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Introduction: Antimicrobial peptides (AMPs) are promising alternatives to 
traditional antibiotics for combating plant pathogenic bacteria in agriculture 
and the environment. However, identifying potent AMPs through laborious 
experimental assays is resource-intensive and time-consuming. To address 
these limitations, this study presents a bioinformatics approach utilizing 
machine learning models for predicting and selecting AMPs active against plant 
pathogenic bacteria.

Methods: N-gram representations of peptide sequences with 3-letter and 
9-letter reduced amino acid alphabets were used to capture the sequence 
patterns and motifs that contribute to the antimicrobial activity of AMPs. A 5-fold 
cross-validation technique was used to train the machine learning models and 
to evaluate their predictive accuracy and robustness.

Results: The models were applied to predict putative AMPs encoded by 
intergenic regions and small open reading frames (ORFs) of the citrus genome. 
Approximately 7% of the 10,000-peptide dataset from the intergenic region and 
7% of the 685,924-peptide dataset from the whole genome were predicted as 
probable AMPs. The prediction accuracy of the reported models range from 
0.72 to 0.91. A subset of the predicted AMPs was selected for experimental test 
against Spiroplasma citri, the causative agent of citrus stubborn disease. The 
experimental results confirm the antimicrobial activity of the selected AMPs 
against the target bacterium, demonstrating the predictive capability of the 
machine learning models.

Discussion: Hydrophobic amino acid residues and positively charged amino 
acid residues are among the key features in predicting AMPs by the Random 
Forest Algorithm. Aggregation propensity appears to be correlated with the 
effectiveness of the AMPs. The described models would contribute to the 
development of effective AMP-based strategies for plant disease management 
in agricultural and environmental settings. To facilitate broader accessibility, our 
model is publicly available on the AGRAMP (Agricultural Ngrams Antimicrobial 
Peptides) server.
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Introduction

Microbial plant diseases are a major concern worldwide, posing a 
significant threat to global agricultural productivity and food security. 
Historically, conventional approaches utilizing chemical pesticides 
and antibiotics have been employed to combat these diseases. 
Unfortunately, these methods have inherent drawbacks, including 
adverse impacts on the environment, collateral damage to non-target 
organisms, and human health. In recent years, there has been growing 
interest in exploring alternative approaches to plant disease 
management that are more sustainable and eco-friendlier. One such 
approach involves the use of antimicrobial peptides (AMPs).

AMPs are a diverse group of biologically active small peptides 
ranging from 10 to 100 amino acids in length and found in a wide 
variety of organisms such as plants, insects, and animals. AMPs have 
been studied since the 1980s following the discovery of cecropins 
(Steiner et  al., 1981). AMPs often possess both hydrophilic and 
hydrophobic characteristics, making them amphipathic, which 
facilitates their interaction with the lipid bilayer of target cells, as the 
cell membrane itself is also amphipathic. This interaction between 
AMPs and the lipid bilayer plays a crucial role in their antimicrobial 
activity (Glukhov et al., 2005; Bahar and Ren, 2013). Although there 
is some resistance to AMPs conferred by host cell proteases, overall 
bacteria possess limited ability to develop resistance to AMPs, because 
their toxicity is usually mediated by non-specific processes as opposed 
to targeting a specific protein (Brender et al., 2012).

Several interaction models have been proposed to explain how 
AMPs interact with the cell membrane. These include (a) carpet-like, 
characterized by an accumulation or aggregation of AMPs; (b) 
toroidal pore, whose pore is characterized by polar faces of amphiphilic 
helices and polar headgroups of lipids which allow small molecules to 
pass through the pore; and (c) a barrel-stave model, whose pore is 
solely comprised of peptides forming a water-filled channel (Bahar 
and Ren, 2013; Matsuzaki, 2019). These interactions between the 
AMP and target cell membrane lead to a displacement of lipids in the 
bilayer and the consequent membrane thinning, transmembrane pore 
formation, altered curvature, changes in electrostatic interactions in 
the lipid bilayer, and localized perturbations. Membrane infiltration 
by the AMP might also lead to membrane rupture, and/or leakage of 
cellular contents through the membrane, which can be fatal to the cell 
(Fjell et al., 2011). Such membrane-interactive characteristics make 
AMPs attractive as potential alternatives to traditional antibiotics 
against plant pathogenic bacteria.

However, the laborious and resource-intensive nature of 
identifying potent AMPs through experimental assays has posed 
significant limitations. To address these challenges, this study 
utilizes a bioinformatics approach that leverages machine learning 
models based on N-gram representations of peptide sequences to 
predict and select AMPs specifically targeting plant pathogenic 
bacteria. While previously reported models utilize the Random 
Forest family of algorithms (Thomas et  al., 2010; Waghu et  al., 
2016; Bhadra et  al., 2018), this study explores N-gram 
representations of 2-gram and 3-gram with a 9-letter reduced 
alphabet and a 3-letter reduced alphabet. These representations 
capture the sequence patterns and motifs that contribute to the 
antimicrobial activity of AMPs. By training and evaluating the 
machine learning models using a 5-fold cross-validation technique 
on the training set and an independent validation set, the study 

assesses the predictive accuracy and robustness of the developed 
models in identifying AMPs.

The results indicate that the models are capable of accurately 
identifying AMPs against plant pathogenic bacteria, offering a more 
efficient and reliable alternative to traditional labor-intensive 
screening methods. Building upon the success of the machine learning 
models, the study extends its application to predicting putative AMPs 
encoded by intergenic regions and small open reading frames (ORFs) 
within the citrus genome. A laboratory test on a subset of the predicted 
AMPs has demonstrated strong growth inhibitory effects of these 
peptides against Spiroplasma citri, the causal agent of citrus stubborn 
disease, confirming the predictive capability of the machine 
learning models.

To enhance accessibility and facilitate broader usage, 
we developed a publicly available online resource called AGRAMP 
(Agricultural N-grams Antimicrobial Peptides).1 AGRAMP 
enables users to input FASTA-formatted sequences and obtain 
predictions of putative AMPs based on the trained machine-
learning models. This user-friendly platform serves as a valuable 
tool for researchers, enabling them to identify and select potential 
AMPs efficiently, thereby contributing to the development of 
effective strategies for plant disease management in agricultural 
and environmental settings.

Materials and methods

Training and test sets—negative datasets 
(NOAMP)

To create the negative datasets, a multi-step process was followed. 
Initially, random short peptides without AMP characteristics were 
generated by sampling from the UniProt database,2 with specific 
search criteria applied. The UniProt database was queried in the 
Taxonomy search box for viridiplantae and subcellular location in the 
cytoplasm. Sequences with descriptions such as antibacterial, signal 
peptide, antiviral, antiparasitic, anticancer, spermicidal, insecticidal, 
secreted, and antimicrobial were excluded. This filtering yielded 
125,064 protein sequences.

