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Multi-omics reveals the 
mechanism of rumen 
microbiome and its metabolome 
together with host metabolome 
participating in the regulation of 
milk production traits in dairy 
buffaloes
Bingxing Jiang 1, Chaobin Qin 1, Yixue Xu 1, Xinhui Song 1, 
Yiheng Fu 1, Ruijia Li 1, Qingyou Liu 2* and Deshun Shi 1*
1 School of Animal Science and Technology, Guangxi University, Nanning, China, 2 School of Life 
Science and Engineering, Foshan University, Foshan, China

Recently, it has been discovered that certain dairy buffaloes can produce higher 
milk yield and milk fat yield under the same feeding management conditions, 
which is a potential new trait. It is unknown to what extent, the rumen 
microbiome and its metabolites, as well as the host metabolism, contribute to 
milk yield and milk fat yield. Therefore, we will analyze the rumen microbiome 
and host-level potential regulatory mechanisms on milk yield and milk fat yield 
through rumen metagenomics, rumen metabolomics, and serum metabolomics 
experiments. Microbial metagenomics analysis revealed a significantly higher 
abundance of several species in the rumen of high-yield dairy buffaloes, 
which mainly belonged to genera, such as Prevotella, Butyrivibrio, Barnesiella, 
Lachnospiraceae, Ruminococcus, and Bacteroides. These species contribute to 
the degradation of diets and improve functions related to fatty acid biosynthesis 
and lipid metabolism. Furthermore, the rumen of high-yield dairy buffaloes 
exhibited a lower abundance of methanogenic bacteria and functions, which 
may produce less methane. Rumen metabolome analysis showed that high-
yield dairy buffaloes had significantly higher concentrations of metabolites, 
including lipids, carbohydrates, and organic acids, as well as volatile fatty acids 
(VFAs), such as acetic acid and butyric acid. Meanwhile, several Prevotella, 
Butyrivibrio, Barnesiella, and Bacteroides species were significantly positively 
correlated with these metabolites. Serum metabolome analysis showed 
that high-yield dairy buffaloes had significantly higher concentrations of 
metabolites, mainly lipids and organic acids. Meanwhile, several Prevotella, 
Bacteroides, Barnesiella, Ruminococcus, and Butyrivibrio species were 
significantly positively correlated with these metabolites. The combined analysis 
showed that several species were present, including Prevotella.sp.CAG1031, 
Prevotella.sp.HUN102, Prevotella.sp.KHD1, Prevotella.phocaeensis, 
Butyrivibrio.sp.AE3009, Barnesiella.sp.An22, Bacteroides.sp.CAG927, and 
Bacteroidales.bacterium.52–46, which may play a crucial role in rumen and 
host lipid metabolism, contributing to milk yield and milk fat yield. The “omics-
explainability” analysis revealed that the rumen microbial composition, functions, 
metabolites, and serum metabolites contributed 34.04, 47.13, 39.09, and 50.14%, 
respectively, to milk yield and milk fat yield. These findings demonstrate how the 
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rumen microbiota and host jointly affect milk production traits in dairy buffaloes. 
This information is essential for developing targeted feeding management 
strategies to improve the quality and yield of buffalo milk.

KEYWORDS

dairy buffaloes, milk yield, milk fat yield, rumen metagenome, rumen metabolome, 
serum metabolome

Introduction

As the world’s population continues to grow, meeting the demand 
for animal products has become a primary concern for national food 
security (Kearney, 2010). In recent years, the nutritional value of 
buffalo milk has gained attention; its key nutrients are higher than 
those of cow and human milk, making buffalo milk an excellent 
choice for those seeking high-quality milk (Liang et  al., 2020). 
Meanwhile, good quality fat provides the body with energy, including 
some essential fatty acids that the body cannot synthesize, and is 
essential for maintaining health and bodily functions, making the 
quality of fat an important measure of the quality of dairy products 
(Huang et al., 2019). However, the low milk yield of buffaloes is the 
main problem, limiting the development of the buffalo milk industry. 
There are many factors that affect milk quality and yield in dairy 
buffaloes, including genetic factors (Gernand and Konig, 2014), 
rumen environment (Wang et  al., 2021), feeding management 
(Thompson et al., 2022), and feed digestion (Leduc et al., 2021). It has 
been widely reported that milk yield is usually negatively correlated 
with milk fat yield (Lai and Liu, 2019), but recently we have found that 
under the same feeding management conditions, some dairy buffaloes 
can exhibit both relatively high milk yield and milk fat yield compared 
with others, which would be a potential new trait for buffalo dairy 
producers to select (Xue et al., 2019).

The rumen is a digestive chamber found in ruminants that houses 
a diverse community of microorganisms, including bacteria, archaea, 
eukaryotes, protozoa, and viruses (Zhao et al., 2023). First, rumen 
microbes are influenced by various host factors, including diet, age, 
breed, and genetics. Meanwhile, ruminal microbes have a symbiotic 
relationship with their hosts and are able to obtain nutrients from 
crude fiber, which is indigestible to humans. They can break down 
cellulose and pentosan in feed into usable organic acids, mainly acetic, 
propionic, and butyric acids (often referred to as volatile fatty acids or 
VFAs). These VFAs are absorbed in large quantities through the 
rumen wall and can meet 60–80% of the energy needs of ruminants 
(Huws et al., 2018). Studies have shown that this affects feed efficiency 
(Auffret et al., 2020) and methane emissions (Gonzalez-Recio et al., 
2023) from cattle. Second, the digestion of rumen microorganisms is 
crucial in ruminant nutrition and closely linked to the breakdown and 
synthesis of nutrients, such as sugars, proteins, and lipids. Rumen 
microorganisms are also able to synthesize nutrients such as essential 
amino acids, essential fatty acids, and B vitamins for use by the host, 
all of which determine the quality of animal products (Weimer, 2015). 
Thus, we hypothesize that the rumen microbiome can directly or 
indirectly affect milk yield and milk fat yield in dairy buffaloes.

The biosynthesis of milk in dairy buffaloes is a complicated 
biological process that involves not only the rumen but also host 

metabolic processes. Microorganisms break down nitrogenous 
material in the diet into peptides and amino acids, and these 
compounds are then utilized for milk protein synthesis (Agregan 
et al., 2021). Additionally, starch and fiber in the diet are broken down 
by microorganisms into glucose, which is used for the synthesis of 
lactose (Lin et al., 2016). The fatty acids are used to synthesize milk fat 
that is present in four main sources: 1. Rumen microorganisms break 
down lipids from the diet, including triglycerides, glycolipids, and 
phospholipids. This process mainly produces long-chain fatty acids 
that are absorbed during the circulation and used directly by the 
mammary gland of the host. 2. The rumen microorganisms break 
down and ferment crude fiber in the diet into volatile fatty acids, 
primarily acetic acid and butyric acid. These acids then enter the 
mammary gland through the bloodstream, providing energy for the 
synthesis of fatty acids (Liu et  al., 2021). 3. There is also a small 
proportion of fatty acids in the blood derived from fat mobilization by 
the host organism, and the fatty acids obtained from the breakdown 
of body fat are also absorbed and utilized by the host mammary gland 
(Loften et  al., 2014). 4. Ruminal microorganisms can synthesize 
microbial lipids, including specific branched chain and 
polyunsaturated fatty acids, from volatile fatty acids. These fatty acids 
are digested in the small intestine after the microorganisms die and 
are then absorbed into the host’s circulation for direct use (Shah et al., 
2022). Moreover, for the final formation of the entire dairy product, 
the rumen microorganisms and host play a vital role. Recent studies 
have shown that milk production traits in dairy cows can be influenced 
by rumen microbes and their metabolites, as well as host metabolism, 
and the metabolite group has been found to have a greater degree of 
influence than the microbial group (Xue et al., 2020). However, this 
relationship has not yet been studied in dairy buffaloes. Therefore, it 
is speculated that rumen microbes may initially affect the host’s 
metabolism by influencing diet digestion and the metabolic 
environment within the rumen. Subsequently, this may further affect 
the milk yield and milk fat yield. In our study, we  divided dairy 
buffaloes into two groups, the high-yield (dairy buffaloes with high 
milk yield and milk fat yield) group of dairy buffaloes and the 
low-yield (dairy buffaloes with low milk yield and milk fat yield) 
group of dairy buffaloes, which were studied mainly for rumen 
metagenomics, rumen metabolomics, and serum metabolomics, 
testing to address the following questions: Do the rumen microbiome 
(composition and functions), microbial metabolites, and the host 
metabolites contribute to milk yield and milk fat yield? If so, do they 
affect this trait equally? The rumen microbiome and metabolome, as 
well as the host metabolome, were compared between dairy buffaloes 
with high-yield and low-yield, and the contributions of the above 
three omics layers to milk yield and milk fat yield were calculated. The 
research above will not only serve as a reference for early selection of 
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high-quality dairy buffaloes but will also aid in improving the rumen 
environment through genetic selection and feeding management that 
will result in the production of high-quality dairy buffalo milk.

Results

Characterization of phenotypes

In this experiment, from a group of 226 Murrah dairy buffaloes, 
12 dairy buffaloes with the highest yield (dairy buffaloes with high 
milk yield and milk fat yield; HH group) and 12 dairy buffaloes with 
the lowest yield (dairy buffaloes with low milk yield and milk fat yield; 
LL group) were selected for analyses of rumen metagenome, rumen 
metabolome, and serum metabolome. In the phenotypic data, milk 
yield (p < 0.01), milk fat percentage (p < 0.01), and milk fat yield 
(p < 0.01) were significantly different between the two groups 
(Supplementary Table S1).

