter drought conditions in a Mollisol cropland in Northeast China as 
part of a 6-year fertilization experiment, and we examined soil physicochemical 
properties, microbial characteristics, and N availability. Our results demonstrated 
that chemical fertilization significantly increased soil ammonium and total 
N availability by 42.9 and 90.3%, respectively; a combined winter drought 
and fertilization treatment exhibited the highest soil N availability at the end 
of the growing season. As the growing season continued, the variation in soil 
N availability was explained more by fertilization than by winter drought. The 
Mantel test further indicated that soil Olsen-P content and microbial carbon 
use efficiency (CUE) were significantly related to soil ammonium availability. A 
microbial community structure explained the largest fraction of the variation 
in soil nitrate availability. Microbial CUE showed the strongest correlation with 
soil N availability, followed by soil available C:P and bacteria:fungi ratios under 
winter drought and chemical fertilization conditions. Overall, we clarified that, 
despite the weak effect of the winter drought on soil N availability, it cannot 
be ignored. Our study also identified the important role of soil microorganisms 
in soil N transformations, even in seasonally snow-covered northern croplands.
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1 Introduction

Approximately one-quarter of the world’s arable land is located in 
snowy and cold regions, which are experiencing more intense and 
frequent drought stress in the context of global change (Zhou et al., 
2017). Winter drought would result in a reduction in snow cover, and 
soils would be increasingly exposed to cold air, further exacerbating 
soil freezing, especially during cold spells (Vankoughnett and Henry, 
2014). Soil frozen can alter the diversity of soil organisms and 
biogeochemical cycling in terrestrial ecosystems, thereby affecting the 
nutrient supply and growth of plants during the subsequent growing 
season (Makoto et al., 2014; Urakawa et al., 2014).

Soil nitrogen (N) availability is a critical parameter controlling 
organisms’ growth and ecosystem functions, but it can easily 
be reduced through leaching or trace gas emissions (Urakawa et al., 
2014). A previous meta-analysis revealed that the winter drought 
reduced the availability of N in the soils and increased the potential 
nutrient leaching, owing to the cell burst of soil microorganisms and 
plant roots, which reduced the activities of soil microorganism and 
plant roots (Song et al., 2017). In order to mitigate the negative effects 
of extreme climate events on soil quality and reduce available N 
losses, effective management practices are urgently required to 
increase soil fertility and N availability. Chemical fertilizer supply is 
an effective strategy to enhance crop yields and improve soil fertility 
worldwide (Nguyen et  al., 2018), and its large-scale use is also 
associated with massive disruptions to global biodiversity and N and 
phosphorus (P) cycles. However, we  are still far from fully 
understanding the responses of soil N availability to the combined 
effects of the predicted changes in snowfall (e.g., winter drought) 
and fertilization.

Chemical fertilizer, such as ammonium hydrogen phosphate, as 
an available N source can directly increase soil N availability. A 
28-year maize–soybean rotation experiment showed that, compared 
to no fertilization, soil available N increased by 18.7% in chemical 
fertilization (Zhang et al., 2023). However, the dissolved inorganic N 
(DIN:NH4

+-N and NO3
−-N) of fluvo-aquic soil was unchanged after 

2 years of chemical fertilization (Zhao et al., 2019). Previous findings 
indicated that the effect of chemical fertilization on soil N availability 
exhibited a time-scale dependence. Chemical fertilization can also 
affect soil N availability indirectly via altered soil N transformation 
rates catalyzed by plants and microorganisms (Gentile et al., 2008; Hu 
et al., 2022). For example, in urea fertilization soils, the release of 
organic compounds into the soil can significantly alter microbial 
metabolism and activity in its immediate surroundings, thus 
enhancing organic N mineralization (Wiesenbauer et al., 2024). In 
addition, soil N availability was reported to be increased in response 
to fertilization in crop drought soils, whereas other studies observed 
decreased N availability in grassland drought soils (Hartmann et al., 
2013; Gelfand et  al., 2015). The effect of fertilization on soil N 
availability may be  modified by the effect of winter drought, and 
we  have limited knowledge regarding the potential key factors 
associated with soil N availability.

Soil N availability has been found to exhibit significant 
relationships with multiple abiotic (e.g., moisture and temperature) 
and biotic (i.e., plants and soil microorganisms) factors (Chaves et al., 
2021; Liu et al., 2023). There are many pathways through which soil 
microorganisms can affect soil N availability. Microbial carbon (C) use 

efficiency (CUE) serves as an integrative index to describe the balance 
of soil nutrients (Tao et al., 2023). It has been reported that a decrease 
in soil N availability was accompanied by an increase in microbial 
CUE (Silva-Sánchez et al., 2019). A high microbial CUE might cause 
soil microorganisms to allocate more C to growth, thereby resulting 
in a lower metabolic cost of soil N acquisition (Manzoni et al., 2012). 
Additionally, soil N availability often depends on the abundance of 
N-cycling microbial functional genes (Hu et al., 2022), such as those 
of ammonia-oxidizing archaea and bacteria, which can alter N 
mineralization rates, thereby positively affecting soil N availability 
(Okano et al., 2004). Yu et al. (2018) have reported that the increased 
microbial biomass but not altered microbial community structure was 
beneficial to soil N transformation in crop rhizosphere. Although soil 
microorganisms have the potential to be a strong predictor linked to 
soil N availability, the influence direction is ambiguous. Moreover, the 
altered stoichiometry of soil substrates by winter drought and 
chemical fertilization could also affect microbial characteristics and 
soil N availability (Li et al., 2021). There are open questions about the 
relationships between soil properties and microorganisms and their 
effects on soil N availability.