To further refine the dataset, these sequences were blasted 
against AMP sequences (targeting bacteria) in the CAMP database3 
(Thomas et al., 2010; Waghu et al., 2014, 2016), UniProt database 
with matches to antimicrobial peptide, defensin, hevein, knottin, 
snaking and thionin, and APD database4 (Wang and Wang, 2004; 
Wang et al., 2009, 2016). Sequences with negative E-values 0.09 
and lower were excluded. After this step, 81,209 protein sequences 
remained. Further filtering was conducted to remove miscellaneous 
“X” characters that can appear in protein sequences in public 
databases, resulting in 81,054 sequences. Since sequences in the 
public databases can also contain short peptides, sequences shorter 
than 15 bp were filtered out, resulting in 80,934 peptide sequences.

1 http://omics.gmu.edu/agramp

2 https://www.uniprot.org/

3 http://www.camp.bicnirrh.res.in/

4 http://aps.unmc.edu/AP/main.html
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From these protein sequences, random peptides ranging from 15 
to 45 amino acids in length were generated and used to create the 
negative dataset. The negative dataset was further curated for length 
to more closely match the positive training set by binning the data into 
bands and choosing a length randomly from the bin. This introduced 
some variation in the negative dataset. Sequences were then randomly 
selected, resulting in 1,500 sequences for the negative training set and 
139 sequences for the negative test set with the length of each peptide 
matching closely with the positive training set. Overall, three negative 
datasets were created.

Training and test sets—positive AMP 
datasets

A total of 2,661 AMPs that affect both gram-positive and gram-
negative bacteria were obtained from the APD database.5 The AMPs 
were used to construct the training and testing sets. To reduce 
redundancy, the CD-hit program6 was employed with sequences 
sharing a ≥ 90 percent similarity threshold were filtered out, 
resulting in 2,012 sequences (Li et al., 2001; Li and Godzik, 2006). 
From the 2,012 peptides, those within the length range of 11–45 
amino acids were retained, yielding a final set of 1,639 peptides. The 
1,639 sequences were shuffled to ensure randomization. 
Subsequently, these 1,639 peptides were split into two sets: a 
training set consisting of 1,500 AMP sequences and a test set 
containing 139 sequences. A large percentage of peptide sequence 
data was kept in the training set to ensure sufficient sequences for 
effective training. These datasets created from APD database were 
used in the in-silico analysis for this study.

N-grams

N-gram is a substring consisting of N characters, which is a part 
of a larger string, in this case the amino acid sequence of peptides. 
Each peptide sequence can be  divided into a set of all possible 
overlapping N-grams. Frequencies of the N-grams with distinct 
compositions can be calculated and compared with their expected 
frequencies based on the observed frequencies of individual amino 
acids. The following is the equation for the N-gram likelihood used in 
this study (Othman et al., 2017).

 
q

f
f fij
ij

i j
= log

The log is used to create a distribution with positive and negative 
values. N-gram combinations with zero frequency were set to zero to 
handle the undefined value of log (0). The numerator (fij) represents 
the frequency of the N-gram, while the denominator (fifj) represents 
the frequency of the individual amino acids that make up the 
N-gram. Each peptide was processed through a sliding window. To 
reduce the compositional complexity of the peptides the natural 

5 https://aps.unmc.edu/

6 http://weizhongli-lab.org/cd-hit/

20-letter amino acid alphabet was replaced by smaller size alphabets 
(Othman et al., 2018). The study used two alphabets: one based on 
charge (KR ≥ B, ANCQGHILMFPSTWYV ≥ J, DE ≥ Z), and the 
other one based a 9-letter alphabet. In the 9-letter alphabet, the 
mappings are as follows: ED ≥ E, QTSNH ≥ Q, LMIVAF ≥ L, G ≥ G, 
W ≥ W, C ≥ C, RK ≥ R, Y ≥ Y, P ≥ P.

The number of combinations of any given N-gram is based on the 
formula (alphabet)^(N-gram). For example, a 3-letter 3-gram 
alphabet has 27 combinations, and a 9-letter 3-gram alphabet has 729 
combinations. The 9-letter alphabet used in this study was developed 
based in part on the information from the nearest neighbor clustering 
of existing AMPs proposed by Veltri et  al. (2018) and the basic 
properties of amino acids. This separates polar and non-polar and 
charged amino acids while giving the other amino acids their own 
alphabet. For example, Glycine (G) is often grouped with the 
hydrophobic amino acids, but the R-group is a single hydrogen. The 
nearest neighbor method groups Glycine (G) with Tryptophan (W), 
but Tryptophan’s R-group possesses a bulky ring with different 
properties than Glycine. And although Tyrosine (Y) and Proline have 
bulky side chains, each amino acid has very distinct properties, so they 
were separated into separate groups. Likewise, negatively charged 
amino acids Glutamic (E) and Aspartic Acid (D) were separated into 
separate groups. This proposed alphabet is intended to address the 
potential biases in databases as submitted peptides tend to focus on 
pathogens that are important to human beings.

Bioinformatics generating putative small 
peptides

The citrus genome sequence data (Csinensis_154_v1.fa) was 
downloaded from Citrus Genome Database.7 The sequence data was 
processed to remove non-ATGC characters, especially nonsense-
based NNNs. Two small peptide datasets were generated from the 
cleaned genome sequence. The first set of small peptides consists of 
open reading frames (ORFs) extracted from the intergenic regions of 
the citrus genome. The intergenic region extraction was performed by 
using the bedtools.8 The extracted sequences were translated using the 
Transeq program from the emboss suite,9 resulting in 1,241,730 
sequences. A sampling of 10,000 ORFs was initially tested using the 
Random Forest Algorithm with a 2-gram program with 
3-letter alphabets.

The second set of small peptides was generated from the Citrus 
using the MiPepid program, which is designed for micropeptide 
prediction (Zhu and Gribskov, 2019). This process yielded 3,232,165 
sequences after selecting coding sequences. Similar to the previous 
step, the sequences were translated using the Transeq program from 
the emboss suite (see text footnote 8; Rice et al., 2000). Subsequently, 
the sequences were sorted for peptides that were 15–25 amino acids 
in length. This resulted in a final set of 685,924 short peptide sequences 
and they were inputted into the 2-gram and 3-gram programs using 
the Random Forest Algorithm. Such small peptides are often missed 

7 https://www.citrusgenomedb.org/bio_data/91

8 https://bedtools.readthedocs.io/en/latest/

9 https://www.ebi.ac.uk/Tools/st/emboss_transeq/
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in traditional genome annotation practices as ORFs shorter than 150 
bases are not annotated.

