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Contamination of vegetables with human pathogenic microorganisms (HPMOs) 
is considered one of the most important problems in the food industry, 
as current nutritional guidelines include increased consumption of raw or 
minimally processed organic vegetables due to healthy lifestyle promotion. 
Vegetables are known to be  potential vehicles for HPMOs and sources of 
disease outbreaks. In this study, we tested the susceptibility of radish (Raphanus 
sativus) to colonization by different HPMOs, including Escherichia coli PCM 
2561, Salmonella enterica subsp. enterica PCM 2565, Listeria monocytogenes 
PCM 2191 and Bacillus cereus PCM 1948. We hypothesized that host plant roots 
containing bactericidal compounds are less prone to HPMO colonization than 
shoots and leaves. We  also determined the effect of selected pathogens on 
radish growth to check host plant–microbe interactions. We found that one-
week-old radish is susceptible to colonization by selected HPMOs, as the 
presence of the tested HPMOs was demonstrated in all organs of R. sativus. 
The differences were noticed 2  weeks after inoculation because B. cereus was 
most abundant in roots (log10 CFU – 2.54), S. enterica was observed exclusively 
in stems (log10 CFU – 3.15), and L. monocytogenes and E. coli were most 
abundant in leaves (log10 CFU – 4.80 and 3.23, respectively). The results suggest 
that E. coli and L. monocytogenes show a higher ability to colonize and move 
across the plant than B. cereus and S. enterica. Based on fluorescence in situ 
hybridization (FISH) and confocal laser scanning microscopy (CLSM) approach 
HPMOs were detected in extracellular matrix and in some individual cells of 
all analyzed organs. The presence of pathogens adversely affected the growth 
parameters of one-week-old R. sativus, especially leaf and stem fresh weight 
(decreased by 47–66 and 17–57%, respectively). In two-week-old plants, no 
reduction in plant biomass development was noted. This observation may result 
from plant adaptation to biotic stress caused by the presence of HPMOs, but 
confirmation of this assumption is needed. Among the investigated HPMOs, L. 
monocytogenes turned out to be the pathogen that most intensively colonized 
the aboveground part of R. sativus and at the same time negatively affected the 
largest number of radish growth parameters.
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Introduction

Vegetables are vital sources of carbohydrates, vitamins (e.g., B, C, 
K), minerals (e.g., calcium, potassium, and magnesium) and fiber. 
Consumption of raw plants (400 g per day) ensures health, prevents 
diseases (e.g., heart disease, cancer, diabetes and obesity) and is the 
basis of a balanced diet (Alemu et al., 2018; Balali et al., 2020). Current 
changes in nutritional guidelines resulting in increased demand for 
fresh or minimally processed vegetables have been linked to a higher 
incidence of foodborne illnesses in the past three decades (Mogren 
et  al., 2018). Contamination of vegetables by human pathogenic 
microorganisms (HPMOs) can occur at the preharvest stage (e.g., soil 
amendment with improperly composted manure, soil irrigation with 
sewage or contaminated surface water, insects, dust or feces of wild 
animals) or during postharvest handling (e.g., washing, slicing, 
soaking, packing and food preparation) (Luna-Guevara et al., 2019; 
Jacob and Melotto, 2020). Plants can be colonized by HPMOs through 
natural openings, e.g., stomata, lenticels, hydathodes, sites of lateral 
root formation but also at sites of physical and chemical damage 
(Chahar et al., 2021). Raw food-borne HPMOs include Escherichia coli 
O157-H7 (Shiga toxin-producing bacteria), Salmonella spp., Shigella 
spp., Listeria monocytogenes, Clostridium botulinum, Campylobacter 
spp., B. cereus, Aeromonas hydrophila, Vibrio cholerae, and 
Yersinia enterocolitica.

The level of plant colonization by HPMOs can depend on many 
different aspects, e.g., differences in the metabolic traits of various 
plant species and genotypes, the stage of plant development and fruit 
maturity, the resistance of bacteria to antagonistic chemical 
compounds present in plant tissues and environmental conditions 
(Luna-Guevara et al., 2019; Jacob and Melotto, 2020). Notably, E. coli, 
S. enterica and L. monocytogenes are known to spread through 
contaminated water and soil directly to vegetables (Andino and 
Hanning, 2015; Carstens et al., 2019). HPMOs expelled from the host 
gut to the environment have different abilities to survive and multiply. 
E. coli, L. monocytogenes and S. enterica can persist in soil for different 
time periods, ranging from 3 days to 7–25 weeks or even a year, 
respectively (Winfield and Groisman, 2003; Miceli and Settanni, 
2019). The colonization of plants by HPMOs is a complex process in 
which an important role is played by the ability of bacteria to attach 
to the plant surface, aggregate and/or form biofilms (Gorski et al., 
2003; Jacob and Melotto, 2020). E. coli and Salmonella sp. can produce 
molecules important for the process of attachment and biofilm matrix 
formation in response to contact with plant leaves (Yaron and 
Römling, 2014). L. monocytogenes and B. cereus, due to their motility 
associated with flagellar presence and high potential to form biofilms, 
can efficiently colonize plant surfaces and tissues (Gorski et al., 2009; 
Majed et al., 2016; Lin et al., 2022). The mechanisms activated during 
plant invasion by specific HPMOs are still unclear; however, it was 
revealed that motile bacteria can more often colonize extracellular 
(apoplastic) spaces than the interior of plant cells (Holden et al., 2009). 
HPMOs show different specificities in the colonization of plant 
organs. Several works have confirmed the spread of pathogens in 
whole plants, while others have shown that pathogens behave like 
organ-specific microorganisms, e.g., colonizing only plant roots, 
irrespective of inoculation techniques and plant growth conditions 
(Cooley et al., 2003; Jablasone et al., 2005; Burris et al., 2020).