Herein, we used snow removal to simulate winter drought and 
added chemical fertilizers to soils during spring sowing in a maize–
soybean rotation cropland in the Mollisols area in Northeast China. 
We evaluated the responses of soil ammonium, nitrate, and total N 
availability to the effects of winter drought and chemical fertilization 
during the subsequent growing season. To identify potential factors 
related to soil N availability, we investigated the soil physicochemical 
properties (e.g., soil water content, pH, dissolved organic carbon 
(DOC), DIN, Olsen-P, and available potassium (AK) content) and 
microbial characteristics (e.g., biomass, community structure, CUE, 
and extracellular enzyme activities). We hypothesized that (1) soil N 
availability would increase in response to chemical fertilization, but it 
would decrease in response to winter drought because decreases in 
soil temperature could reduce the activities of soil microorganisms 
(Song et  al., 2017), which were responsible for N mineralization 
(Mooshammer et al., 2014) and (2) microbial characteristics, rather 
than soil properties, would be the primary factor associated with soil 
N availability, because soil microorganisms were sensitive to changes 
in temperature, especially in cold regions.

2 Materials and methods

2.1 Site description

The experiment was conducted at the Hailun National 
Observation and Research Station of Agroecosystems of the Chinese 
Academy of Science (47°26′N, 126°38′E, 240 m in elevation), which is 
located in the central region of the Mollisols area in Northeast China. 
The study area exhibits a typical temperate continental monsoon 
climate with cold winters and hot summers. The mean annual air 
temperature is 2.0°C (which has been the same in the past 70 years). 
The non-growing season lasts from October to April with the lowest 
mean monthly temperature of −23°C in January, whereas the growing 
season lasts from May to September with the highest mean monthly 
temperature of 21°C in July (Hao et  al., 2022). The mean annual 
precipitation is 550 mm, and more than 65% of precipitation is 
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concentrated from June to August. Snowfall generally begins in early 
to mid-November, with snowmelt occurring by late March or early 
April. The soil type is typical Mollisol (USDA soil taxonomy) with a 
silty clay loam texture. The soil had a pH of 5.1, a total carbon (TC) 
content of 30.8 g kg−1, a total nitrogen (TN) content of 2.3 g kg−1, a 
total phosphorus (TP) content of 1.0 g kg−1, and a total potassium 
(TK) content of 22.6 g kg−1 before the start of the experiment in 2017.

2.2 Experimental design

The experiment was initiated in June 2017 with a completely 
randomized design. We  established 12 plots (each has an area of 
2.5 m × 2.8 m) and separated plots with a 0.5-m tall white steel plate 
(0.2 m aboveground, 0.3 m belowground). There were four treatments, 
namely a non-drought and non-fertilization (control: C), a winter 
drought (D), a chemical fertilization (F), and a combined winter 
drought and chemical fertilization (DF), which resulted in three 
replicates. Each plot was divided into four ridges, with a length and a 
width of 2.5 and 0.7 m, respectively. Maize (Zea mays L.) was planted 
in rotation with soybean (Glycine max Merr.) in alternate years. In 
2017, maize was planted, and in the following year, soybeans were 
planted. The planting density of maize and soybean was 12 plants per 
ridge and 24 plants per ridge, respectively.

For the fertilization treatments, the chemical fertilizers, such as 
urea, ammonium hydrogen phosphate, and potassium sulfate, were 
applied at the rates of 138 kg N, 70 kg P2O5, and 20 kg K2O ha−1 y−1 for 
maize, and 64 kg N, 70 kg P2O5, and 20 kg K2O ha−1 y−1 for soybean 
(Zhang et  al., 2023). For maize planting years, P and kalium (K) 
fertilizers were applied during the sowing period, and N fertilizer was 
applied at the sowing and jointing stages with a ratio of 1:2. For 
soybean planting years, all chemical fertilizers were applied during the 
sowing period.

In late October 2021, we set up a 1-year winter drought (snow 
removal) treatment. We attached a black plastic net (1 cm−2 in hole 
size) to the soil in each plot. To prevent snow accumulation on the 
snow removal treatments, we used brooms to remove the snow out of 
the plot down to the level of the plastic net (typically following major 
snowfall events). Following the final snowmelt, we removed the plastic 
nets when the snow was completely melted.

Soil temperature and soil water content (SWC) were measured 
using sensors (MEC10, Zheqin Technology Co., Ltd., Dalian, 
Liaoning, China) at a depth of 0–5 cm. The measurements were taken 
continuously from November 2021 to October 2022.