Machine learning—random forest—
datasets and features

The Random Forest Algorithm, implemented in Python’s Scikit-
learn machine learning package (Pedregosa et  al., 2011) was 
employed for constructing the models. The feature vectors were based 
on likelihoods of 3-grams with the reduced alphabets described 
above. Four datasets were prepared including (i) a positive set for 
training (positive training set), (ii) a negative set for training (negative 
training set), (iii) a positive set for testing (positive testing set), and 
(iv) a negative set for testing (negative testing set). All models were 
trained and evaluated using these sets. In the first part of the machine 
learning process, 1,500 peptides from the APD database were used as 
the positive test set and 1,500 peptides were used in the negative 
training set and the N-gram program was then tested using these sets. 
The positive and negative training sets were balanced evenly to 
minimize bias. The datasets were shuffled as input into the Random 
Forest Algorithm to avoid bias in the model. In addition, cross-
validation (5-fold) was used for evaluation of the model where 20% 
of the data would be held for testing in each iteration.

The algorithm (Random Forest) classifies or recognizes a 
pattern on a set of data called features (N-grams likelihoods) which 
are characteristics or measurable properties (letters) of what is 
being classified (peptide). Four Random Forest models were built 
using a 2-gram 3 letter alphabet (9 features), (3letter2-gram) using 
reduced alphabets based on charge (model1): a 9-letter alphabet 
(81 features, 9 letter2-gram; this study; model 2); a 3-gram 3 letter 
alphabet (27 features, 3letter3-gram) using alphabets based on charge 
(model 3); and a 9-letter alphabet (729 features, 9 letter3-gram; this 
study; model 4). The N-gram program was also compared to a 
negative dataset found in the literature for comparison (Sidorczuk 
et al., 2022). Mathew’s correlation coefficient (MCC) and Accuracy 
equations were used to evaluate these models:

 
MCC TPxTN FPxFN

TP FP TP FN TN FP TN FN
=

−
√ +( ) +( ) +( ) +( )

 
ACC

TP TN

TP FP TN FN
=

+( )
+ + +( )

Secondary structure prediction and amino 
acid properties of the AMPs

Prediction of the secondary structure of the AMPs was 
performed using JPred410 (Drozdetskiy et al., 2015). The resulting 
consensus secondary structure was saved for further analysis. 

10 https://www.compbio.dundee.ac.uk/jpred/

Since JPred4 is not effective with short peptides, each short AMP 
peptide was replicated and concatenated to artificially generate 
longer sequences. These sequences were submitted to JPred4 to 
get an approximation of their secondary structure. Charge density 
plots were graphed using EMBOSS charge11 (Rice et al., 2000). 
Pepwheels were created using EMBOSS pepwheel12 (Rice et al., 
2000). AGGRESCAN was used to predict aggregation propensity 
(in vivo aggregation; Conchillo-Solé et al., 2007; Torrent et al., 
2011; de Groot et al., 2012).

Synthesis of putative AMPs and preparation 
of serially diluted solutions

The amino acid sequences of 20 putative AMPs predicted by 
N-gram (Supplementary Table S1) were synthesized by GeneScript 
(Bioch Corp, New Jersey). The synthesis was performed on the 
microwave-assisted PepPower™ peptide synthesis platform. The 
quality and purity of each synthesized peptide were examined via 
both mass spectrometry (MS) and high-performance liquid 
chromatography (HPLC) analyses. All synthesized peptides reached 
purity above 96%. The synthetic peptides were dissolved in 
nuclease-free H2O to make stock solutions of 5 mg/mL. The stock 
solutions were filtered with a 0.22 μM filter to remove any possible 
contaminants from the synthesis facility and were subsequently 
subjected to two-fold serial dilutions up to 0.1526 mg/mL.

Spiroplasma citri culture

The S. citri strain R8A2, originally isolated from infected citrus 
(Citrus sinensis), was triply cloned, and stored in a liquid serum-free 
medium (LD59) at −80°C (Saglio et al., 1973; Davis et al., 2017). For 
this study, the strain was activated by transferring frozen culture to 
LD8A3 medium supplemented with 10% fetal bovine serum and 
incubated at 32°C until it reached the mid-log phase (approximately 
108 colony-forming units per mL, OD450 reading 0.01; Wei et al., 2022). 
Subsequent sub-culturing every 48–72 h was performed at 32°C, and 
OD measurements were performed to determine the minimum 
inhibitory concentration (MIC) after controlling S. citri growth 
conditions. Phenol red was used as an indicator dye to monitor culture 
acidity, with a color change from red to yellow indicating bacterial 
growth (Tully et al., 1977).

Spiroplasma growth inhibition assay of 
predicted AMPs

Spiroplasma citri liquid cultures in LD8A3 medium and microtiter 
plates (96-well plate) were used in the laboratory assay. The 
antimicrobial activities of the putative AMPs were determined by 
using a microplate reader that tracks OD value changes at wavelength 
560 nm (OD560) over a 48-h assay period. The previously established 

11 https://www.bioinformatics.nl/cgi-bin/emboss/charge

12 https://www.bioinformatics.nl/cgi-bin/emboss/pepwheel
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correlation between the OD560 readings and the acidity changes of the 
liquid spiroplasma culture was used as the basis for measuring the 
growth and multiplication of S. citri cells (Tully et  al., 1977; Wei 
et al., 2022).

The master mix for the growth inhibitory assay contained 27 mL 
LD8A3 + 3 mL Fetal Bovine Serum, 300 μL of S. citri R8A2 strain mid-log 
phase subculture, and 1,800 μL phenol red. From this solution, 148.5 μL 
was removed for testing and 1.5 μL AMP (predicted) stock (100 μg/mL) 
was added for each peptide, respectively. The control lane contained 
148.5 μL of stock culture and 1.5 μL tetracycline (TC) – 50 μg/mL, where 
red color is expected since S. citri growth would be inhibited. Another 
control lane contained S. citri inoculum without AMP (SCNOAMP), 
where a yellow color is expected as phenol red transitions from a red to 
yellow color as S. citri grows without inhibition.

To determine the effectiveness of the peptides against S. citri, the 
minimum inhibitory concentration (MIC) assay was conducted with 
different predicted AMP concentrations. Most peptides were 
examined at concentrations of 50 μg/mL, 25 μg/mL, and 12.5 μg/mL, 
while selected peptides with higher inhibition against S. citri were 
tested at concentrations of 6.25 μg/mL, 3.125 μg/mL, and 1.526 μg/mL.

The laboratory assay was repeated as stated above where each well of 
the assay plate contained 148.5 μL from a stock solution of 15 mL (13.5 
LD8A3 plus 1.5 FB serum) Fresh LD8A3 medium, 900 μL filtered phenol 
red and 1.5 μL of AMP (predicted) stock or tetracycline (TC) as a positive 
control. LD8A3 without any peptide was used as the negative control. 
Each laboratory assay was performed in triplicate. All statistical analyses, 
including p-values and false discovery rate (FDR) calculations, were 
performed using the R statistics suite13 with a pair-wise t-test.