The rumen metagenome

Metagenome sequencing generated 257137.91 raw data 
(10714.08 ± 495.24) per sample. After quality control and removal of 
host genes, 255829.8 data were obtained, with (10673.61 ± 500.73) data 
per sample. After de novo assembly, the total length of Scaftigs was 
13,459,416,214 bp, and the total length of N50 was 22,149 bp, with 
(922.86 ± 39.63) bp per sample. The total length of N90 was 13,247 bp, 
with (551.96 ± 5.31) bp per sample (Supplementary Table S2). The 
overall results of the rumen metagenome showed a composition of 
(82.3 ± 1.7%) bacteria, (1.3 ± 0.4%) eukaryotes, (0.4 ± 0.1%) archaea, 
(0.1 ± 0.02%) viruses, (15.6 ± 1.3%) unknown material, and 
(0.2 ± 0.04%) unclassified material (Supplementary Figure S1). Upon 
comparing the rumen microbial domains of the two groups, it was 
found that the bacteria and archaea significantly differed (p < 0.05). 
The relative levels of bacteria were higher in the rumen of HH dairy 
buffaloes, while the relative levels of archaea were higher in the rumen 
of LL dairy buffaloes (Figure  1A). The PERMANOVA analysis 
(permutational multivariate analysis of variance) indicated significant 
differences between bacteria and archaea (p < 0.01), while no 
significant differences were observed between eukaryota and viruses 
(p > 0.05; Supplementary Table S3). Principal coordinate analysis 
(PCoA) showed separation between the two groups based on bacterial 
(Figure 1B) and archaeal (Figure 1C) species, while no separation was 
found based on eukaryotic (Figure 1D) or viral (Figure 1E) species. 
Therefore, the downstream comparative analysis of the rumen 
microbiota will concentrate solely on bacteria and archaea.

Compositional profiles of the rumen 
microbiome and taxonomic differences 
between the HH and LL dairy buffaloes

According to metagenome data, the main dominant bacterial 
phyla between the two groups included Bacteroidetes (45.2 ± 3.0%), 
Firmicutes (37 ± 2.8%), and Proteobacteria (0.9 ± 0.1%). The main 
dominant bacterial genera included Prevotella (24.3 ± 2.3%), 
Bacteroides (4.6 ± 0.3%), and Clostridium (3.1 ± 0.4%). The main 

dominant bacterial species included Clostridiales bacterium 
(3.5 ± 0.3%), Prevotella ruminicola (2.3 ± 0.3%), Prevotella.sp.ne3005 
(2.0 ± 0.2%), Bacteroidales bacterium WCE2004 (1.8 ± 0.1%), 
Prevotella.sp.tc2-28 (1.5 ± 0.2%), and Prevotella.sp.tf2-5 (1.2 ± 0.1%). 
Through comparative analysis of differential abundance, it was found 
that at the phylum level, Bacteroidetes and Proteobacteria were more 
abundant in the rumen of HH dairy buffaloes, while Firmicutes were 
more abundant in the rumen of LL dairy buffaloes. At the genus level, 
Prevotella was more abundant in the rumen of HH dairy buffaloes, 
while Clostridium and Bacteroides were more abundant in the rumen 
of LL dairy buffaloes (Supplementary Figure S2). At the species level, 
32 microorganisms were found to be more abundant in the rumen of 
HH dairy buffaloes, including 10 species of Prevotella, 5 species of 
Bacteroides, 4 species of Barnesiella, 3 species of Lachnospiraceae, 3 
species of Porphyromonas, 2 species of Ruminococcus, 2 species of 
Butyrivibrio, 1 species of Chryseolinea, 1 species of Stomatobaculum, 
and 1 species of uncultured bacterium (Figure 2A). Additionally, 21 
microorganisms were found to be more abundant in the rumen of LL 
dairy buffaloes (LDA > 2, p < 0.05; Figure 2B).

The results for archaea showed that at the phylum level, 
Euryarchaeota (96.3 ± 0.7%) was the most abundant archaeal phylum, 
which was significantly higher in the rumen of LL dairy buffaloes. At 
the genus level, Methanobrevibacter (51 ± 10.8%) was the most 
abundant archaeal genus, which was significantly higher in the rumen 
of LL dairy buffaloes, while most of the remaining differential genera 
were higher in the rumen of HH dairy buffaloes. At the species level, 
Methanogenic archaeon mixed culture ISO4-G1 (19.6 ± 6.1%) and 
Methanobrevibacter millerae (14 ± 5.7%) were the most abundant 
archaea (Supplementary Figure S3). When comparing the differential 
archaeal species between the two groups, it was found that 7 archaeal 
species were significantly more abundant in the rumen of HH dairy 
buffaloes (Figure 3A), while 6 archaeal species were significantly more 
abundant in the rumen of LL dairy buffaloes (LDA > 2, p < 0.05; 
Figure 3B).

Functional profiles of the rumen 
microbiome and differential functions 
between the HH and LL dairy buffaloes

In this experiment, the functions of the rumen microbiome were 
determined by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) profiles and genes encoding CAZymes 
(Supplementary Figure S4). The KEGG functional profile identified 
387 metabolic third-level pathways. Of these, 228 are part of the 
rumen microbial metabolic pathways (Supplementary Table S4). 
These pathways belonged to four first-level categories, including 
“Metabolism” (57.3 ± 0.6%), “Cellular processes” (9.5 ± 0.2%), 
“Environmental information processing” (11.1 ± 0.3%), and “Genetic 
information processing” (22 ± 0.3%). At the second-level categories, 
23 s-level pathways of rumen microbial metabolism were identified, 
of which “Carbohydrate metabolism” (15.6 ± 0.1%), “Amino acid 
metabolism” (10.6 ± 0.1%), “Nucleotide metabolism” (8.3 ± 0.1%), 
“Energy metabolism” (7.0 ± 0.1%), “Translation” (6.7 ± 0.2%), and 
“Cofactor and vitamin metabolism” (6.5 ± 0.1%) were the highest 
relative content (Supplementary Figure S5). When comparing the 
identified KEGG functions, there were 10 third-level pathways and 9 
functional modules that were significantly enriched in the rumen 
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microbiome of HH dairy buffaloes (Figure 4A), while 8 third-level 
pathways and 8 functional modules were significantly enriched in the 
rumen microbiome of LL dairy buffaloes (LDA > 2, p < 0.05; 
Supplementary Figure S6). Regarding carbohydrate, vitamin, lipid, 
and energy metabolism, 7 third-level pathways and 7 functional 

modules were enriched in the rumen microbiome of HH dairy 
buffaloes. The 7 third-level pathways included “fatty acid biosynthesis” 
(ko00061), “butyric acid metabolism” (ko00650), “glycerophospholipid 
metabolism” (ko00564), “fructose and mannose metabolism” 
(ko00051), “linoleic acid metabolism” (ko00591), “alpha-linolenic acid 

FIGURE 1

Rumen microbial compositional profiles of HH and LL dairy buffaloes. (A) Comparison of microbial domains between HH and LL dairy buffaloes. 
(B) Bacterial compositional profiles of HH and LL rumen samples based on species visualized using principal coordinate analysis (PCoA). (C) Archaeal 
compositional profiles of HH and LL rumen samples based on species visualized using PCoA. (D) Eukaryotic compositional profiles of HH and LL 
rumen samples based on species visualized using PCoA. (E) Viral compositional profiles of HH and LL rumen samples based on species visualized using 
PCoA. *p  <  0.05, **p  <  0.01.

FIGURE 2

Differential rumen bacterial species between HH and LL dairy buffaloes. (A) Significantly different bacterial species in the rumen of HH dairy buffaloes. 
(B) Significantly different bacterial species in the rumen of LL dairy buffaloes. LDA  >  2, p  <  0.05.
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metabolism” (ko00592), and “biotin metabolism” (ko00780). The 7 
functional modules included “fatty acid biosynthesis, initiation” 
(M00082), “fatty acid biosynthesis, elongation” (M00083), “ketone 
body biosynthesis” (M00088), “phosphatidylethanolamine (PE) 
biosynthesis” (M00093), “phosphatidylcholine biosynthesis, PE 
= > PC” (M00091), “biotin biosynthesis” (M00123), and “pimeloyl 
ACP biosynthesis, BioC-BioH pathway” (M00572); 4 third-level 
pathways and 6 functional modules were enriched in the rumen 
microbiome of LL dairy buffaloes. The four third-level pathways 
included “steroid hormone biosynthesis” (ko00140), “fatty acid 
degradation” (ko00071), “methane metabolism” (ko00680), and 
“retinol metabolism” (ko00830). The six functional modules included 
“beta oxidation” (M00087), “acetyl coenzyme A pathway” (M00422), 
“xylulose monophosphate pathway” (M00344), “serine pathway” 
(M00346), and “methanogenesis” (M00357, M00567) (Figure 4B).

For the CAZymes functional profile, 306 genes encoding 
CAZymes were identified (Supplementary Table S5), including 7 
auxiliary activities (AAs), 70 carbohydrate-binding modules (CBMs), 
14 carbohydrate esterases (CEs), 133 glycoside hydrolases (GHs), 62 
glycosyltransferases (GTs), and 20 polysaccharide lyases (PLs). Of 
these, the gene encoding GH2 (7.1 ± 0.1%) was the most dominant, 
followed by the gene encoding GH3 (6.3 ± 0.1%), the gene encoding 
GH43 (6.2 ± 0.2%), the gene encoding GT2 (4.3 ± 0.2%), and the gene 
encoding GH13 (3.1 ± 0.1%). By comparing the data between the two 
groups, in the second-level categories, 1 AAs, 6 CBMs, 3 CEs, 14 GHs, 
9 GTs, and 2 PLs were enriched in the rumen microbiome of HH dairy 
buffaloes, while 0 AAs, 4 CBMs, 0 CEs, 8 GHs, 7 GTs, and 1 PLs were 
enriched in the rumen microbiome of LL dairy buffaloes (LDA > 2, 
p < 0.05; Supplementary Figure S7). Glycoside hydrolases (GHs) and 
carbohydrate-binding modules (CBMs) are among the CAZyme genes 

FIGURE 3

Differential rumen archaeal species between HH and LL dairy buffaloes. (A) Significantly different archaeal species in the rumen of HH dairy buffaloes. 
(B) Significantly different archaeal species in the rumen of LL dairy buffaloes. LDA  >  2, p  <  0.05.