2.3 Soil sample collection

In May and October 2022, we collected five soil cores (3.5 cm in 
diameter, 0–10 cm depth) randomly from each plot and homogenized 
them into a composite soil sample. All soil samples were sieved 
through a 2-mm mesh to remove roots, litter, debris, and stones. The 
soil samples were divided into three parts, with one part stored at 4°C 
for measuring SWC, DOC, NH4

+-N, NO3
−-N, soil extracellular 

enzyme activity (EEA), and microbial biomass; one part stored at 
−20°C for phospholipid fatty acid (PLFA) analysis; and the last part 
air-dried to determine soil pH, Olsen-P, and AK contents.

2.4 Soil properties measurement

SWC was measured after drying 10 g of fresh soil at 105°C until a 
constant weight was achieved. Soil pH was measured by shaking a 
1:2.5 ratio of air-dried soil to deionized water for 30 min. DOC was 
extracted by 0.5 M K2SO4 and then measured using a TOC analyzer 
(enviro TOC, Elementar, Germany). Soil NH4

+-N and NO3
−-N were 

extracted by 2 M KCl and analyzed by a continuous flow analyzer 
(AA3, Seal Analytical, Norderstedt, Germany). Olsen-P was 
determined colorimetrically (malachite green) after extracting 
samples with 0.5 M NaHCO3. AK was digested with 1 M ammonium 
acetate and detected by flame photometry.

2.5 Soil enzyme activity

We quantified soil EEAs using a modified fluorometric technique 
(Yang et  al., 2023), including labile C-cycling enzymes: α-1,4-
glucosidase (AG), β-1,4-glucosidase (BG), β-xylosidase (BX), and 
β-D-cellobiosidase (CBH), N-cycling enzymes: β-1,4-N-
acetylglucosaminidase (NAG) and L-leucine aminopeptidase (LAP), 
and P-cycling enzymes: acid phosphatase (AP). The corresponding 
substrates of these EEAs were as described in Matulich et al. (2015). 
Soil suspensions were prepared by adding 1 g of fresh soil to 100 mL 
of 50 mM acetate buffer. Four replicates were used for sample assay 
wells, blank wells, quench standard wells, negative control wells, and 
reference standard wells. The 96-deep-well microplates were covered 
and incubated in the dark at 20°C for 4  h, and the reaction was 
stopped by adding 10 μL of 1 M NaOH to each well. Fluorescence was 
measured using a microplate reader (Synergy LX, BioTek Instruments, 
Winooski, VT, United States) with 360 nm excitation and 460 nm 
emission filters.

2.6 Microbial biomass and carbon use 
efficiency

Microbial biomass carbon (MBC), nitrogen (MBN), and 
phosphorus (MBP) were determined with the chloroform fumigation-
extraction method (Joergensen, 1996). Microbial CUE derived from 
the biogeochemical equilibrium model was calculated as follows 
(Sinsabaugh and Follstad Shah, 2012):
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where KC:N and KC:P represent the half-saturation constants for 
CUE based on the availability of C, N, and P. We assumed that KC:N 
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and KC:P were 0.5 for the model and CUEmax was 0.6  in this study 
(Sinsabaugh et  al., 2016). EEAC:N was calculated as 
(AG + BG + BX + CBH)/(NAG + LAP), and EEAC:P was calculated as 
(AG + BG + BX + CBH)/AP. BC:N and BC:P were the elemental C:N and 
C:P ratios of microbial biomass. LC:N and LC:P were estimated as 
DOC:DIN and DOC:Olsen-P, respectively.

2.7 Phospholipid fatty acid analysis

PLFAs were extracted from the soils as described by Yang et al. 
(2020). The 19:00 was used as an internal standard. The fatty acids 
(FAs) 14:00, 15:00, 16:00, 17:00, and 18:00 were chosen to represent 
the non-specific bacteria (Frostegård and Bååth, 1996; Leckie, 2005); 
i14:0, a15:0, i15:0, i15:1ω6c, i16:0, a17:0, and i17:0 were used to 
represent the Gram-positive bacteria (G+); 16:0 2OH, 16:1ω7c, 
16:1ω9c, cy17:0ω7c, 17:1ω8c, 18:1ω5c, 18:1ω6c, 18:1ω7c, and 
cy19:0ω7c were chosen to represent the Gram-negative bacteria (G−) 
(Leckie, 2005; Chen et  al., 2017); and 10Me16:0, 10Me17:0, 
10Me17:1ω7c, and 10Me 18:0 were used to represent actinomycetes 
(Ac) (Zhang et al., 2022). The sum of G+, G−, Ac, and non-specific 
bacteria was used as the total bacteria. In addition, 18:1ω9c, 18:2ω6c, 
18:3ω6c, and 16:1ω5c were chosen to represent the fungi (Joergensen 
and Wichern, 2008; Chang et al., 2021). The total PLFAs were the sum 
of bacterial and fungal PLFAs, and the B:F ratio was calculated as the 
bacterial-to-fungal PLFA ratio.

The structure of the microbial community was analyzed using the 
principal component analysis (PCA) based on the relative molar 
abundances of the entire PLFA signature (mol-% of the 29 most 
abundant FAs) after standardizing to unit variance. The PC1 scores for 
the entire PLFAs were used as indicators for the phylum-level 
microbial community structure (Chen et al., 2013).