Results

Training and testing sets for AMP 
prediction models

The AMP-APD database, comprising gram-positive and gram-
negative bacteria, was used to create the training set for AMP 
prediction models. The training set consisted of 1,500 peptides, while 

13 https://www.r-project.org/

the testing set contained 139 peptides. In parallel, the negative dataset, 
NOAMP1, also contained 1,500 peptides in the training set and 139 
peptides in the testing set. For training AMP and NOAMP datasets, 
the models utilized 2-gram and 3-gram approaches, with a reduced 
9-letter alphabets grouped based on amino acid properties (this study) 
and a reduced alphabet based on charge. To supplement the training 
data, the training set EMEM, from previous studies (Sidorczuk et al., 
2022) was also incorporated.

The models’ performance was evaluated by using 5-fold cross-
validation (CR) and Mathew’s correlation coefficient (MCC), with 
the consistent testing datasets employed for all trials. Among these 
models, the 3-gram 9-letter model performed similarly but slightly 
better than other models, exhibiting cross-validation scores ranging 
from 0.88 to 0.91, and MCC values between 0.72 and 0.79 (Table 1). 
In addition, the receiver operating characteristic (ROC) curve 
showed a high true-positive rate and low false-positive rate, with an 
area under the curve (AUC) of 0.96 (Figure 1). The 3-gram 3-letter 
model based on charge demonstrated the cross-validation scores 
ranging from 0.77 to 0.85, and MCC values between 0.54 and 0.66 
(Table  1). Similarly, the 2-gram 9-letter model performed well, 

TABLE 1 A summary of machine learning with random forest using 3-gram with reduced alphabets.

3-gram 
alphabet

Datasets Train Test CR1 CR2 CR3 CR4 CR5 MCC TP FP FN TN

CHARGE

NOAMP1 0.97 0.799 0.81 0.79 0.81 0.8 0.81 0.6 108 31 25 114

NOAMP2 0.98 0.77 0.8 0.81 0.82 0.8 0.81 0.54 108 31 33 106

NOAMP3 0.98 0.8 0.83 0.81 0.82 0.83 0.79 0.6 104 35 21 118

EMEM 0.96 0.83 0.84 0.84 0.83 0.86 0.85 0.66 111 28 19 120

9-letter

NOAMP1 1 0.89 0.88 0.91 0.88 0.9 0.88 0.78 122 17 13 126

NOAMP2 1 0.86 0.9 0.88 0.91 0.88 0.9 0.72 120 19 20 119

NOAMP3 1 0.9 0.89 0.89 0.9 0.91 0.89 0.79 121 18 11 128

EMEM 1 0.9 0.91 0.89 0.89 0.9 0.89 0.82 122 17 10 129

CR, Cross Validation; MCC, Mathew’s Correlation Coefficient; TP, True Positive; FP, False Positive; FN, False Negative; TN, True Negative.

FIGURE 1

Receiver operating characteristic curve (ROC) curve for the 3-gram 
9-letter alphabet model using NOAMP1 (Non-AMP dataset 1).
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displaying cross-validation scores ranging from 0.87 to 0.90, and 
MCC values between 0.69 and 0.82 (Table 2). The 2-gram 3-letter 
model based on charge exhibited the cross-validation scores ranging 
from 0.67 to 0.83, with MCC values between 0.57 and 0.67 (Table 2). 
These results indicate that the models can effectively discriminate 
between AMPs and NOAMPs, as demonstrated by the cross-
validation scores surpassing 50%, which would be  expected at 
random, and the AUC curve surpassing 0.5, highlighting a classifier 
performing better than random chance.

Machine learning for prediction of novel 
AMPs in citrus genome

The identification of AMPs is a complex process that involves the 
utilization of diverse methodologies such as Random Forest, Support 
Vector Machines and Deep Learning models, as documented in 
previous studies (Lata et al., 2007, 2010; Thomas et al., 2010; Porto 
et al., 2012; Veltri et al., 2018; Waghu and Idicula-Thomas, 2020; 
Pinacho-Castellanos et al., 2021; Wang et al., 2022). In the present 
study, a novel strategy was employed to enhance the identification of 
AMPs. Specifically, ORFs were extracted from the intergenic region, 
with the specific objective of identifying peptides that may not 
be encoded in the coding region. This approach aimed to address the 
possibility that certain peptides might have been overlooked in 
previous studies to unveil previously undiscovered peptides with 
distinct characteristics and potential antimicrobial properties. 
Furthermore, the study also involved the extraction of small peptides 
from the entire genome of citrus, allowing for an exploration of 
naturally expressed ORFs within these peptides. This comprehensive 
approach not only facilitated the identification of peptides but also 
indicated their potential for natural expression by citrus, thus 
implying their biological relevance and potential safety for the 
host organism.

By adopting the above two approaches, two datasets of small 
peptides were created from the intergenic region and the whole 
genome of citrus (details see Materials and methods). The first dataset 
included 10,000 randomly sampled ORFs from the intergenic region, 
while the second dataset consisted of 685,924 putative-predicted small 
peptides from the entire citrus genome. Both datasets were tested 
using AGRAMP (Agricultural N-gram Antimicrobial Peptides) with 
3-gram and 9-letter reduced alphabet models.

Evaluation of AGRAMP (3-gram 9-letter 
model) and comparison with other AMP 
prediction models

The peptides deduced from the intergenic region and the whole 
genome of citrus were analyzed by AGRAMP using a 3-gram 9-letter 
model. As expected, most of the unknown peptides deduced from the 
ORFs of the intergenic region and the putative micro-peptides from 
the whole genome of citrus were predicted as non-antimicrobial 
peptides (NOAMPs; Table 3). Approximately 7% of the 10,000-peptide 
dataset from the intergenic region and 7% of the 685,924-peptide 
dataset from the whole genome were predicted as probable AMPs by 
AGRAMP. AGRAMP can screen for AMP candidates in a high-
throughput manner.

Additionally, the performance of different AMP 
prediction models was evaluated using the top 10,000 probable 
AMPs predicted by AGRAMP and the top  10,000 NOAMPs 
predicted by AGRAMP. As shown in Table 4, AMP Scanner v.2 
(Veltri et  al., 2018) performed similarly to AGRAMP, while 
MACREL (Santos-Junior et  al., 2020) predicted half as many 
AMPs, and CAMP-RF (Thomas et al., 2010; Waghu et al., 2016) 
predicted only 33% as probable AMPs. Compared to the other 
models, AGRAMP showed more positives (3,160, 7,100, and 5,459 
more positives than in AMP Scanner, CAMP-RF, and MACREL, 
respectively). However, the predictions for the top  10,000 
NOAMPs were consistent among all the models. We also compared 
the AGRAMP results with the predictions from AMPDiscover 
program using their ProtDCal-AMP_RF Random Forest model 
with ProtDCal descriptors14 (Pinacho-Castellanos et al., 2021). For 
this test we  randomly selected 200 peptides predicted as 
antimicrobial and 200 peptides predicted as non-antimicrobial by 
AGRAMP. 180 out of 200 AGRAMP AMP predictions (90%) were 
predicted as AMP by AMPDiscover and 199 out of 200 NOAMPs 
(99.5%) were predicted as NOAMP by AMPDiscover. These 
results demonstrate that the AGRAMP predictions are generally 
in reasonable to good range of agreement with other AMP 
prediction methods, with the level of discrepancies usual for these 
diverse approaches.