FIGURE 4

Differential KEGG functions between HH and LL dairy buffaloes. (A) HH/LL fold change of significantly enriched metabolic pathways. (B) Differential 
microbial functions involved in carbohydrate metabolism, vitamin metabolism, lipid metabolism, and energy metabolism in the rumen of HH and LL 
dairy buffaloes. LDA  >  2, p  <  0.05.

https://doi.org/10.3389/fmicb.2024.1301292
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fmicb.2024.1301292

Frontiers in Microbiology 06 frontiersin.org

primarily involved in the degradation of plant cellulose in diets. They 
are closely related to cellulases, xylanases, and other enzymes. 
Glycosyltransferases (GTs) are carbohydrate synthesis enzymes 
encoded by CAZyme genes. They are primarily associated with rumen 
fermentation and the production of volatile fatty acids. Higher 
abundance of GHs, CBMs, and GTs was observed in the rumen 
microbiome of HH dairy buffaloes.

Associations between microbial species 
and microbial functions

As milk fat yield is an important indicator of milk production 
traits, we further focused on the functions of lipid metabolism in the 
rumen microbiome. The rumen metagenome results showed 15 
pathways regarding lipid metabolism between the two groups, 6 of 
which differed significantly between the 2 groups (LDA  >  2, p  <  0.05; 
Figure 5A), including “fatty acid biosynthesis,” “glycerophospholipid 
metabolism,” “linoleic acid metabolism,” “alpha-linolenic acid 
metabolism,” “steroid hormone biosynthesis,” and “fatty acid 
degradation.” We found two important pathways involved in lipid 
metabolism, which were “fatty acid biosynthesis” (ko00061, enriched 
in the rumen microbiome of HH dairy buffaloes) and “fatty acid 
degradation” (ko00071, enriched in the rumen microbiome of LL 
dairy buffaloes), and these pathways showed a converse enrichment 
between the HH and LL groups (Figure 5B). The abundances of genes 
encoding enzymes involved in these two pathways were also 
compared, showing that the abundances of genes encoding enzymes 
involved in fatty acid biosynthesis were all significantly enriched in 
the rumen microbiome of HH dairy buffaloes, while the abundances 
of genes encoding enzymes involved in fatty acid degradation were 
all significantly higher in the rumen microbiome of LL dairy buffaloes 
(p < 0.05; Supplementary Figure S8). Spearman’s rank correlation 
network between bacterial species and those two fatty acid 
metabolism pathways was then created to explore how rumen 
bacterial species could affect the microbial fatty acid functions. In 
total, 16 species showed a significant positive correlation with the 
fatty acid biosynthesis pathway and a significant negative correlation 
with the fatty acid degradation pathway, including Prevotella.bivia, 
Prevotella.sp.CAG485, Prevotella.sp.CAG873, Prevotella.sp.KHD1, 
Prevotella.sp.CAG1031, Prevotella.sp.HUN102, Prevotella.phocaeensis, 
Lachnospiraceae.bacterium.NE2001, Lachnospiraceae.bacterium.
XBD2001, Lachnospiraceae.bacterium.AC2031, Bacteroides. 
sp.CAG927, Bacteroidales.bacterium.52–46, Barnesiella.sp.An22, 
Barnesiella.viscericola, Butyrivibrio.sp.AE3009, and Butyrivibrio. 
sp.LB2008 (R > 0.5, p < 0.05; Figure 5C).

Rumen metabolome and serum 
metabolome

A total of 1,714 compounds were identified in the rumen 
metabolome; after t-test and VIP filtering for the relative 
concentrations of rumen metabolites, 79 metabolites were significantly 
different between the two groups of dairy buffaloes (Figure 6A), with 
59 metabolites significantly higher in the rumen of HH dairy buffaloes 
and 20 metabolites significantly higher in the rumen of LL dairy 

buffaloes (VIP > 1, p < 0.05; Figure 6B). Based on these 79 significantly 
different rumen metabolites, analysis of the metabolic pathways 
revealed enrichment in 13 metabolic pathways (Figure  6C), with 
“tyrosine metabolism,” “vitamin B6 metabolism,” and “glutathione 
metabolism” being the significantly different pathways (p < 0.01; 
Figure 6D).

The concentrations of volatile fatty acids (VFAs) in the rumen 
were measured, and seven VFAs were found. The results showed that 
acetic acid, propionic acid, and butyric acid had the highest 
concentrations of VFAs in the rumen of dairy buffaloes in both 
groups. The concentration of total VFAs in the rumen of HH dairy 
buffaloes was significantly higher than that of LL dairy buffaloes. The 
concentrations of acetic acid, butyric acid, and capric acid in the 
rumen of HH dairy buffaloes were significantly higher than those of 
LL dairy buffaloes (p < 0.05), and the concentrations of propionic and 
valeric acids in the rumen of HH dairy buffaloes were slightly higher 
than those of LL dairy buffaloes (Figure 7A). Spearman’s correlation 
results indicate that most microorganisms enriched in the rumen of 
HH dairy buffaloes were positively correlated with phenotype (milk 
yield and milk fat yield), acetic acid concentration, butyric acid 
concentration, and total VFA concentration (R > 0.5, p < 0.05; 
Figure 7B).

For the serum metabolome, we  identified 1,356 compounds. 
Comparative analysis shows that 161 metabolites were significantly 
different between the two groups of dairy buffaloes (Figure 8A), with 
135 metabolites significantly higher in the serum of HH dairy 
buffaloes and 26 metabolites significantly higher in the serum of LL 
dairy buffaloes (VIP > 1, p < 0.05; Figure 8B). Analysis of the metabolic 
pathways based on these 161 significantly different serum metabolites 
revealed enrichment in 18 metabolic pathways (Figure  8C), with 
“sphingolipid metabolism,” “alpha-linolenic acid metabolism,” and 
“sphingolipid signaling pathway” being the significantly different 
pathways (p < 0.01; Figure 8D).

To identify whether the metabolites in rumen could be related 
to those in the serum, we  compared the rumen and serum 
metabolome, including the significantly different metabolites and 
metabolic pathways between the two groups. The Venn diagram of 
differential metabolites showed that PC (18:2(9Z,12Z)/15:0) and 
PE(20,0_18,0) were shared by both rumen and serum of HH dairy 
buffaloes. For the differential metabolic pathways, six pathways 
were common in both the rumen and serum of HH dairy buffaloes, 
including “vitamin B6 metabolism,” “phosphatidylinositol signaling 
system,” “glycerophospholipid metabolism,” “arachidonic acid 
metabolism,” “glycerolipid metabolism,” and “inositol phosphate 
metabolism” (Supplementary Figure S9).

Relationship between metabolites and 
phenotypes

The rumen metabolome was also used for phenotype (milk yield 
and milk fat yield) association analysis; the results of Spearman’s 
correlation between differential rumen metabolites and phenotype 
(milk yield and milk fat yield) showed that 26 rumen metabolites were 
significantly positively correlated with milk yield and milk fat yield, and 
10 rumen metabolites were significantly negatively correlated with 
milk yield and milk fat yield (R > 0.5, p < 0.05; Figure  9A). These 
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metabolites participate in six metabolic pathways, including 
“biosynthesis of amino acids,” “alanine, aspartate, and glutamate 
metabolism,” “arachidonic acid metabolism,” “glycerolipid metabolism,” 
“glycerophospholipid metabolism,” and “tyrosine metabolism.”

Similarly, the results of Spearman’s correlation between differential 
host serum metabolites and phenotype (milk yield and milk fat yield) 
showed that 28 serum metabolites were significantly positively 
correlated with milk yield and milk fat yield, and 6 serum metabolites 
were significantly negatively correlated with milk yield and milk fat 
yield (R > 0.5, p < 0.05; Figure 9B). These metabolites participate in 9 
metabolic pathways, including “glycerophospholipid metabolism,” 

“arachidonic acid metabolism,” “linoleic acid metabolism,” “alpha-
linolenic acid metabolism,” “glycerolipid metabolism,” “sphingolipid 
metabolism,” “vitamin B6 metabolism,” “sphingolipid signaling 
pathway,” and “beta-Alanine metabolism.”

We defined these metabolites into phenotype-associated 
metabolites for further correlation analysis. The Venn diagram of 
phenotype-associated metabolites showed that “glycerophospholipid 
metabolism,” “glycerolipid metabolism,” and “arachidonic acid 
metabolism” were shared by both rumen and serum phenotype-
associated metabolites of HH dairy buffaloes (Supplementary  
Figure S10).

FIGURE 5

Microbial functions and species involved in lipid metabolism in the rumen of HH and LL dairy buffaloes. (A) Comparison of microbial functions involved 
in lipid metabolism in the rumen of HH and LL dairy buffaloes. (B) Fatty acid biosynthesis and degradation pathways. (C) Spearman’s correlation 
between significantly different bacterial species and two fatty acid metabolism pathways. LDA  >  2, p  <  0.05, * p  <  0.05, ** p  <  0.01. The color depth (red: 
positive, green: negative) is proportional to the correlation strength. Spearman’s R  >  0.5 or  <  −  0.5 and p  <  0.05 are considered as significant.
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Relationship between rumen microbiome, 
rumen metabolome, and serum 
metabolome and their explainabilities for 
phenotype

Spearman’s rank correlations between the rumen microbiota and 
rumen phenotype-associated metabolites were assessed, with the 
results revealing 590 significant correlations (R > 0.5, p < 0.05; 
Figure  10A). Among the 590 correlations, significantly positive 
correlations existed among mainly 11 species (Prevotella.sp.HUN102, 
Prevotella.bivia, Prevotella.sp.CAG873, Prevotella.phocaeensis, 
Prevotella.sp.CAG485, Prevotella.sp.CAG1031, Prevotella.sp.KHD1, 
Butyrivibrio.sp.AE3009, Barnesiella.sp.An22, Bacteroides.sp.CAG927, 
and Bacteroidales.bacterium.52–46), lipids, carbohydrates, and 
organic acids.