2.8 Soil inorganic N ionic exchange 
membranes

Soil N availability was measured in situ using ionic exchange 
membranes (IEMs), which have been shown to be  accurate in 
measuring soil N availability and generate minimal disturbance to the 
soil microbial community (Liu et al., 2018). We inserted one anion 
and one cation IEM (2.5 cm × 10 cm) in each sampling quadrat to 
absorb ammonium ions (NH4

+) and nitrate ions (NO3
−). 

Approximately 15  days later, we  collected IEMs and immediately 
rinsed them with deionized water to remove soil. A pair of IEMs were 
placed into 150-mL flasks for extraction with 70 mL of 2 M KCl by 
orbital shaking (1 h at 160 rpm). NH4

+ and NO3
− concentrations were 

analyzed using a continuous flow analyzer (AA3, Seal Analytical, 
Norderstedt, Germany). Soil ammonium and nitrate availability were 
calculated using the following formula: [(concentration in μg N per 
mL) × (70 mL KCl)]/(50 cm2 area of the strip × days in the ground) 
(Liu et al., 2018). Soil N availability was determined as the sum of soil 
ammonium and nitrate availability from the IEMs.

2.9 Statistical analyses

Statistical analysis was performed with IBM SPSS 27.0.1 (SPSS 
Inc., Chicago, IL, United States). All variables of the data were tested 

for normal distribution and homogeneity of variance. The effects of 
winter drought, chemical fertilization, and their interaction on soil 
properties, microbial characteristics, enzyme activities, and soil N 
availability were tested using a two-way ANOVA. For each specific 
parameter, if the interaction between winter drought and chemical 
fertilization (i.e., D × F) was insignificant, we  used the terms 
non-drought (C and F plots) vs. drought (D and DF plots) for the 
winter drought main effect, and non-fertilization (C and D plots) vs. 
fertilization (F and DF plots) for the chemical fertilization main 
effect; if the interaction was significant, we  used the terms 
non-drought vs. drought in non-fertilization and fertilization and 
then non-fertilization vs. fertilization in non-drought and drought. 
At the non-fertilization level, we compared C vs. D plots, and at the 
fertilization level, we compared F vs. DF plots; at the non-drought 
level, we  compared C vs. F plots, and at the drought level, 
we compared D vs. DF plots. The Mantel test was performed for a 
better understanding of the correlation between soil N availability 
and environmental variables (including soil properties and microbial 
characteristics). All results were reported as means ± standard errors, 
and a significance level of p < 0.05 was used for all analyses. The 
figures were plotted in GraphPad Prism 9.5.0 (GraphPad Software 
Inc., San Diego, CA, United States) and the ggplot2 package in R 
software (R Development Core Team, 2023).

3 Results

3.1 Soil microclimate conditions

There was significant seasonal variation in both soil temperature 
and SWC, and it was described as a low temperature and dry 
non-growing season with a high temperature and wet growing season 
(Figure  1). Compared to the ambient snow plots, snow removal 
significantly decreased the average (−8.6 vs. −3.1°C) and minimal soil 
temperature (−17.0 vs. −6.8°C) at 5 cm depth over the non-growing 
season. Moreover, the timing of soil freezing and melting was 
advanced, and freeze–thaw was increased by two cycles of snow 
removal (Figure 1A). After 3 weeks of snowmelt, snow removal had 
no significant effect on SWC (Figure 1B).

3.2 Soil physicochemical properties

Neither winter drought nor fertilization had significant effects on 
SWC, DOC, DIN, and AK on the sampling dates of May and October 
2022 (p > 0.05), but the ratio of DOC:DIN increased by 32.2% in 
response to the winter drought and decreased by 15.8% in response to 
fertilization in October. Soil pH was significantly decreased by snow 
removal (p < 0.001) but was not affected by the legacy effect of 
fertilization in May (p > 0.05). Winter drought, fertilization, and their 
interaction exhibited no significant impacts on the Olsen-P and 
DOC:Olsen-P (p > 0.05), but the legacy effect of fertilization 
profoundly decreased the DIN:Olsen-P by 27.3% in May (p < 0.05). 
Olsen-P was significantly increased by winter drought and fertilization 
in October (both p < 0.001), which caused a reduction in the 
DOC:Olsen-P and DIN:Olsen-P (both p < 0.001). In addition, a 
significant interactive effect of winter drought and fertilization on the 
DOC:Olsen-P and DIN:Olsen-P was observed (both p < 0.001; Table 1; 
Supplementary Table S1).
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3.3 Soil extracellular enzyme activity

The winter drought profoundly increased the activities of AG 
(19.9%, p < 0.05), CBH (72.3%, p < 0.05), LAP (p < 0.01), and AP 
(19.1%, p < 0.05) in spring sampling. Winter drought significantly 
increased LAP activity by 37.0% (p < 0.05) in non-fertilization plots, 
but not in fertilization plots, and a significant interactive effect of 
winter drought and fertilization on LAP (p < 0.05) was observed in 
May. In October, winter drought significantly increased CBH and 
NAG activities (both p < 0.05), and fertilization increased NAG activity 
by 179.4% (p < 0.01). A significant interactive effect of winter drought 
and fertilization on CBH activity was detected (p < 0.05; Table  2; 
Supplementary Table S2).