14 https://biocom-ampdiscover.cicese.mx/

TABLE 2 A summary of machine learning Random Forest using 2-gram with reduced alphabets.

2-gram 
alphabet

Datasets Train Test CR1 CR2 CR3 CR4 CR5 MCC TP FP FN TN

CHARGE

NOAMP1 0.96 0.82 0.78 0.76 0.79 0.78 0.78 0.64 111 28 22 117

NOAMP2 0.96 0.78 0.75 0.81 0.78 0.78 0.81 0.57 110 29 31 108

NOAMP3 0.96 0.80 0.77 0.76 0.77 0.77 0.79 0.59 111 28 29 110

EMEM 0.93 0.83 0.83 0.83 0.83 0.82 0.82 0.67 107 14 32 125

9-letter

NOAMP1 1 0.89 0.88 0.91 0.88 0.90 0.88 0.78 122 17 13 126

NOAMP2 1 0.85 0.87 0.87 0.89 0.90 0.88 0.69 114 25 18 121

NOAMP3 1 0.88 0.88 0.88 0.88 0.86 0.88 0.76 120 19 14 125

EMEM 1 0.91 0.87 0.88 0.88 0.88 0.89 0.82 123 9 16 130

CR, Cross Validation; MCC, Mathew’s Correlation Coefficient; TP, True Positive; FP, False Positive; FN, False Negative; TN, True Negative.
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Growth inhibitory effect of predicted AMPs 
on Spiroplasma citri

Minimum inhibitory concentration (MIC) testing is an 
essential in vitro assay used to determine the effectiveness of 
antimicrobial agents against specific microorganisms. In the 
present study, MIC assays were performed to evaluate the 
inhibitory properties of a small subset (Table 5) of predicted AMPs 
(10) against S. citri growth. These selected AMPs include those 
predicted from the intergenic regions (Set1, Figure  2) and the 
whole genome of citrus (Set2, Figure  3). Previous studies had 
established a correlation between spiroplasma culture acidity and 
OD560 values using phenol red as an indicator dye (Tully et al., 
1977; Wei et al., 2022). The color change of the phenol red from 
pink to yellow indicates that the growth of S. citri was not inhibited. 
The negative controls (S. citri with medium and phenol red alone, 
without AMP) showed an OD560 range of 0.087–0.089 (yellow, 
Figures  2, 3; Supplementary Tables S2, S3). Conversely, in the 
presence of an active AMP or tetracycline (positive control), the 
growth of S. citri cells is inhibited, resulting in minimal or no 
change in culture acidity and the phenol red dye remaining red. 
For example, tetracycline, as the positive control, the inhibitory 
properties were observed with OD560 values ranging from 0.240 
to 0.279 (Figures 2, 3; Supplementary Tables S2, S3).

Compared with positive and negative controls, peptides I3435, 
I3440, I3441, I970, I4455, I2572, G15, G33, G19, and G389 

significantly inhibited the growth of S. citri cells (Figures  2, 3). 
The peptides G33, I3435, I3440, I3441, and I4455 peptides 
showed particularly strong inhibition of S. citri growth 
(Supplementary Tables S2, S3). The MIC for all these peptides ranged 
from 12.5 μg/mL to 50 μg/mL at 48 h. The concentrations are given in 
μg/mL instead of μM because tetracycline, used as the reference 
control, is traditionally cited in μg/mL. Out of 20 synthesized 
predicted AMPs, only 10 exhibited strong inhibitory activity against 
S. citri. The remaining peptides either demonstrated resistance or 
weak inhibition against S. citri growth (data not shown). It is worth 
noting that the other 10 peptides that did not exhibit strong resistance 
to S. citri may still possess inhibitory activity against other bacteria.

Machine learning—what features are 
important in the random forest algorithm 
models?

Several key features were identified as important in predicting 
AMPs by the Random Forest Algorithm (Table 6). These important 
features include hydrophobic residues (L, highlighted in yellow), in 
3-gram 9-letter, and positively charged features in both the 3-gram 
charge (B, highlighted in red). It is interesting to note that the 9-letter 
alphabet used in this study, with mappings such as ED ≥ E, QTSNH 
≥ Q, LMIVAF ≥ L, G ≥ G, W ≥ W, C ≥ C, RK ≥ R, Y ≥ Y, and P ≥ P, 
resulted in overrepresentation of hydrophobic residues (L) and 
certain amino acids with large groupings like glutamine (Q) and 
glycine (G). These findings align with the understanding that 
hydrophobic amino acids play a crucial role in the antimicrobial 
activity of AMPs, as discussed in the introduction. In the 3-gram 
9-letter model, which comprised 729 features, the top 22 features 
were identified and analyzed. It is not surprising that hydrophobic 
residues (L) and glutamine (Q) were overrepresented, considering 
their abundance and importance in AMPs. Interestingly, the analysis 
did not reveal a high occurrence of clustered charged residues like 
RRR or RRQ in the 3-gram 9-letter alphabet. This suggests that other 
combinations of features, particularly hydrophobic and charged 
residues, are more influential in the prediction of AMPs. The 
antimicrobial APD database exhibits high frequencies of amino acids 
L (8.26), G (11.51), and K (9.51), which are commonly associated 

TABLE 3 Prediction of antimicrobial peptides (AMPs) by AGRAMP from 
citrus genome.

AMP 
probability

Intergenic region Whole genome

AGRAMP % of 
sample

AGRAMP % of 
Sample

0.9–1 41 0.41 2,994 0.44

0.8–0.89 196 1.96 13,946 2.03

0.7–0.79 467 4.67 33,142 4.83

0.6–0.69 832 8.32 57,836 8.43

0.5–0.59 1,197 11.97 85,087 12.41

<0.5 7,267 72.67 492,919 71.86

Total 10,000 100% 685,924 100%

10,000 peptides from the intergenic region of citrus genome and 685,924 micro peptides 
from the whole genome of citrus were used as input.

TABLE 4 Comparison of antimicrobial peptide (AMP) predictions by 
different machine learning models.

AMP* Non-AMP 
(NOAMP)**

AGRAMP 10,000 10,000

AMP Scanner v.2.0 6,840 9,991

CAMP-RF 2,900 9,963

MACREL 4,541 9,975

*Machine learning models were employed to predict the top 10,000 AMPs predicted from 
AGRAMP. **Machine learning models were employed to assess the top 10,000 non-AMPs 
predicted by AGRAMP.