Similarly, the study assessed Spearman’s rank correlations between 
the rumen microbiota and serum phenotype-associated metabolites, 
and the results showed 531 significant correlations (R > 0.5, p < 0.05; 
Figure  10B). Among the 531 correlations, mainly 10 species 
(Prevotella.sp.CAG1031, Prevotella.sp.HUN102, Prevotella.sp.KHD1, 
Prevotella.phocaeensis, Prevotella.sp.CAG279, Bacteroides.sp.CAG927, 
Bacteroidales.bacterium.52–46, Barnesiella.sp.An22, Ruminococcus.
bicirculans, and Butyrivibrio.sp.AE3009) showed significantly positive 
correlations with lipids and organic acids.

Significant correlations were also found between the phenotype-
associated metabolites and the 17 functional modules of the rumen 
microbiome (Supplementary Figure S11).

A linear mixed model was used to calculate the impact of rumen 
microbial composition, functions, metabolites, and serum metabolites 
on milk yield and milk fat yield in dairy buffaloes 

FIGURE 6

Rumen metabolome of HH and LL dairy buffaloes. (A) Comparison of rumen metabolome in HH and LL dairy buffaloes. (B) Significantly different 
rumen metabolites between HH and LL dairy buffaloes. (C) Pathway enrichment analysis performed using the significantly different rumen metabolites 
between HH and LL dairy buffaloes. (D) HH/LL fold change of significantly enriched metabolic pathways. The color depth (red: high, blue: low) is 
proportional to the relative concentrations. p  <  0.05 was considered as significant. Only significant differences (p  <  0.05) are displayed.
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FIGURE 7

Rumen volatile fatty acids (VFAs) of HH and LL dairy buffaloes. (A) Comparison of the concentrations of VFAs in the rumen of HH and LL dairy 
buffaloes. (B) Spearman’s correlation between significantly different bacterial species and VFAs and phenotypes. *p  <  0.05, **p  <  0.01. The color depth 
(red: positive, green: negative) is proportional to the correlation strength. Spearman’s R  >  0.5 or  <  −  0.5 and p  <  0.05 are considered as significant.
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FIGURE 8

(Continued)
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Serum metabolome of HH and LL dairy buffaloes. (A) Comparison of serum metabolome in HH and LL dairy buffaloes. (B) Significantly different serum 
metabolites between HH and LL dairy buffaloes. (C) Pathway enrichment analysis is performed using the significantly different serum metabolites 
between HH and LL dairy buffaloes. (D) HH/LL fold change of significantly enriched metabolic pathways. The color depth (red: high, blue: low) is 
proportional to the relative concentrations. p  <  0.05 was considered as significant. Only significant differences (p  <  0.05) are displayed.

FIGURE 8 (Continued)

FIGURE 9

Phenotype-associated metabolites of HH and LL dairy buffaloes. (A) Spearman’s correlation between significantly different rumen metabolites and 
phenotypes. (B) Spearman’s correlation between significantly different serum metabolites and phenotypes. The color depth (red: positive, green: 
negative) is proportional to the correlation strength. Spearman’s R  >  0.5 or  <  −  0.5 and p  <  0.05 are considered as significant. Only strong (Spearman’s R 
of  >  0.5 or  <  −  0.5) and significant (p  <  0.05) correlations are displayed.
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(Supplementary Table S6). The phenotypic variation explained by the 
rumen microbial composition, rumen microbial functions, rumen 
metabolome, and serum metabolome was 34.04, 47.13, 39.09, and 
50.14%, respectively (Figure 11).

Discussion

We investigated the mechanisms by which rumen microorganisms, 
their metabolism, and host metabolism affect milk yield and milk fat 
yield in dairy buffaloes by integrating the results of multi-omics 
analysis and estimated the contributions of the rumen microbial 
composition, functions, metabolites, and serum metabolites to the 
variations in this trait.

In rumen metagenome experiments, bacteria were the most 
abundant group in the rumen of dairy buffaloes, which was consistent 
with previous microbial studies (Peng et al., 2019), and we found that 
the significantly different microorganisms in the HH and LL dairy 
buffaloes were mainly bacteria. Bacteria play a significant role in the 
degradation and fermentation of diets in the rumen of ruminants, 
providing energy to the animal organism, which suggests that bacteria 
have a crucial impact on the milk yield and milk fat yield compared 
with other microbial kingdoms (Bickhart and Weimer, 2018). At the 
bacterial species level, we  identified several significantly more 
abundant species in the rumen of HH dairy buffaloes, which mainly 
belonged to genera, such as Prevotella, Bacteroides, Butyrivibrio, 
Barnesiella, Lachnospiraceae, and Ruminococcus. First, Prevotella, one 

of the core genera, is quite abundant in the rumen of dairy buffaloes. 
This genus is able to use starch and protein in the diet to produce more 
succinic and acetic acids (Betancur-Murillo et  al., 2022). Second, 
another significantly higher genus in the rumen of HH dairy buffaloes 
is Barnesiella. This genus is not only the main volatile fatty acid-
producing bacteria but is also closely associated with the production 
of bile acids that facilitate the transport and absorption of fatty acids 
in the body (Mu et  al., 2021). In addition to the aforementioned 
genera, Bacteroides, Butyrivibrio, Lachnospiraceae, and Ruminococcus 
are also common bacteria that produce volatile fatty acids. These 
bacteria were found to be positively correlated with volatile fatty acid 
concentrations and phenotype (milk yield and milk fat yield), 
indicating their significant role in the biosynthesis of volatile fatty 
acids and contribution to milk yield and milk fat yield. The Spearman’s 
correlation results showed that several Prevotella, Barnesiella, 
Bacteroides, and Ruminococcus species showed positive correlations 
(R > 0.5, p < 0.05) with the concentrations of acetic acid, butyric acid, 
and total VFAs, suggesting that may be  the key microbial species 
responsible for the higher concentrations of acetic and butyric acids 
in the rumen of HH dairy buffaloes. On the other hand, we found that 
the species with higher relative abundance in the rumen of LL dairy 
buffaloes mainly belonged to genera, such as Selenomonas, 
Sphaerochaeta, and Spirochaetes. The genus Selenomonas is capable of 
fermenting glucose to produce acetic acid and propionic acid, but it 
has also been reported to be  the dominant group contributing to 
methane production (Kornel, 2015). Research has demonstrated a 
positive correlation between the genus Sphaerochaeta and the 

FIGURE 10

Interactions between rumen metagenome, rumen metabolome, and serum metabolome. (A) Spearman’s correlations between rumen microbiota and 
phenotype-associated metabolites in the rumen. (B) Spearman’s correlations between rumen microbiota and phenotype-associated metabolites in 
serum. The color depth (red: positive, green: negative) is proportional to the correlation strength. Spearman’s R  >  0.5 or  <  −  0.5 and p  <  0.05 are 
considered as significant.
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production of methane and VFA (Zhao et al., 2018). Additionally, the 
genus Spirochaetes has been found to break down propionic acid, 
butyric acid, and valeric acid into acetic acid for the consumption by 
methanogenic bacteria (Long et al., 2021). These findings suggest that 
the rumen of LL dairy buffaloes may expend more energy for methane 
production, which could contribute to a reduction in milk yield and 
milk fat yield. Regarding archaea, we found a higher abundance of 
genus-level Methanobrevibacter and species-level Methanobrevibacter 
millerae in the rumen of LL dairy buffaloes, suggesting that LL dairy 
buffaloes may produce more methane, leading to less-efficient milk 
production (Shabat et al., 2016). Although only bacteria and archaea 
show significant differences in overall microbial structure, we cannot 
ignore the remaining small fraction of eukaryotes, viruses, and 
protozoa in the rumen environment. For instance, fungi can aid in the 
breakdown of structurally complex crystalline cellulose by assisting 
bacteria, and protozoa can modulate the internal rumen environment 
by phagocytosis bacteria and fungi (Guo et al., 2023). In conclusion, 
their action on the host, their degradation of diet fiber in the rumen, 

and their interaction with bacteria are all likely to be important factors 
influencing milk production traits in dairy buffaloes, which may 
warrant further studies in the future.

The two groups of dairy buffaloes exhibited differences in 
microbial functions due to variations in rumen microbial composition. 
The analysis of KEGG functions shows that the rumen of HH dairy 
buffaloes is enriched with more metabolic functions regarding 
carbohydrates, vitamins, lipids, and energy. For instance, the rumen 
microbiome of HH dairy buffaloes appears to be more proficient in 
degrading carbohydrates as evidenced by the metabolic pathways 
“fructose and mannose metabolism” (ko00051), “butyric acid 
metabolism” (ko00650), and “fatty acid biosynthesis” (ko00061) 
involving the pyruvate metabolic pathways, resulting in a higher yield 
of hydrolysis products and pyruvate. Meanwhile, the analysis of 
CAZyme functions revealed that the abundance of genes encoding 
plant cellulose-degrading enzymes (GHs and CBMs) in the diet was 
higher in the rumen of HH dairy buffaloes; the main enrichment was 
observed in GH13, GH25, GH53, and CBM26, which can express 