3.4 Soil microbial characteristics

Neither winter drought nor fertilization had significant changes in 
MBC or MBN (p > 0.05; Figures 2A,B). In May, MBP increased by 

66.4% in response to the legacy effect of fertilization (p < 0.001). There 
was a significant interactive effect of winter drought and fertilization 
on MBP (p < 0.001), and winter drought significantly decreased MBP 
(p < 0.01) in October. Winter drought significantly decreased MBP by 
63.9% in non-fertilization plots (p < 0.001) but not in fertilization plots 
(p > 0.05; Figure 2C). We also found that microbial CUE increased by 
125% in response to fertilization in October (p < 0.001; Figure 2D).

Bacterial FAs, G+ FAs, B:F, and total FAs were not affected by 
winter drought, fertilization, or their interaction (p > 0.05; 
Figures  2E,F,J,K). However, there were significant declines in 
actinomycetes and fungal FAs due to the legacy effect of fertilization; 
they reduced by 11.6 and 7.3%, respectively, in May (both p < 0.05; 
Figures 2H,I). The winter drought exerted a significant positive effect 
on G− FAs in October (increased 4.2%, p < 0.05; Figure  2G). No 
significant interactive effects of winter drought and fertilization were 
observed on all FAs (p > 0.05; Figures 2E–K). According to the PCA, 
there was no significant change in the phylum-level microbial 
community structure throughout the whole growing season by the 
treatments (p > 0.05; Figure 2L).

FIGURE 1

Soil temperature (A) and water content (B) in response to winter drought and chemical fertilization from November 2021 to October 2022 at 5 cm soil 
depth. C  =  control, D  =  winter drought, F  =  chemical fertilization, and DF  =  combined winter drought and chemical fertilization.
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TABLE 2 Soil C-, N-, and P-acquiring enzyme activities in response to winter drought and chemical fertilization in May and October 2022.

Month Treatment AG (nmol h−1 g−1) BG (nmol h−1 g−1) BX (nmol h−1 g−1)
CBH 

(nmol h−1 g−1)
NAG 

(nmol h−1 g−1)
LAP 

(nmol h−1  g−1)
AP (nmol  h−1  g−1)

May C 13.2 ± 0.8 0.59 ± 0.09 0.57 ± 0.07 0.74 ± 0.15 0.08 ± 0.05 8.1 ± 0.1 21.6 ± 0.7

D 15.2 ± 0.3 0.59 ± 0.03 0.93 ± 0.10 1.47 ± 0.14 0.21 ± 0.02 11.1 ± 0.6 25.5 ± 0.7

F 11.9 ± 1.3 0.61 ± 0.04 0.63 ± 0.02 0.74 ± 0.08 0.20 ± 0.02 8.6 ± 0.3 21.9 ± 1.5

DF 14.9 ± 0.6 0.44 ± 0.14 0.64 ± 0.17 1.08 ± 0.08 0.28 ± 0.10 9.2 ± 0.5 26.3 ± 1.6

October C 13.6 ± 0.7 0.38 ± 0.03 0.63 ± 0.10 0.43 ± 0.08 0.13 ± 0.06 8.9 ± 0.6 24.4 ± 1.2

D 17.6 ± 1.3 0.47 ± 0.02 0.61 ± 0.13 1.80 ± 0.30 0.21 ± 0.08 9.9 ± 0.4 28.3 ± 1.6

F 15.2 ± 2.0 0.53 ± 0.07 0.75 ± 0.15 0.90 ± 0.16 0.26 ± 0.02 9.4 ± 1.2 25.2 ± 4.2

DF 16.6 ± 1.3 0.63 ± 0.07 0.80 ± 0.09 0.96 ± 0.09 0.69 ± 0.09 10.0 ± 0.6 19.0 ± 1.2

Data are means ± 1 SE (n = 3).
C = control, D = winter drought, F = chemical fertilization, and DF = combined winter drought and chemical fertilization. C-cycling enzymes: AG, α-1,4-glucosidase; BG, β-1,4-glucosidase; BX, β-xylosidase; CBH, β-D-cellobiosidase. N-cycling enzymes: NAG, β-1,4-N-
acetylglucosaminidase; LAP, L-leucine aminopeptidase. P-cycling enzyme: AP, acid phosphatase.

TABLE 1 Soil physicochemical properties in response to winter drought and chemical fertilization in May and October 2022.

Month Treatment SWC (%) pH
DOC 

(mg kg−1)
DIN 

(mg kg−1)
Olsen-P 
(mg kg−1)

AK (mg kg−1) DOC:DIN DOC:Olsen-P DIN:Olsen-P

May C 22.3 ± 0.5 6.0 ± 0.03 183.9 ± 6.3 95.6 ± 8.9 255.5 ± 17.2 73.7 ± 4.3 2.0 ± 0.2 0.73 ± 0.06 0.37 ± 0.02