TABLE 5 Putative antimicrobial peptides (AMPs) predicted from the citrus 
genome and selected for synthesis.

AMP ID Peptide Length 
(aa)

AMPs from 

the 

intergenic 

regions of 

citrus 

genome

I2572 MLKCHLVGFVRRLIN 15

I3441 MLLQRLIFKPIRIIWHT 17

I4455 MMKKVIKLQKMIALGKIVKRFSLY 24

I970 MKSIKIKIKRLNSKNKKILILIFI 24

I3435 MFLLRRILKKLRTIFIQ 17

I3440 MILSVLKIFGVFRKRSRGN 19

AMPs from 

the whole 

citrus 

genome

G389 MGFLLKTLSHIRRVIRLII 22

G15 MLNLKLIRLLRHRFAI 16

G33 MIVRIAIRRFLKGKRQIVKI 16

G19 MVSHLFCFKFIRNLRFKKIR 17
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FIGURE 3

Minimum inhibitory concentration (MIC) assays of peptides derived from the whole citrus genome for Spiroplasma citri growth inhibition. The peptide 
concentration was 50, 25, and 6.25  μg/mL. After 48-h incubation, MICs were tested with 3 replicates (Series1, Series2, Series3). TC, Tetracycline; S. citri, 
Spiroplasma citri only; media, LD8A3 media only.

with alpha helices (Wang et al., 2022). Therefore, it might be expected 
that these residues would appear as top hits predicted by N-grams.

Aggregation propensity and effectiveness 
of predicted AMPs

Furthermore, the relationship between aggregation propensity 
and antimicrobial peptide (AMP) activity was investigated. The 

Normalized a4v Sequence Sum for 100 residues (Na4vSS) was 
employed as a measure of in vivo aggregation propensity. Two 
categories of AMPs including positive (effective AMPs) and negative 
(ineffective AMPs) were used. The positive AMPs include AMPs 
reported as effective against Spiroplasmas in the literature (Béven 
et al., 1997, 2003; Wei et al., 2022; A, Table 7), and AMPs that were 
effective in the laboratory assay conducted in the current study (B, 
Table 7). The negative (Ineffective) AMPs encompass (i) Predicted 
AMPs from the N-gram program (AGRAMP) and other published 
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FIGURE 2

Minimum inhibitory concentration (MIC) assays of peptides predicted from the intergenic region of citrus genome for Spiroplasma citri Growth 
Inhibition. After 48-h incubation, MICs were tested with 3 replicates (Series1, Series2, Series3). The peptide concentration was at 50, 25, and 12.5  μg/
mL. TC, Tetracycline; S. citri, S. citri only; media, LD8A3 media only.
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AMP prediction programs (AMPScanner or MACREL or CAMP-RF) 
that were found to be ineffective in laboratory assays (C, Table 7); (ii) 
Ineffective peptides from previous studies (D, Table 7); and (iii) a 
peptide predicted to be  ineffective by the N-gram program in the 
current study (E, Table 7). The present study compared positive data 
(effective AMPs) with negative data which often goes unpublished 
(Wang et al., 2022). Notably, a strong pattern formed, indicating that 
the predicted AMPs that were effective in the laboratory assay 
exhibited a positive aggregation propensity score.

Additionally, this study evaluated the aggregation propensity of 
the entire ADP database and compared it to negative datasets from 
this study and two negative datasets from published literature (Veltri 
et al., 2018; Sidorczuk et al., 2022). Although the pattern was not as 
pronounced and showed a higher standard deviation (Figure  4), 
AMPs tended to have a positive aggregation score, while negative data 
tended to have a negative aggregation score. These findings suggest 
that there may be a correlation between aggregation propensity and 
AMP effectiveness. The comparison of aggregation propensity 
between positive and negative datasets supports this observation, 
although with some variability. It highlights the potential significance 
of considering aggregation propensity in the design and assessment of 
AMPs for antimicrobial applications.

AGRAMP—web interface

A web-based program called AGRAMP (see text footnote 1) was 
developed using PHP, leveraging the models created in this study. The 
AGRAMP was designed to analyze short amino acid sequence in FASTA 
format. Users can input their sequences into a text box and select the 
desired parameters from pull-down menus, including options for 2-gram 
and 3-gram models, as well as 9-letter and 3-letter alphabets employed 
in this study. The program generates an output table that presents the 
submitted peptide with a confidence prediction of the probability of that 
peptide as a possible AMP. This online AGRAMP tool will allow users to 
assess their unknown peptide being AMPs using N-gram analysis. The 
training and validation sets used in this paper are available on the server.

TABLE 6 Features of high importance in the Random Forest models: 
3-gram 9-letter, and 3-gram charge.

No. 3-gram 
9-letter

Importance 3-gram 
charge

Importance

1 LLG 2.62E-02 ZJJ 0.0996

2 ELQ 2.36E-02 JZJ 0.0877

3 LGR 2.34E-02 JJZ 0.0872

4 GLL 2.28E-02 JJJ 0.0832

5 LLL 2.14E-02 JJB 0.0824

6 EEL 1.74E-02 BJJ 0.081

7 QLQ 1.68E-02 JBJ 0.0705

8 QLE 1.62E-02 ZZJ 0.0562

9 QEL 1.60E-02 JBB 0.0385

10 LLE 1.47E-02 ZJB 0.0367

L represents hydrophobic residues; R represents positively charged residues in 3-gram 
9-letter; B represents the positively charged features in 3-gramCharge. Please see the 
Materials and methods for the alphabet.

TABLE 7 Aggregation values of AMPs, predicted AMPs, and predicted 
NOAMPs.

Peptide name Normalized a4v 
sequence sum 

for 100 residues 
(Na4vSS):

MIC Lab 
assay

LK12_3.6 

(Bevin2002) 54.3 25 μm

A

LK15_3.6 

(Bevin2002) 52.5 6.25 μm

A

LK15_W14_3.6 

(Bevin2002) 50.7 6.25 μm

A

LK_Scrambled 

(Bevin2002) 50.7 100 μm

A

LK9_3.6 (Bevin2002) 46.9 100 μm A

I3441 44.9 25 ug/mL B

I3435 43.5 50 ug/mL B

G389 42 50 μg/mL B

LK16_W15_3 

(Bevin2002) 41.7 6.25 μm

A

Caerin_11_

APD0240 (Wei2021) 37.6

50 × 2−7 μg/

mL

A

I4455 30.5 12.5 ug/mL B

I4992 30.2 Resistant C

I2572 29.6 25 ug/mL B

I970 28.8 25 ug/mL B

G19 26.8 50 ug/mL B

G15 23.6 50 ug/mL B

G33 22.7 25 ug/mL B

I3440 21.9 25 ug/mL B

Mellitin (Bevin1997) 16 0.39-.78 μm A

I3775 13.6 Resistant C

P3 (Bevin1997) 5.7 100 μm A

Novispirin_T7_

APD2710 (Wei2021) 4.8

50 × 2−7 μg/

mL

A

P1 (Bevin1997) 1.8 100 μm A

P2 (Bevin1997) −1.3 100 μm A

Tricholongin_

APD2866 (Wei2021) −1.9 Resistant

D

JM133 (Bevin1997) −2.9 Resistant D

G10159 −4 Resistant C

G196 −4.8 Resistant C

JM123 (Bevin1997) −5 Resistant D

I5196 −5 Resistant C

G221 −13.3 Resistant C

G66 −20.4 Resistant C

I2769 −22.7 Resistant C

G9994 −23.8 Resistant C

G54 −31.2 Resistant E
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FIGURE 4