FIGURE 11

Overview of the workflow. Rumen microbial species (bacteria and archaea) and functions (CAZymes and KEGG functions) were compared between 
two phenotype (milk yield and milk fat yield) groups (HH and LL). Rumen metabolites were compared between two groups, and the key rumen 
metabolic pathways were enriched based on the significantly different metabolites, the significantly different rumen metabolites were also separated 
into two groups that were either positively or negatively correlated with phenotype (milk yield and milk fat yield), defined as the “rumen phenotype-
associated metabolites.” Concentrations of volatile fatty acids (VFAs) in the rumen were compared between two groups, and associations between 
significantly different VFAs and significantly different bacterial species. Serum metabolites were compared between two groups, and the key serum 
metabolic pathways were enriched based on the significantly different metabolites, the significantly different serum metabolites were also separated 
into two groups that were either positively or negatively correlated with phenotype, defined as the “serum phenotype-associated metabolites.” The 
rumen and serum metabolome were compared, including the significantly different metabolites, phenotype-associated metabolites, and differential 
metabolite-enriched pathways between two groups. The rumen and serum phenotype-associated metabolites were associated with rumen 
microbiome, including the significantly different rumen microbial species and functional modules between two groups. The proportion of variance in 
phenotype explained by the rumen microbial composition, rumen microbial functions, rumen metabolome, and serum metabolome (defined as 
omics-explainability) was estimated.
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amylase, glucanase, cellulase, xylanase, mannanase, and galactanase 
indicated that the rumen microbiota of HH dairy buffaloes is more 
capable of degrading complex substrates in the diet. Furthermore, the 
higher abundance of genes encoding the primary enzymes involved 
in carbohydrate synthesis (GTs) and the concentration of the primary 
VFAs were significantly greater in the rumen of HH dairy buffaloes, 
suggesting that the microorganisms in the rumen of HH dairy 
buffaloes were more efficient in producing VFAs through hydrolysis 
products or pyruvate, resulting in increased energy availability for 
lactogenesis in dairy buffaloes and improved milk production traits 
(Xue et al., 2020). In contrast, the rumen microbiome of LL dairy 
buffalo showed a significant enrichment in the “methane metabolism” 
(ko00680) pathway, and genes encoding related enzymes involved in 
methanogenesis, with a higher abundance of EC 2.1.1.86, a 
methyltransferase that transfers methyl from the coenzyme 
tetrahydromethanopterin to coenzyme M (CoM), which is required 
for methane production. Similarly, EC 2.8.4.1 is more abundant, 
which is a methyl coenzyme M reductase responsible for the final step 
of methanogenesis in methanogenic metabolism (Chen et al., 2020). 
These results suggest that in the rumen of LL dairy buffaloes, the 
energy produced by microbial degradation and fermentation of the 
diet is utilized more by methane metabolic processes, resulting in 
lower energy from VFAs (Shi et al., 2014). Both the concentration of 
VFAs and methane emission in the rumen of ruminants have been 
reported to be closely related to feed conversion efficiency (Myer et al., 
2015; Li and Guan, 2017), so we speculated that to some extent, the 
rumen microbiome affects feed efficiency, and HH dairy buffaloes 
may have higher feed conversion efficiency than LL dairy buffaloes. 
Future measurements of methane emissions and feed conversion 
efficiency are needed to validate this hypothesis.

Regarding lipid metabolism functions, “linoleic acid metabolism” 
(ko00591), “alpha-linolenic acid metabolism” (ko00592), and 
“glycerophospholipid metabolism” (ko00564) are significantly 
enriched in the rumen microbiome of HH dairy buffaloes and genes 
encoding related enzymes involved in lipolysis, with a higher 
abundance of EC 3.1.1.4 and EC 3.1.4.4, a class of phospholipases with 
hydrolytic effects on phospholipids and triglyceride structures (Lv 
et  al., 2022), suggesting that the rumen microbiome of HH dairy 
buffaloes may have a greater ability to break down fat in the diet and 
facilitate lipid transport, resulting in more precursors and energy 
being available. In addition, rumen microbes synthesize up to 20% of 
the host animal’s fat requirements, and the enrichment of the “fatty 
acid biosynthesis” (ko00061) functions in the rumen of HH dairy 
buffaloes suggests that more microbial lipids may be synthesized in 
their rumen, and these lipids are then digested in the small intestine 
and provide the host with a fatty acid pool (Martinez-Alvaro et al., 
2022), which, in turn, provides more precursors for milk fat synthesis 
in the mammary gland. On the other hand, the function “fatty acid 
degradation” (ko00071), which is enriched in the rumen of LL dairy 
buffaloes, not only affects the amount of fatty acids reaching the small 
intestine but has also been shown to cause reduced growth 
performance in pigs (Meyer et  al., 2020). Spearman’s correlation 
results show that most of the species positively correlated with the 
metabolic pathways of “fatty acid biosynthesis” and negatively 
correlated with the pathway of “fatty acid degradation,” which belong 
to genera, such as Prevotella, Lachnospiraceae, Bacteroides, 
Butyrivibrio, and Barnesiella, suggesting that these species may play 
an important role in the biosynthesis of fatty acids, which is the first 

report in a study of the rumen microbiome of dairy buffaloes. In the 
future, research should be conducted using in vitro simulated rumen 
environment cultures to detect the functions of active microorganisms 
and intracellular energy changes, and this will help determine the 
specific roles of these species in lipid metabolism processes.

Our study has identified another important metabolic pathway 
which is vitamin metabolism. Ruminant rumen microbes synthesize 
vitamin B and vitamin K, which can function as precursors to 
coenzyme factors involved in basic metabolic processes, such as fatty 
acid synthesis, amino acid synthesis, and gluconeogenesis to meet 
their growth and development needs (Jiang et  al., 2022). “Biotin 
metabolism” (ko00780) is a metabolic pathway of vitamin metabolism 
that is significantly enriched in the rumen microbiome of HH dairy 
buffaloes; biotin mainly involved as a cofactor in the transfer of CO2 
in carboxylases, such as acetyl CoA carboxylase can catalyze the 
synthesis of malonic acid monoacyl CoA from acetyl CoA and CO2, 
providing a two-carbon compound for fatty acid synthesis (Chao 
et al., 2022). Numerous studies have reported that supplementing 
additional B vitamins in the diet can significantly enhance milk yield 
in cows, including milk component yield, suggesting that excellent 
milk production traits also depend on higher levels of vitamin B (Du 
et al., 2021). Therefore, it is possible that the rumen microbes of HH 
dairy buffaloes are able to produce more vitamin B, which may be one 
of the reasons for their higher milk and milk fat yield. Furthermore, 
we have identified a metabolic pathway that is significantly enriched 
in the rumen microbiome of high-producing dairy buffaloes: 
“Bacterial chemotaxis” (ko02030) for cellular processes. Bacterial 
chemotaxis is primarily interpreted as a foraging strategy, whereby 
bacteria adjust their movements toward more growth-friendly 
nutrients, which can also contribute to the expansion of 
microenvironmental colonization and the maintenance of bacterial 
diversity (Colin et al., 2021). Although the exact ecological role is 
unknown, we hypothesize that rumen microbes of HH dairy buffaloes 
may be better at sensing and finding favorable nutrients. In the future, 
further testing of vitamin B production and microbial flagellar 
motility proteins is necessary to provide a better understanding of the 
contribution of these functions to milk yield and milk fat yield.

As the outcome of microbiome compositional and functional 
differences, differences in rumen metabolites and serum metabolites 
between the two groups were found in this study. In the rumen 
metabolome, the metabolites that were in higher concentrations in the 
rumen of HH dairy buffaloes compared with the LL dairy buffaloes 
included mainly lipids, organic acids, coenzymes vitamins, and 
carbohydrates. First, the rumen of HH dairy buffaloes showed higher 
concentrations of D-glyceric acid, D-glucosamine 6-phosphate, and 
ribulose-5-phosphate, and these metabolites are mainly involved in 
the “pentose phosphate pathway” (ko00030) and “glutathione 
metabolism” (ko00480), suggesting that more energy may be produced 
in the rumen and made available to the host animal (Allen and 
Piantoni, 2014). Second, the rumen of HH dairy buffaloes contained 
higher concentrations of diglycerides, triglycerides, 
phosphatidylinositol, phosphatidylethanolamine, and 
phosphatidylcholine; these metabolites are mainly involved in 
“glycerolipid metabolism” (ko00561) and “glycerophospholipid 
metabolism” (ko00564), suggesting that greater lipid metabolism and 
transport in the rumen of HH dairy buffaloes provide more precursors 
for milk fat synthesis. In addition, the rumen of HH dairy buffaloes 
had higher concentrations of several coenzyme vitamins and volatile 
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fatty acids, confirming our rumen metagenome view that these higher 
concentrations are beneficial in enhancing lactation performance. In 
addition, the rumen of HH dairy buffaloes had higher concentrations 
of several coenzyme vitamins and volatile fatty acids, confirming our 
rumen metagenome view that these higher concentrations are 
beneficial in enhancing lactation performance. Finally, Spearman’s 
correlation results showed that the metabolites that positively 
correlated with milk yield and milk fat yield were mainly lipids, 
carbohydrates, and organic acids, suggesting that the functions and 
pathways involved in these metabolites provide more metabolic 
energy to mammary glands of the HH dairy buffaloes via bloodstream 
(Wu et al., 2018). This study detected and analyzed a full class of 
endogenous small molecules using liquid chromatography, and future 
studies should employ more advanced metabolomics techniques to 
analyze a greater number of large metabolites and comprehensive 
targeted assays for key types of metabolites to further explore the 
impact of microbial metabolic changes on host animals.