D 22.3 ± 0.2 5.8 ± 0.02 199.9 ± 26.1 109.7 ± 8.6 274.7 ± 15.3 73.7 ± 6.2 1.9 ± 0.3 0.73 ± 0.08 0.40 ± 0.03

F 22.9 ± 0.5 6.2 ± 0.08 251.5 ± 44.1 89.4 ± 7.1 245.2 ± 39.6 77.7 ± 1.0 2.8 ± 0.3 0.69 ± 0.06 0.28 ± 0.00

DF 22.0 ± 0.2 5.7 ± 0.03 234.3 ± 27.8 90.4 ± 5.5 341.8 ± 40.8 66.7 ± 5.5 2.6 ± 0.4 0.71 ± 0.09 0.28 ± 0.03

October C 24.6 ± 0.4 5.8 ± 0.11 448.4 ± 6.3 18.9 ± 2.0 10.8 ± 0.9 90.3 ± 8.8 20.8 ± 0.6 46.65 ± 0.84 1.56 ± 0.09

D 26.6 ± 0.1 6.0 ± 0.05 402.3 ± 28.1 17.0 ± 1.4 41.2 ± 6.1 82.7 ± 6.3 28.1 ± 0.2 12.77 ± 0.21 0.42 ± 0.03

F 24.1 ± 1.7 6.0 ± 0.06 399.3 ± 6.9 19.4 ± 2.4 44.0 ± 8.4 85.7 ± 4.2 18.0 ± 0.1 7.38 ± 0.25 0.47 ± 0.05

DF 24.9 ± 0.5 5.9 ± 0.04 401.5 ± 20.9 19.5 ± 1.0 119.6 ± 1.9 86.3 ± 1.1 23.2 ± 0.4 3.35 ± 0.12 0.16 ± 0.01

Data are means ± 1 SE (n = 3).
C = control, D = winter drought, F = chemical fertilization, and DF = combined winter drought and chemical fertilization. SWC, soil water content; DOC, dissolved organic carbon; DIN, dissolved inorganic nitrogen; AK, available potassium.
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3.5 Soil N availability

The IEM results showed that nitrate availability was higher than 
ammonium availability in this Mollisol cropland (Figures 3A,B). In 
spring 2022, winter drought significantly increased soil N availability 
(May 26–June 6 and June 6–22, p < 0.01 and p < 0.05; Figure  3C). 
However, as the growing season continued, the dominant treatment 
explaining variation in soil N availability shifted from the winter 
drought to fertilization (Figure  3). At the seed filling period of 
soybean, both nitrate and total N availability showed positive 
responses to fertilization (Figures  3B,C). At the mature period, 
ammonium availability decreased by 7.7% in response to winter 
drought (p < 0.05) and increased by 15.0% in response to fertilization 
(p < 0.01; Figure 3A). At the last sampling period (September 23–
October 7), we  found that fertilization significantly increased 
ammonium availability (p < 0.01; Figure 3A) and soil N availability 
(p < 0.001; Figure 3C).

3.6 Influencing factors of soil N availability

The Mantel test and Spearman correlation analysis showed that 
ammonium availability was significantly correlated with Olsen-P 
content and microbial CUE (p < 0.05). Microbial factors explained the 
largest fraction of the variation in nitrate availability; the microbial 
community structure (PC1) exhibited the strongest correlation 
(p < 0.01), followed by Ba FAs, G+ FAs, Ac FAs, Fu FAs, and total FAs 
(all p < 0.05), and we found significant positive correlations among 
these microbial factors. Soil N availability is significantly related to 

microbial CUE (p < 0.01), DOC:Olsen-P (p < 0.05), and soil B:F 
(p < 0.05; Figure 4).

4 Discussion

4.1 Soil properties in response to winter 
drought and chemical fertilization

A number of studies have shown that winter drought could 
significantly increase soil C, N, and P availability, because an increase 
in soil freeze–thaw that may promote soil shrinkage and expansion, 
which gave a direct release of mineralizable organic matters through 
the fragmentation of soil aggregate and mortality of fine roots and 
microorganisms (Song et  al., 2017; Ji et  al., 2022). However, our 
results showed that soil available C, N, and P remained unchanged 
after the winter drought (Table 1; Supplementary Table S1). This 
finding might be attributed to the energy and nutrients absorbed by 
soil microorganisms in early spring. Watanabe et al. (2019) observed 
that the concentration of DIN was higher by the treatment than that 
in control soil after snowmelt, and then, it would gradually decrease 
over time. This aspect suggested that the winter drought-induced 
changes in the available nutrients in the soil would dissipate as air and 
soil temperatures increased in early spring.

Our results indicated that the available C:N:P imbalances 
increased in the late growing season compared with the early growing 
season (Table 1; Supplementary Table S1) due to the rapid increase in 
soil Olsen-P content. We also found that the soil available C:P and N:P 
ratios (DOC:Olsen-P and DIN:Olsen-P) showed a profound decline 

FIGURE 2

Soil microbial characteristics (A–L) in response to winter drought and chemical fertilization in May and October 2022. C  =  control, D  =  winter drought, 
F  =  chemical fertilization, and DF  =  combined winter drought and chemical fertilization. The p-values were expressed as follows: *p  <  0.05; **p  <  0.01; 
***p  <  0.001. Data are means ±1 SE (n  =  3). MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus; 
CUE, microbial carbon use efficiency; Ba FAs, bacterial PLFAs; G+ FAs, Gram-positive PLFAs; G− FAs, Gram-negative PLFAs; Ac FAs, actinomycetes 
PLFAs; Fu FAs, fungal PLFAs; B:F, the ratio of bacterial to fungal PLFAs.
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FIGURE 3