Aggregation summary using AGGRESCAN (Conchillo-Solé et al., 2007; Torrent et al., 2011; de Groot et al., 2012). Average aggregation values per 100 
residues using the AGGRESCAN program on the entire APD database, the training set from this study, and the negative control sets as a comparison. 
NAMP (non-AMP)—peptides that are not predicted as AMPs.

Discussion

Humanity’s food supply faces continuous challenges from 
bacterial pathogens that not only threaten crop yields but also 
diminish the quality of agricultural commodities. Implementing 
control measures against these pathogens often leads to significant 
increases in production costs. While antibiotics can effectively 
suppress plant pathogens, their use on a large scale in agricultural 
production is impractical due to their prohibitive cost and the risk of 
microbial resistance in the long run. AMPs have garnered significant 
attention as promising alternatives to traditional antibiotics for 
combatting plant pathogenic bacteria in agriculture and the 
environment. Their unique properties, such as broad-spectrum 
activity, rapid killing kinetics, and low propensity for developing 
resistance, make them attractive candidates for developing novel 
strategies to manage plant diseases. However, the process of identifying 
potent AMPs through traditional laboratory assays is often time-
consuming, labor-intensive, and costly. To address these challenges, 
the present study proposes a bioinformatics approach that leverages 
machine learning models based on the N-gram method to predict and 
select AMPs with antimicrobial activity against plant pathogens.

In this study, N-gram models, specifically 2-gram and 3-gram, 
were employed to capture fundamental sequence patterns inherent in 
antimicrobial peptide. Furthermore, the impact of reduced alphabets, 
consisting of either a 9-letter or a 3-letter representation was also 
examined. These choices are made to optimize the performance of the 
machine learning models in accurately predicting AMPs. The 
performance of the proposed model is rigorously evaluated through 
cross-validation and the Mathew’s correlation coefficient (MCC), 
ensuring its reliability and predictive power. The results demonstrate 
the effectiveness of the machine learning model in accurately 
predicting AMPs and effectively distinguishing between AMPs and 
non-AMPs (NOAMPs; Tables 1, 2). The 3-gram 9-letter model slightly 
outperformed other models, achieving a high cross-validation score 

0.91, indicating accurate classification of AMPs. The corresponding 
MCC value 0.79 further reinforces the model’s robustness in accurately 
discriminating between AMPs and NOAMPs. Additionally, the 
3-gram 3-letter, 2-gram 9-letter, and 2-gram 3-letter models exhibit 
satisfactory performance in AMP classification (Tables 1, 2).

Building upon the success of the machine learning models, they 
were employed to predict putative AMPs encoded by intergenic 
regions and small ORFs within the citrus genome. By exploring these 
uncharacterized regions, the study taps into the vast potential of the 
citrus genome to provide novel AMP candidates. These predicted 
AMPs are then subjected to experimental validation against S. citri, 
the causative agent of citrus stubborn disease. The experimental 
results confirm the antimicrobial activity of the selected AMPs against 
the target bacterium, further bolstering the predictive capability of the 
machine learning models (Figures 2, 3).

The properties of the peptides that showed inhibition against S. citri 
were explored through pepwheels, charge density graphs and examination 
of the secondary structure. The pepwheels of the peptides I3435 and G33 
show that charged and hydrophobic residues have an alternating pattern 
compared to I4992 and G221 which show less of a discernable pattern of 
shapes (Figure 5). Though the AMP pepwheels do not present a unified 
pattern, there are patterns that are more common in the positive set than 
the negative set such as the alternating charged and hydrophobic residues. 
Similarly, the charge density graphs of the AMPs that did work in our 
laboratory S. citri growth inhibition assay have a series of peaks and 
valleys (Figure 6). The pattern of peaks and valleys in the charge density 
graphs also appear to be very similar to the charge density graphs of 
AMPs that are effective against S. citri in the literature as shown by 
LK15W14.3.6 (Béven et al., 2003). Such results suggest that taking the 
position information and the charge information and generating features 
from the charge density plot and pepwheels would further aid in AMP 
prediction. Further, it is known that the secondary structure is important 
in AMP activity. AMPs successful in S. citri assay generally had secondary 
structures such as alpha helices (Table 8).
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Furthermore, the present study revealed an intriguing relationship 
between protein aggregation and AMPs (Figure 4; Table 7). Torrent 
et al. (2011) conducted an interesting analysis to calculate peptide 
aggregation in AMPs using AGGRESCAN software, which effectively 
predicted aggregation in bacteria. This algorithm utilizes an amino 
acid aggregation-propensity scale and is based on the assumption that 
short sequence stretches modulate protein aggregation, resulting in 
hotspots of aggregation (Conchillo-Solé et al., 2007; de Groot et al., 
2012). These facts indicated that AMPs might reduce their aggregation 
in a solution but promote aggregation in a more hydrophobic 
environment, such as the bacterial cell membrane (Torrent et  al., 
2011). However, it is puzzling why some peptides predicted to 
be effective in silico failed to demonstrate activity in vitro laboratory 
assays against live bacterial cells. While the lack of a secondary 
structure was initially considered as a potential explanation, this 
explanation did not hold true for all cases. An alternative hypothesis 
was proposed, suggesting that peptides with positive predictions for 
AMP activity might have failed in vitro due to a low aggregation 
propensity score. This could result in their inability to aggregate 

effectively and form the requisite pore structure responsible for 
depolarizing the cell membrane. In contrast, peptides demonstrating 
efficacy in laboratory assays exhibited higher aggregation scores. 
Additionally, for peptides with low aggregation scores that still 
exhibited activity, it was postulated that alternative mechanisms might 
be employed to inhibit cell growth, such as targeting cytoplasmic 
components, independent of extensive aggregation for functionality. 
Moreover, AMPs have the capacity to target multiple cellular 
components, including bacterial cell walls and ribosomes, further 
contributing to their antimicrobial activity (Wang et al., 2022).