In the serum metabolome, the metabolites that were in higher 
concentrations in the serum of HH dairy buffaloes compared with the 
LL dairy buffaloes were mainly lipids, and a small proportion of 
organic acids, bile acids, and heterocyclic compounds. First, in 
addition to the known lipid metabolites in the rumen metabolome, 
the serum metabolome also includes phosphatidylserine, 
sphingomyelin, and ceramide, and these metabolites are mainly 
involved in “phospholipase D signaling pathway” (ko04072), 
“sphingolipid signaling pathway” (ko04071), and “phosphatidylinositol 
signaling pathway” (ko04070), suggesting that HH dairy buffaloes 
perform better in cellular signaling and lipid transport, which may 
be more conducive to transporting precursors to mammary tissue and 
improving the efficiency of milk fat synthesis. Second, the metabolic 
pathways of polyunsaturated fatty acids and vitamins were enriched 
in the serum of HH dairy buffaloes, suggesting a connection between 
rumen and host serum metabolism, which could contribute to the 
improvement of host metabolic capacity. Finally, Spearman’s 
correlation results showed that the metabolites that positively 
correlated with milk yield and milk fat yield were mainly lipids and 
organic acids, suggesting that the functions and pathways involved in 
these metabolites promote the formation of a stable metabolic system 
in HH dairy buffaloes, contributing to blood circulation, nutrient 
transport, and absorption. While the rumen plays a crucial role in the 
digestive system of ruminants, it is important to note that the gut also 
plays a vital part in the system (Mou, 2017). which may be worth 
studying together in the future to further explore the factors that 
influence host metabolism.

In ruminant studies, the relationship between the rumen 
microbiome and the metabolome has been reported for both goats 
(Mao et al., 2016) and dairy cows (Xue et al., 2020). However, whether 
and how the rumen microbes could interact with the microbial 
metabolites and host metabolites remains unknown. Our current 
study demonstrates a positive correlation between specific microbiota 
and both rumen phenotype-associated metabolites and serum 
phenotype-associated metabolites. By Spearman’s correlation analysis, 
we  found that rumen phenotype-associated metabolites showed a 
strong positive correlation mainly with several species Prevotella, 
Butyrivibrio, Barnesiella, and Bacteroides, while serum phenotype-
associated metabolites showed a strong positive correlation mainly 
with several species Prevotella, Bacteroides, Barnesiella, Ruminococcus, 
and Butyrivibrio. Additionally, the phenotype-associated metabolites 

in both the rumen and serum were also significantly correlated with 
the 17 KEGG functional modules of the rumen microbiome, 
suggesting a responsive relationship between these metabolites and 
the functions of the rumen microbiome. In summary, the composition 
and functions of rumen microbes affect both microbial and host 
metabolism, which, in turn, impact host milk production traits. 
Specifically, 8 species have been identified as having a significant 
impact on these processes, including Prevotella.sp.CAG1031, 
Prevotella.sp.HUN102, Prevotella.sp.KHD1, Prevotella.phocaeensis, 
Butyrivibrio.sp.AE3009, Barnesiella.sp.An22, Bacteroides.sp.CAG927, 
and Bacteroidales.bacterium.52–46, which are closely associated with 
phenotype-associated metabolites in the rumen and serum, may be a 
key contributor to high milk yield and milk fat yield in HH dairy 
buffaloes, the role of these microorganisms can be further validated 
in the future through colony transplantation. These findings provide 
new insights into the interactions among ruminant rumen microbial 
composition, functions, metabolism, and host metabolism, and the 
functional mechanisms by which they collectively contribute to 
altered host animal traits.

Recent studies have reported that the host, together with the 
rumen microbiome, affect dairy cow traits, including methane 
production (Difford et al., 2018), feed conversion efficiency (Xue et al., 
2022), and milk production traits (Wallace et al., 2019). Our current 
findings suggest that the rumen microbiome, rumen metabolome, and 
serum metabolome influence host milk production and milk fat yield. 
Meanwhile, we refer to a study on rumen microbiome affects milk 
protein yield in dairy cows (Xue et al., 2020), then calculated the 
proportional effects of rumen microbial composition, functions, 
metabolism, and host metabolism on the variation in milk yield and 
milk fat yield were 34.04, 47.13, 39.09, and 50.14%, respectively, 
defined as “omics-explainability.” This concept was first proposed by 
Difford et al. in dairy cows, estimating by quantifying the cumulative 
effect of microbial abundance on the variation in phenotypic traits. 
This concept has been applied to studies on several animals, including 
pigs (Camarinha-Silva et al., 2017), chickens (Wen et al., 2019), and 
dairy cows (Difford et al., 2018) but has not yet been reported on dairy 
buffaloes. Our study suggests that host serum metabolism had the 
greatest influence on milk yield and milk fat yield in dairy buffaloes, 
followed by the functions of rumen microorganisms. Although several 
studies have indicated that rumen microbial composition and 
functions significantly contribute to the different individualized 
performance of ruminants, such as feed conversion efficiency (Li and 
Guan, 2017) and methane emissions (Difford et al., 2018). However, 
it is suggested by our results that host metabolism is a crucial factor 
that cannot be overlooked in future studies and aimed at enhancing 
feed conversion efficiency and production performance in ruminants, 
even better prediction of milk production traits may be achieved by 
utilizing host serum metabolites. Compared with models that use only 
host animal genetic data, further research testing the predictive 
accuracy of multi-omics data for milk production traits will provide 
more evidence for this potential new selection criterion.

Although the factors affecting the milk yield and milk fat yield of 
dairy buffaloes including feeding environment, diet, feeding 
management, age, parity, lactation stage, and breed were largely 
controlled in our study, we found that variations in milk production 
traits were also attributed to variations in rumen microorganisms and 
their metabolites, as well as the host’s utilization and absorption of 
metabolites. In addition to the aforementioned factors, this milk 
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production traits could also be attributed to variations in genetics. 
Recent studies have reported that genetic factors not only affect the 
phenotypic characteristics of ruminants but also the rumen 
microbiota, and the heritable microbial taxa were associated with feed 
efficiency and methane emission (Abbas et al., 2019), as well as the 
possible existence of different heritability for those microbes, 
functions, and metabolites (Li et  al., 2019). Further studies are 
required to assess this heritability, providing more evidence for the 
possibility of manipulating rumen microbes, functions, and 
metabolites through genetic selection.

Conclusion

Our research has identified the rumen microbial taxonomic 
features, functions, and metabolites together with their interactions 
with host metabolism that contribute to milk yield and milk fat yield 
in dairy buffaloes. Dairy buffaloes with higher milk yield and milk fat 
yield had lower abundances of methanogenic archaea and 
methanogenic functions, leading to higher functions and enzymes 
involved in carbohydrate synthesis and higher concentrations of VFAs 
in the rumen. The microorganisms in the rumen of HH dairy 
buffaloes serve as stronger vitamin B producers, meeting the 
requirement for higher milk production performances. Mainly eight 
species were enriched in the rumen of HH dairy buffaloes and were 
closely associated with fatty acid biosynthesis functions, lipid 
metabolism functions, rumen lipid metabolites, and serum lipid 
metabolites, including Prevotella.sp.CAG1031, Prevotella.sp.HUN102, 
Prevotella.sp.KHD1, Prevotella.phocaeensis, Butyrivibrio.sp.AE3009, 
Barnesiella.sp.An22, Bacteroides.sp.CAG927, and Bacteroidales.
bacterium.52–46, which provide more precursors for milk fat 
synthesis. As the outcome of the microbial composition and functions 
differences, we found higher concentrations of metabolites (mainly 
lipids, carbohydrates, and organic acids) and end-products of VFAs 
(mainly acetic and butyric acids) in the rumen of HH dairy buffaloes, 
as well as higher concentrations of metabolites (mainly lipids and 
organic acids) in the serum of HH dairy buffaloes, suggesting that 
variations in rumen microbial metabolism contribute to differences 
in metabolites that are absorbed and transported by the host. The 
“omics-explainability” results indicated that serum metabolites and 
rumen microbial functions had a greater impact on milk yield and 
milk fat yield than rumen microbial metabolites and microbial 
composition. In conclusion, these findings provide insights into 
strategies for modifying the rumen microbiota for higher yield and 
quality of buffalo milk through feeding management, colony 
transplantation, or genetic selection.

Materials and methods

Animals, sampling, and physiological 
parameters measurement

Animal phenotype and feeding management
Based on complete phenotypic data (milk production and milk 

composition) obtained from 24 weeks of observation, collection, 
testing, and recording, 12 high-yield dairy buffaloes (dairy buffaloes 
with high milk yield and milk fat yield; HH group) and 12 low-yield 

dairy buffaloes (dairy buffaloes with low milk yield and milk fat yield; 
LL group) were selected from the cohort of 226 healthy mid-lactation 
Murrah dairy buffaloes at a local commercial dairy buffalo breeding 
base in Guangxi. Dairy buffaloes received the same diet with a 
concentrate-to-forage ratio of 30:70 (dry matter basis).

Collection of rumen contents
After 4 h of morning feeding, rumen contents were sampled using 

oral stomach tubes and preserved in liquid nitrogen; VFAs contents 
were measured using an Agilent 7890B-7000D GC–MS/MS.

Collection of blood
Using anticoagulant blood collection vessels to collect blood from 

the jugular vein and preserve in liquid nitrogen, biochemical 
indicators in the blood were measured using a URIT automated 
biochemistry analyzer CA-810B.

Analysis of rumen metagenome

DNA extraction and detection
Total genomic DNA was extracted from rumen contents using the 

TIANGEN Magnetic Universal Genomic DNA Kit. DNA purity and 
integrity were analyzed using 1% agarose gel electrophoresis (AGE). 
DNA was quantified using the Qubit® dsDNA Assay Kit in Qubit® 2.0 
Fluorometer (Life Technologies, CA, USA). The DNA sample is 
diluted with sterile water until the OD value is between 1.8 and 2.0.

Library construction and sequencing
Taking 1 μg of DNA sample, library construction was performed 

using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina® 
(NEB, USA). The qualified DNA samples were randomly broken into 
fragments of approximately 350 bp by Covaris ultrasonic crusher, and 
the whole library preparation was completed through the steps of end 
repair, addition of A-tail, addition of sequencing connector, 
purification, and PCR amplification. After the library was constructed, 
Qubit 2.0 was used for preliminary quantification, and the library was 
diluted to 2 ng/μL. Then, the insert size of the library was detected by 
Agilent 2,100, and after the insert size conformed to the expectation, 
Q-PCR was used to accurately quantify the effective concentration of 
the library (the effective concentration of the library was >3 nM), so 
as to ensure the quality of the library. The quality of the library was 
ensured by the Q-PCR method. After passing the library inspection, 
different libraries are pooled according to the effective concentration 
and the target downstream data volume and then sequenced by 
Illumina PE150.