Responses of IEMs measured ammonium (A), nitrate (B), and N (C) availability to winter drought and chemical fertilization from May to October 2022. 
The inset figures were the changes in the average level of N availability during four growth periods of soybean. C  =  control, D  =  winter drought, 
F  =  chemical fertilization, and DF  =  combined winter drought and chemical fertilization. The p-values were expressed as follows: *p  <  0.05; **p  <  0.01; 
***p  <  0.001. Data are means ±1 SE (n  =  3).
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by the winter drought in October. The explanation could be due to 
decreased microbial immobilization (Gao et al., 2021), which was 
supported by our results showing that winter drought significantly 
decreased soil MBP (Figure 2C). Soil available C:N, C:P, and N:P ratios 
exhibited generally consistent responses (reduced) to chemical 
fertilization in October because chemical fertilization can increase the 
input of N and P to the soils (Zhang et al., 2019).

4.2 Microbial characteristics in response to 
winter drought and chemical fertilization

Soil EEAs are usually related to microbial metabolic rates and are 
widely used to indicate microbial C, N, and P requirements (Sun et al., 
2023). It has been reported that soil microorganisms suffer from 
relative P limitation in Mollisol croplands, and microbial biomass is 
the key controller for microbial N/P limitation (Yang et al., 2023). In 
unfertilized plots, MBP was significantly decreased by winter drought 
at the end of the growing season (Figure 2C), which suggested that the 
decreased MBP may further exacerbate the microbial P limitation in 
this Mollisol cropland. Although soil C-, N-, and P-acquiring EEAs 
were increased in response to winter drought in spring, they were 

unchanged and remained coupled under the four treatments at the 
end of the growing season (Table 2; Supplementary Table S2). After 
the snow removal period, microbial activity was stimulated by 
dramatic changes in soil temperature in the spring, but the response 
would be attenuated as the temperature differences decreased among 
treatments in October.

Microbial CUE is a pivotal index for understanding soil C 
turnover that is driven by microbial metabolism (Tao et al., 2023). Our 
results showed that chemical fertilization profoundly increased 
microbial CUE (Figure  2D). To achieve microbial elemental 
homeostasis when the soil nutrient (N and P) content was sufficient 
through fertilization, microorganisms would devote more energy (C) 
for self-growth and reproduction (Li et al., 2019; Tang et al., 2020). A 
high soil nutrient content can also alter intracellular C partition, 
which leads to a lower allocation of C to respiration and a higher 
allocation of C to growth (Spohn et al., 2016), resulting in an increase 
in microbial CUE.

However, microbial community composition (bacteria, fungi, 
and actinomycetes) and structure (phylum level) were not sensitive 
to both winter drought and chemical fertilization (Figures 2E–L). 
It is expected that the declines in Fu FAs and Ac FAs in response to 
the legacy effect of chemical fertilization were detected in the early 

FIGURE 4

Correlations among soil N availability, soil properties, and microbial characteristics. Pairwise comparisons of soil and microbial factors are shown, with 
color gradients denoting Spearman’s correlation coefficients. Edge width corresponds to Mantel’s r statistic for the corresponding distance 
correlations. SWC, soil water content; DOC, dissolved organic carbon; DIN, dissolved inorganic nitrogen; AK, available potassium; Ba FAs, bacterial 
PLFAs; G+ FAs, Gram-positive PLFAs; G− FAs, Gram-negative PLFAs; Ac FAs, actinomycetes PLFAs; Fu FAs, fungal PLFAs; B:F, the ratio of bacterial to 
fungal PLFAs; CUE, microbial carbon use efficiency.
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FIGURE 5

A conceptual diagram showing influences of winter drought and chemical fertilization on soil N availability. Plus and minus signs indicate the increased 
and decreased percentages of the response variables by winter drought, chemical fertilization, and a combination of winter drought and chemical 
fertilization, relative to the control plots. The p-values were expressed as follows: *p  <  0.05; **p  <  0.01; ***p  <  0.001.

growing season (Figures 2H,I). In the studied rotation system, the 
former crop was maize, and it did not have the ability to recruit 
N-fixers; its N requirement came from N fertilization (Breza et al., 
2023). To some extent, crops and microorganisms have a 
competitive relationship. The high N uptake capacity of maize may 
lead to the death of fungi and actinobacteria by N deficiency (Liu 
et al., 2020).

4.3 Soil N availability in response to winter 
drought and chemical fertilization

Soil ammonium availability was lower than nitrate availability 
during the growing season (Figures 3A,B). This finding might be due 
to the lower energetic cost of NH4

+, which can be preferentially taken 
up by the plants (Legay et  al., 2020). Inconsistent with our first 
hypothesis, soil N availability was enhanced by winter drought in the 
early growing season (Figure 3C). This finding suggested that winter 
drought-induced soil freezing may increase the mortality of 
microorganisms, resulting in a large amount of available N in soils 
(Yang et al., 2020; Ji et al., 2022). Moreover, during the soil thawing 
process, the surviving organisms may use dead cells as substrates to 
increase mineralization (Yang et  al., 2023). The increased soil N 
availability is likely to be transient and limited to the early growing 
season as we did not find evidence of continued soil N accumulation 
during the peak growing season. This finding was consistent with that 
of a previous study in a northern hardwood forest, indicating that the 
labile N from the winter period was insufficient for the demands of 
both microorganisms and plants in early summer (Watanabe 
et al., 2019).