Using Spiroplasma citri as an example, the studies conducted by 
Béven et al. (1997, 2003) revealed that three peptides (P1, P2, P3) 
inhibited S. citri at a MIC concentration of 100 μM. In contrast, the 
2003 study found that many of the LK peptides (LK12_3.6, LK15_3.6, 
LK15_W14_3.6, LK_Scrambled, LK9_3.6) had a MIC concentration 
of 6.25 μM. Intriguingly, the LK peptides had higher aggregation 
propensities (in the high 40s and 50s), while the peptides in the 1997 
study had slightly positive (5.7, 1.3) and negative (−1.3) aggregation 
scores when input into AGGRESCAN. The positive control, Melittin, 

FIGURE 5

Pepwheels of predicted antimicrobial peptides (AMPs) tested in minimum inhibitory concentration (MIC) assays. Top panel represents pepwheels of 
selected AMPs with high activity in MIC assay. Bottom panel represents pepwheels of selected AMPs with no activity in MIC assay. Blue squares 
represent non-polar amino acids. Red Diamonds represent polar amino acids and Black octagons represent charged amino acids.
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FIGURE 6

Charge density analysis of predicted antimicrobial peptides (AMPs) tested in minimum inhibitory concentration (MIC) assays. The top panel displays the 
charge density of AMPs with positive activity against Spiroplasma citri. The bottom panel demonstrates the charge density of AMPs with negative 
activity against S. citri. The top right panel shows the charge density of AMP affecting Spiroplasma citri documented in the previous literature. The 
secondary structure of each AMP is indicated at the bottom of the respective graph.

had a positive aggregation score of 16. Similarly, in a study by Wei 
et al. (2022), peptides that tended to work (Caerin_11_APD0240) 
exhibited positive aggregation, whereas those that did not 
(Tricholongin_APD2866) had zero or negative aggregation values. 
Although not statistically significant, these findings, combined with 
other studies, suggest a correlation between aggregation propensity 
and AMP effectiveness in laboratory assays. This observation warrants 
further investigation, as it could provide valuable insights into the 
mechanisms and targets of antimicrobial peptides.

In the field of machine learning, reported high accuracies often do 
not align with the outcomes of real-world empirical testing (Wang 
et  al., 2022). One reason for this discrepancy is that most AMP 
prediction programs are trained on general AMP data in their training 
sets, and their outputs typically classify peptides as either AMP or 
non-AMP without providing further details on the activity or 
effectiveness of the predicted AMPs. To enhance the accuracy of AMP 
prediction in vivo studies, the future of AMP prediction in machine 
learning must involve the integration of laboratory data into the 
algorithms. Protein aggregation, as discussed earlier, plays a significant 
role in AMP activity. A study investigating antibiotic design strategies 
in Staphylococcus aureus found that bacterial peptides aggregate when 

they enter and accumulate in the bacterial cytosol, and the study also 
explored the hemolytic effects of the peptides (Bednarska et al., 2016). 
Machine learning could be  effectively applied to similar studies 
exploring the mechanisms and aggregation of host-cell cytotoxicity 
and hemolysis. For instance, N-gram features of peptides implicated 
in pore formation could be  compared with those implicated in 
targeting cytoplasmic targets. Additionally, N-grams of peptides 
known to have hemolytic activity safe for mammalian cells could 
be contrasted with those that exhibit hemolytic activity harmful to 
mammalian cells. By incorporating such biological phenomena and 
their associated N-gram features into the model, machine learning can 
better predict AMP activities and functions.

One potential reason why existing AMP prediction programs do 
not incorporate these aspects is the lack of standardization in 
reporting laboratory results (Wang et al., 2022), along with the limited 
availability of large, standardized training sets. Moreover, many 
computational AMP studies often conclude with AMP/NOAMP 
predictions and statistical analyses, without delving into the 
underlying mechanisms or exploring beyond MIC values and bacterial 
inhibition. Thus, the next frontier in AMP prediction involves 
exploring how past laboratory experiments can be  effectively 
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harnessed in machine learning or designing large-scale future 
laboratory experiments to facilitate the machine learning process. To 
design an optimal peptide, integration with other existing programs 
may also be necessary. By incorporating more comprehensive and 
standardized laboratory data, machine learning can pave the way for 
more accurate AMP prediction and contribute significantly to the 
design and discovery of novel antimicrobial peptides with enhanced 
effectiveness and specificity.

To aid in widespread accessibility and usability, we developed a 
publicly available online resource named AGRAMP (Agricultural 
N-grams Antimicrobial Peptides). AGRAMP enables users to input 
peptide sequences and obtain predictions of putative AMPs. This 
resource serves as a valuable tool for researchers and practitioners in 
the field, offering a convenient and efficient means of identifying and 
selecting potential AMPs. By democratizing access to the 
bioinformatics approach and machine learning models, AGRAMP 
accelerates the process of screening and selecting effective AMP 
candidates, thus contributing to the advancement of plant disease 
management in agriculture and the environment.
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TABLE 8 Secondary structure prediction of predicted AMPs using JPred4 
tool.

Predicted AMPs using JPred4

I2572

MLKCHLVGFVRRLIN

|||||||||||||||

---------HHHHEE

I3440

MILSVLKIFGVFRKRSRGN

|||||||||||||||||||

HHHHHHHHHHHHH------

I3441

MLLQRLIFKPIRIIWHT

|||||||||||||||||

HHHHHH-----EEEE-H

I3435

MFLLRRILKKLRTIFIQ

|||||||||||||||||

HHHHHHHHHHHHHHHHH

I4455

MMKKVIKLQKMIALGKIVKRFSLY

||||||||||||||||||||||||

E---------EEEE--EE---EEE

G15

MLNLKLIRLLRHRFAI

||||||||||||||||

HHHHHHHHH—HHHHHH

G33

MIVRIAIRRFLKGKRQIVKI

||||||||||||||||||||

HHHHHHHHHHH--HHHHHHH

G389

MGFLLKTLSHIRRVIRLII

|||||||||||||||||||

HHHHH---------HEEHH

G19

MVSHLFCFKFIRNLRFKKIR

||||||||||||||||||||

---EEEH-------------

Peptides found in literature

P1 (Béven et al., 1997) MGLGLHLLVLAAALQGAWSQPKKKRKV

|||||||||||||||||||||||||||

------HHHHHHHHH------------

P2 (Béven et al., 1997) MGLGLHLLLAAALQGAKKKRKV

||||||||||||||||||||||

----------------------

P3 (Béven et al., 1997) MGLGLHLLVLAAALQGAKKKRKV

|||||||||||||||||||||||

-----HHHHHH------------

LK15_3.6 (Béven et al., 2003) KLLKLLLKLLLKLLK

|||||||||||||||

HHHHHH--HHHHHHH

LK15W14_3.6 (Béven et al., 

2003)

KLLKLLLKLLLKLWK

|||||||||||||||

HH----HHHHHHHHH
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