Sequencing results pretreatment
Preprocessing the Raw Data obtained from the Illumina HiSeq 

sequencing platform using Readfq (V81) was conducted to acquire the 
Clean Data for subsequent analysis: Removes reads that contain more 
than a certain percentage of low-quality bases (quality value ≤38) (set 
to 40 bp by default). Remove N bases up to a certain percentage of 
reads (default set to 10 bp). Removes reads that overlap with the 

1 https://github.com/cjfields/readfq
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Adapter above a certain threshold (set to 15 bp by default). If there is 
host contamination in the sample, it needs to be compared with the 
host sequence to filter out reads that may originate from the host 
(Karlsson et al., 2012, 2013; Scher et al., 2013) (Bowtie2 software is 
used by default with the parameter settings: -end-to-end, −sensitive, 
-I 200, −X 4002).

Metagenome assembly
After preprocessing to get Clean Data, MEGAHIT assembly 

software (v1.0.4-beta) was used for assembly analysis (Assembly 
Analysis), assembly parameters: -presets meta-large (−-min-count 2 
--k-min 27 --k-max 87 --k-step 10). Scaffolds obtained from assembly 
are broken from N junctions to obtain N-free sequence fragments 
called Scaftigs (Qin et  al., 2010; Li et  al., 2015) (i.e., continuous 
sequences within scaffolds). After QC of each sample, CleanData was 
compared with the assembled Scaftigs of each sample using Bowtie2 
software with the comparison parameters (Karlsson et  al., 2013; 
Nielsen et al., 2014): -end-to-end, −sensitive, -I 200, and -X 400. For 
Scaftigs generated from single-sample assembly, fragments below 
500 bp (Karlsson et  al., 2013; Li et  al., 2014; Zeller et  al., 2014; 
Sunagawa et al., 2015) were filtered out and subjected to statistical 
analysis and subsequent gene prediction.

Gene prediction and abundance analysis
Open Reading Frame (ORF) prediction was performed using 

MetaGeneMark software (V2.103) (Karlsson et al., 2012; Mende et al., 
2012; Li et al., 2014; Oh et al., 2014; Qin et al., 2014) from the Scaftigs 
(≥ 500 bp) of each sample, and from the prediction results, the 
information with length of less than 100 nt (Qin et al., 2010; Zhu et al., 
2010; Nielsen et al., 2014; Zeller et al., 2014; Sunagawa et al., 2015) was 
filtered out. The ORF prediction results of each sample assembly were 
de-redundant using CD-HIT software (V4.5.84) (Li and Godzik, 2006; 
Fu et al., 2012), to obtain non-redundant initial gene catalog (here, 
operationally, non-redundant sequences of nucleic acids encoding 
consecutive genes are referred to as genes (Zeller et al., 2014)), which 
were clustered by default with identity 95% and coverage 90% (Li 
et al., 2014; Qin et al., 2014), and the longest sequences were selected 
as representative sequences using the parameters: -c 0.95, −G 0, -aS 
0.9, −g 1, −d 0. Using Bowtie2, Clean Data of each sample was 
compared with the initial gene catalog, and the number of reads on 
the comparison of the gene in each sample was calculated to obtain 
the number of reads on the comparison with the comparison 
parameters (Qin et al., 2010; Li et al., 2014): -end-to-end, −sensitive, 
-I 200, and -X 400. Genes that supported a read count of ≤2 (Zeller 
et al., 2014) in individual samples were filtered out to obtain the final 
gene catalog (Unigenes) for subsequent analysis. From the number of 
reads on the comparison and the gene length, the abundance 
information of each gene in each sample was calculated (Cotillard 
et al., 2013; Le Chatelier et al., 2013; Villar et al., 2015). Based on the 
abundance information of each gene in the gene catalog in each 
sample, downstream analysis was performed.

2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

3 http://topaz.gatech.edu/GeneMark/

4 http://www.bioinformatics.org/cd-hit

Taxonomy prediction
Using DIAMOND software, (V0.9.95) (Buchfink et al., 2015) the 

Unigenes were compared to bacterial, fungal, archaeal, and viral 
sequences drawn from NCBI’s NR (Version: 2018-01-026) database 
(blastp, evalue ≤1e-5) (Karlsson et al., 2013). Filtering of results: For 
each sequence, the results with evalue ≤ min evalue*10 are selected 
for subsequent analysis. After filtering, since each sequence may have 
multiple comparisons and get multiple different species classification 
information, in order to ensure its biological significance, the LCA 
algorithm (applied to the systematic classification of the MEGAN 
(Huson et al., 2011) software) is adopted, and prior to the appearance 
of the first branch, the taxonomic level is used as the species 
annotation information for the sequence. Starting from the LCA 
annotation results and gene abundance tables, information on the 
abundance of individual samples at each taxonomic level (phylum, 
order, family, genus, and species) is obtained, and for a given species, 
the abundance in a given sample is equal to the sum of the abundance 
of the genes annotated to that species (Karlsson et al., 2012; Li et al., 
2014; Feng et al., 2015). From the LCA annotation results and gene 
abundance tables, a table of the number of genes in each sample at 
each taxonomic level (phylum, order, family, genus, and species) was 
obtained, and the number of genes in a given sample for a given 
species was equal to the number of genes whose abundance was not 
zero among the genes annotated to that species. Subsequent analysis 
was conducted from abundance tables at each taxonomic level 
(kingdom, phylum, order, family, genus, and species).

Common functional database annotations
Unigenes were compared with each functional database using 

DIAMOND software (blastp, evalue ≤1e-5) (Li et al., 2014; Feng et al., 
2015). Result filtering: For each sequence, the result with the highest 
score (one HSP > 60 bits) is selected for subsequent analysis (Qin et al., 
2012, 2014; Li et al., 2014; Backhed et al., 2015). From the comparison 
results, the relative abundance of different functional tiers [the relative 
abundance of each functional tier is equal to the sum of the relative 
abundance of the genes annotated to that functional tier (Karlsson 
et  al., 2012; Li et  al., 2014)] was counted, in which the KEGG 
(Kanehisa et  al., 2006, 2017) database (version 2018-01-017) was 
divided into 6 tiers: level1, level2, level3, KO, ec, and module, and the 
CAZy (Cantarel et al., 2009) database (version 2018–018) was divided 
into 3 tiers: level1, level2, and level3. From the functional annotation 
results and the gene abundance tables, a table of the number of genes 
in each sample at each taxonomic level was obtained, and for a given 
function, the number of genes in a given sample was equal to the 
number of genes whose abundance was not 0 among the genes 
annotated for that function. Based on the abundance table of each 
taxonomy hierarchy, the counting of annotated gene numbers, the 
exhibition of the general relative abundance situation, and 
subsequent analysis.

5 https://github.com/bbuchfink/diamond/

6 https://www.ncbi.nlm.nih.gov/

7 http://www.kegg.jp/kegg/

8 http://www.cazy.org/
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Analysis of rumen and serum metabolome

Sample pretreatment of rumen contents

Methods for extraction of hydrophilic compounds
The sample was taken out from the −80°C refrigerator and thawed 

on ice and vortexed for 10 s. In total, 200 μL of sample and 200 μL of 
20% acetonitrile methanol internal standard extractant were mixed. 
The mixture was vortexed for 3 min and centrifuged (12,000 rpm, 4°C) 
for 10 min. Then, 350 μL of the supernatant was transferred and dried. 
The dry residue was reconstituted with 150 μL of 70% methanol water, 
vortexed for 3 min, and sonicated for 10 min in ice water bath. Finally, 
the supernatant was centrifuged (12,000 rpm, 4°C) for 3 min and 
then analyzed.

Methods for extraction of hydrophobic compounds
The sample was taken out from the −80°C refrigerator, thawed on 

ice, and vortexed for 10 s. In total, 200 μL of the sample and 1 mL of 
the extraction solvent (MTBE: MeOH = 3:1, v/v) were mixed 
containing internal standard mixture. After whirling the mixture for 
15 min, 100 μL of water was added, vortexed for 1 min, and then 
centrifuged at 12,000 rpm for 10 min. In total, 500 μL of the upper 
organic layer was collected and evaporated using a vacuum 
concentrator. The dry extract was reconstituted using 200 μL mobile 
phase B prior to LC–MS/MS analysis.

Sample pretreatment of serum

Methods for extraction of hydrophilic compounds
The sample was taken out from the −80°C refrigerator, thawed on 

ice, and vortexed for 10 s. In total, 50 μL of sample and 300 μL of 20% 
acetonitrile methanol internal standard extractant were mixed. The 
mixture was vortexed for 3 min and centrifuged (12,000 rpm, 4°C) for 
10 min. Then, 200 μL of the supernatant was transferred and stored at 
−20°C for 30 min. Finally, the supernatant was centrifuged 
(12,000 rpm, 4°C) for 3 min and then analyzed.

Methods for extraction of hydrophobic compounds
The sample was taken out from the −80°C refrigerator, thawed on 

ice, and vortexed for 10 s. In total, 50 μL of the sample and 1 mL of the 
extraction solvent (MTBE: MeOH = 3:1, v/v) were mixed containing 
internal standard mixture. After whirling the mixture for 15 min, 
200 μL of water was added, vortexed for 1 min, and then centrifuged 
at 12,000 rpm for 10 min. Overall, 200 μL of the upper organic layer 
was collected and evaporated using a vacuum concentrator. The dry 
extract was reconstituted using 200 μL mobile phase B prior to LC–
MS/MS analysis.