By contrast to the winter drought, chemical fertilization had a 
longer duration to affect soil N availability. During the seed filling and 
mature period, to some extent, soil ammonium, nitrate, and total N 
availability showed positive responses to chemical fertilization 

(Figure 3). First, fertilization was applied in the early growing season, 
and most of the N-fertilization was dissociated to inorganic N (i.e., 
NO3

− and NH4
+) by soil microorganisms in late growing season. 

Second, plants have a low N requirement during the late growing 
season, which would be beneficial to the growth and/or activity of soil 
microorganisms, and further promote the decomposition of organic 
matter to increase the N availability in soils (Sun et al., 2021). We also 
found that a combination of winter drought and fertilization has the 
highest soil N availability (Figures 3C, 5). This finding agrees with a 
previous study that showed that combined freeze–thaw and 
fertilization had a larger N mineralization than single fertilization (Lin 
and Hernandez-Ramirez, 2022).

4.4 Relationships among soil properties, 
microbial characteristics, and soil N 
availability

In the present study, Olsen-P content, DOC:Olsen-P, and 
microbial CUE were significantly related to soil ammonium and total 
N availability (Figures 4, 5). A recent study conducted in a grassland 
ecosystem showed that soil available P played a key role in 
determining the growth and distribution of N-cycling 
microorganisms, which may improve soil N-fixing potential and 
increase soil N availability (Xiao et al., 2020). A large body of studies 
leads us to expect nutrient cycling to be coupled across space and 
time, especially in the N and P fertilization experiments (Achat et al., 
2016). Both winter drought and chemical fertilization significantly 
increased Olsen-P content, which was a prerequisite for exacerbated 
soil ammonium and total N availability. The mineralization process 
releases N in the form of ammonium, which increases the amount of 
available N in soils.

The process of soil N mineralization has a high energy demand, 
and microorganisms may use soil available C substrates as an energy 
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source to enable nitrogenase production (Schleuss et al., 2021). Our 
result showed that soil N availability was strongly correlated with 
microbial CUE under winter drought and fertilization conditions 
(Figures  4, 5). Multiple studies have revealed that soil 
microorganisms with a high CUE may reduce their respiration rate 
to increase their mineralization rate (Mehnaz et al., 2019; Yuan et al., 
2019). Moreover, a high microbial CUE inherently requires more N 
to maintain the C:N ratio of their biomass (Feng et al., 2022; Zhu 
et  al., 2023). The more assimilation of C in microbial biomass 
ultimately leads to a higher availability of N produced by 
microorganisms (Bei et al., 2022) due to the fact that N is generally 
coupled with C in the soils (Luo et al., 2015). The positive links 
between microbial CUE and soil N availability have been reported 
for agricultural soils with different fertilizer regimes (Spohn et al., 
2016) and those were also found in unmanaged ecosystems (Tian 
et al., 2023).

Soil microbial biomass, structure, and composition can, directly 
and indirectly, influence soil nitrification and nitrate availability 
(Figure 4; Elrys et al., 2021; Van Huynh et al., 2023). Elrys et al. (2021) 
revealed that the high nitrification rates and a low soil C:N ratio 
caused by fertilization were associated with bacteria-dominated 
communities, and microbial communities produced by the 
nitrification process always belong to the bacteria genus (Shen et al., 
2021). Additionally, although the bacteria:fungi ratio was unchanged 
by the winter drought and chemical fertilization, our results showed 
that soil N availability was related to the bacteria:fungi ratio (Figure 4). 
The fungal community is essential for decomposing cellulose, 
hemicellulose, and recalcitrant compounds, such as lignin (Shipley 
and Tardif, 2021). Chen et al. (2021) reported that fungi can drive soil 
ammonification by regulating fungal ligninolytic capacity, and 
changes in fungal ligninolytic capacity will, in turn, influence the 
release of available N. Soil N transformation processes were regulated 
by different microbial communities, and our results suggested that 
even a slight change in the ratio of bacteria to fungi would alter soil 
N availability.

5 Conclusion

In conclusion, our results showed that the effect of chemical 
fertilization rather than winter drought on soil N availability can 
continue throughout the growing season in agroecosystems. 
Chemical fertilization significantly increased microbial CUE and 
soil N availability, and a combination of winter drought and 
chemical fertilization had the highest soil N availability at the end 
of the growing season. Both microbial and soil properties have 
strong linkages with soil N availability. Although the microbial 
biomass and extracellular enzyme activities had quick responses to 
winter drought and chemical fertilization, the durations were less 
than a growing season. We found that microbial CUE was the most 
positive correlation factor with soil N availability, followed by soil 
available C:P and bacteria:fungi ratios. We  concluded that the 
relationship between soil microbial function and N availability was 
crucial for understanding soil N-cycling processes under global 
change and agricultural management practices. We also highlighted 
the need to explicitly incorporate microbial characteristics into 
biogeochemical models to improve the prediction of ecosystem 
N cycling.
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