UPLC conditions

UPLC conditions of hydrophilic compounds
T3 UPLC Conditions: The sample extracts were analyzed using an 

LC-ESI-MS/MS system (UPLC, ExionLC AD9; MS, QTRAP® 

9 https://sciex.com.cn/

System10). The analytical conditions were as follows, UPLC: column, 
Waters ACQUITY UPLC HSS T3 C18 (1.8 μm, 2.1 mm*100 mm); 
column temperature, 40°C; flow rate, 0.4 mL/min; injection volume, 
2 μL; solvent system, water (0.1% formic acid): acetonitrile (0.1% 
formic acid); gradient program, 95:5 V/V at 0 min, 10:90 V/V at 
11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at 12.1 min, 95:5 V/V at 
14.0 min.

Hilic Amide UPLC Conditions: The sample extracts were analyzed 
using an LC-ESI-MS/MS system [UPLC, ExionLC AD (see Footnote 
9); MS, QTRAP® System (see Footnote 10)]. The analytical conditions 
were as follows: UPLC: column, Waters ACQUITY UPLC BEH 
Amide (1.7 μm, 2.1 mm*100 mm); Column temperature, 40°C; Flow 
rate, 0.4 mL/min; Injection volume, 2 μL; Solvent system, water 
(20 mM Ammonium formate and 0.4% ammonia): acetonitrile; 
Gradient program, 10:90 V/V at 0 min, 40:60 V/V at 9.0 min, 60:40 V/V 
at 10.0 min, 60:40 V/V at 11.0 min, 10:90 V/V at 11.1 min, and 
10:90 V/V at 15.0 min.

UPLC conditions of hydrophobic compounds
The sample extracts were analyzed using an LC-ESI-MS/MS 

system [UPLC, ExionLC AD (see Footnote 9); MS, QTRAP® System 
(see Footnote 10)]. The analytical conditions were as follows, UPLC: 
column, Thermo Accucore™ C30 (2.6 μm, 2.1 mm*100 mm i.d.); 
solvent system, A: acetonitrile/water (60/40 V/V, 0.1% formic acid, 
10 mmol/L ammonium formate). B: acetonitrile/isopropanol 
(10/90 V/V, 0.1% formic acid, 10 mmol/L ammonium formate); 
gradient program, A/B (80:20 V/V) at 0 min, 70:30 V/V at 2.0 min, 
40:60 V/V at 4 min, 15:85 V/V at 9 min, 10:90 V/V at 14 min, 5:95 V/V 
at 15.5 min, 5:95 V/V at 17.3 min, 80:20 V/V at 17.3 min, 80:20 V/V at 
20 min; flow rate, 0.35 mL/min; temperature, 45°C; injection volume: 
2 μL. The effluent was alternatively connected to an ESI-triple 
quadrupole-linear ion trap (QTRAP)-MS.

ESI-Q TRAP-MS/MS

ESI-Q TRAP-MS/MS of hydrophilic compounds
T3 and Hilic Amide have the same mass spectrometry parameters. 

LIT and triple quadrupole (QQQ) scans were acquired on a triple 
quadrupole-linear ion trap mass spectrometer (QTRAP), QTRAP® 
LC–MS/MS System, equipped with an ESI Turbo Ion-Spray interface, 
operating in positive and negative ion mode and controlled by Analyst 
1.6.3 software (Sciex). The ESI source operation parameters were as 
follows: source temperature 500°C; ion spray voltage (IS) 5,500 V 
(positive), −4,500 V (negative); ion source gas I (GSI), gas II (GSII), 
curtain gas (CUR) were set at 55, 60, and 25.0 psi, respectively. The 
collision gas (CAD) was high. Instrument tuning and mass calibration 
were performed with 10 and 100 μmol/L polypropylene glycol 
solutions in QQQ and LIT modes, respectively. A specific set of MRM 
transitions were monitored for each period, according to the 
metabolites eluted within this period.

ESI-Q TRAP-MS/MS of hydrophobic compounds
LIT and triple quadrupole (QQQ) scans were acquired on a triple 

quadrupole-linear ion trap mass spectrometer (QTRAP), QTRAP® 

10 https://sciex.com/
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LC–MS/MS System, equipped with an ESI Turbo Ion-Spray interface, 
operating in positive and negative ion mode and controlled by Analyst 
1.6.3 software (Sciex). The ESI source operation parameters were as 
follows: ion source, turbo spray; source temperature 500°C; ion spray 
voltage (IS) 5,500 V (positive), −4,500 V (neagtive); ion source gas 1 
(GS1), gas 2 (GS2), curtain gas (CUR) were set at 45, 55, and 35 psi, 
respectively; The collision gas (CAD) was medium. Instrument tuning 
and mass calibration were performed with 10 and 100 μmol/L 
polypropylene glycol solutions in QQQ and LIT modes, respectively. 
QQQ scans were acquired as MRM experiments with collision gas 
(nitrogen) set to 5 psi. DP and CE for individual MRM transitions 
were performed with further DP and CE optimization. A specific set 
of MRM transitions were monitored for each period, according to the 
metabolites eluted within this period.

KEGG annotation and enrichment analysis
Identified metabolites were annotated using the KEGG compound 

database11; annotated metabolites were then mapped to the KEGG 
pathway database.12 Significantly enriched pathways are identified 
with a value of p of hypergeometric test for a given list of metabolites.

Construction of rumen microbial, rumen 
microbial functional, rumen metabolic, and 
serum metabolic relationship matrix

The relative abundances of rumen microbial composition 
(species-level microbial), rumen microbial function (KOs), rumen 
metabolome (rumen metabolites), and serum metabolome (serum 
metabolites) were subjected to z-score processing and were normalized 
to have a zero mean and a unit variance and then were used to 
construct the matrix M, K, R, and S, respectively (Difford et al., 2018; 
Xue et al., 2020). A linear mixed model was constructed for phenotype 
(milk yield and milk fat yield), and the linear mixed model utilized to 
estimate the variances of four omics was calculated as follows:

 yijk p d m ej k i ijk� � � � ��

 yijk p d k ej k i ijk� � � � ��

 yijk p d r ej k i ijk� � � � ��

 yijk p d s ej k i ijk� � � � ��

where yijk is the phenotype (milk yield and milk fat yield) (kg/
day); µ  is the model intercept; p j is the parity fixed effect; dk  is the 
lactation days fixed effect; mi is the rumen microbial random effect for 
the i mth animal NID ,M~ 0

2�� � , where σm
2  is the rumen microbial 

variance and M is the microbial relationship matrix; and eijk  is the 

11 http://www.kegg.jp/kegg/compound/

12 http://www.kegg.jp/kegg/pathway.html

residual effects. ki is the rumen microbial function random effect for 

the i kth animal NID ,K~ 0
2�� � . ri  is the rumen metabolites random 

effect for the i rth animal NID ,R~ 0
2�� � . si  is the serum metabolites 

random effect for the i sth animal NID ,S~ 0
2�� � . The phenotypic 

variance that explained by the rumen microbial variance, rumen 
microbial functional variance, rumen metabolic variance, and serum 

metabolic variance was estimated as σ
σ
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respectively, where σ p
2 is the phenotypic (milk yield and milk fat yield) 

variance. The linear mixed model was performed using the “lme4” 
package in R.13

Statistical analysis

Milk production traits, rumen VFA concentrations, blood routine 
parameters, and serum biochemical parameters were compared using 
t-tests, and p-value < 0.05 was considered as significant.

In rumen metagenome, Krona analysis was used to visualize the 
species annotation results (Qin et al., 2012). A bar chart was used to show 
the relative abundance of species annotation results at domain, phylum, 
genus and species levels. The difference between groups is tested by 
Adonis analysis (R vegan package, version 2.15.3); we performed the 
permutation multivariate analysis of variance (PERMANOVA) on the 
microbial abundance profiles using microbial Bray–Curtis distance, and 
based on Bray–Curtis dissimilarity matrices at species level, the PCoA 
analysis was performed. Metastats and LEfSe analysis are used to look 
for the different species between groups (White et al., 2009). Permutation 
test between groups is used in Metastats analysis for each taxonomy and 
get the p value, then use Benjamini and Hochberg False Discovery Rate 
to correct p value, with the FDR adjusted p value < 0.05 being considered 
as significantly different. The species of the rumen microbiota were 
compared using LEfSe analysis (Segata et al., 2011), and LEfSe analysis 
is conducted by LEfSe software (the default LDA score is 2), and 
significant differences were examined by an LDA score of > 2 and p-value 
of < 0.05. The LEfSe analysis of functional difference between the two 
groups was performed, comparative analysis of metabolic pathways, 
modules, KEGG enzymes, and CAZymes, and significant differences 
were considered by an LDA score of > 2 and p-value < 0.05.

In rumen and serum metabolome, unsupervised PCA (principal 
component analysis) was performed by statistics function prcomp 
within R (see Footnote 13). The data were unit variance-scaled before 
unsupervised PCA. Significantly different metabolites between two 
groups were determined by VIP > 1 and FDR-adjusted p-value < 0.05. 
VIp values were extracted from OPLS-DA result, which also contain 
score plots and permutation plots, and generated using the R package 
MetaboAnalystR. The data were log-transformed (log2) and mean-
centered before OPLS-DA. To avoid overfitting, a permutation test 
(200 permutations) was performed. The metabolite datasets in the 

13 https://www.r-project.org
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rumen and serum were compared between two groups and visualized 
using heat maps [“pheatmap” package in R (see Footnote 13)]. 
Significantly different metabolic pathways between two groups were 
determined by FDR-adjusted p-value < 0.05.

Correlation analysis

Correlation analysis between rumen metabolites, serum 
metabolites, and phenotypes (milk yield and milk fat yield) was 
performed using Spearman’s rank correlation to identify the 
significantly phenotype-associated metabolites and was subsequently 
used for rumen microbiota and functional modules.

All correlation analyses were performed using Spearman’s rank 
correlation, R > 0.5 or < − 0.5 was considered as strong correlation, 
and p-value < 0.05 was considered as significant. The correlation heat 
map was generated using the R program “ComplexHeatmap” package 
(see Footnote 13).
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