Based on genomic analysis six different subgroups of E. coli exist. 
They are able to colonize various ecological niches and can exhibit 

commensalistic or pathogenic lifestyle (van Elsas et  al., 2011). 
Pathogenic E. coli can be responsible for numerous human infections 
associated with the consumption of contaminated vegetables. This 
microbe causes diarrhoeal disease of different severities, but cases of 
death are also noted (Mogren et al., 2018; Carstens et al., 2019). E. coli 
O157:H7 (infectious dose 50–100 cfu/g or mL) is one of the most 
common foodborne pathogens and contributes to several outbreaks 
(Sun et al., 2019; Puligundla and Lim, 2022), e.g., after consumption 
of romaine lettuce (58 persons/9 states) (Gupta and Madramootoo, 
2017), baby spinach (26 states in the USA) (FDA, 2007), fresh washed 
spinach (2006: 199 cases/102 hospitalizations/3 deaths), ready-to-eat 
salads (2013: 33 cases/7 hospitalizations) and alfalfa sprouts (2016, 
11cases/2 hospitalizations) and lettuce (Laven, 2006; Luna-Guevara 
et al., 2019).

According to the World Health Organization (WHO) report, the 
nontyphoidal S. enterica serotype is a common cause of foodborne 
diseases (ca. 79,000,000 cases in 2010) (Havelaar et  al., 2015). 
Outbreaks of S. enterica have been related to different vegetables, such 
as romaine lettuce (2017, U.S. – 151 cases), onion (U.S., 2022–1,040 
cases), raw almonds (2004, USA – 29 cases), black pepper (2010, USA 
– 272 cases), pistachios (2010, USA – 11 cases), iceberg lettuce (2008, 
Finland – 103/2 cases/deaths), baby spinach (2007, Sweden – 102 
cases), tomatoes (2011, Denmark – 43 cases, Germany, Italy, Austria 
and Belgium – 28 cases), cucumber (2014, USA – 275/1 cases/death) 
and cantaloupe (2012, U.S. – 261/3 cases/deaths) (Denny et al., 2007; 
Lienemann et al., 2011; CDC, 2012; Müller et al., 2016; Clark, 2017; 
Dyda et al., 2020; Li et al., 2020; CDC, 2022).

Listeria monocytogenes has been found in various plant species, 
e.g., in sprouts of alfa-alfa, broccoli, cabbage, cantaloupe and radish. 
Microbe occurrence was noted both in high-income country, e.g., 
USA and Norway, and in developing countries, including India and 
Malaysia (Gorski et al., 2004, 2008, 2009; Ponniah et al., 2010; Walsh 
et  al., 2014; Kljujev et  al., 2018). The risk of getting ill from the 
consumption of contaminated vegetables is high because of the small 
infectious dose (ranging from 107 to 109 CFU in healthy hosts and 105 
to 107 CFU in case of individuals at high risk of infection) (Farber 
et al., 1996). Several outbreaks were associated with the consumption 
of L. monocytogenes-contaminated: cantaloupe (2011, U.S. – 147/33 
cases/deaths), sprouts (2014, U.S. – 5/2 cases/deaths), salad mix 
(2015–2016, U.S. – 19/1 cases/deaths) (CDC, 2012; Laksanalamai 
et al., 2012; CDC, 2016; Self et al., 2016; Gu et al., 2021).

Bacillus cereus includes highly versatile bacterial strains, inhabiting 
different environments including soil, plants, gut of healthy individuals 
and others (Ceuppens et al., 2013; Kulkova et al., 2022). They can posses 
various metabolic properties that predispose them to a pathogenic or 
commensal lifestyle. It has been noticed that specific strains of B. cereus 
can act as plant growth promoting bacteria having a beneficial influence 
on their hosts (Ceuppens et al., 2013; Kulkova et al., 2022). B. cereus 
comprise well-known food-borne pathogen; however, due to the sparse 
symptoms associated with infection, only a few reports exist (Dierick 
et al., 2005). The occurrence of B. cereus in fresh products reaches up to 
37.5%, making this bacterium the most frequent foodborne pathogen 
(Kim et al., 2016). Analysis of different vegetables, including lettuce (Qu 
et al., 2021), onion, parsley, basil, coriander (Gdoura-Ben Amor et al., 
2018), cucumbers, tomatoes, lettuce (Rosenquist et al., 2005; Yu et al., 
2019), garlic chives, perilla leaf, romaine lettuce (Park et al., 2018), fresh 
peppers, carrots, zucchini, garlic (Valero et  al., 2002), and broccoli 
(Flores-Urban et al., 2014), collected from China (Yu et al., 2019), Korea 
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(Park et al., 2018), Tunisia (Gdoura-Ben Amor et al., 2018), and Mexico 
(Flores-Urban et  al., 2014), confirmed the presence of B. cereus. 
B. cereus-related food poisoning outbreaks are estimated to 
be approximately 3.9–5.9% (reports for 2011–2015), some of which 
have ben related to the consumption of vegetables such as tomatoes 
(2007, France, 4 cases), potatoes (2008, France, 28 cases), salad (2010, 
France, 44 cases) and carrots (2011, France, 3 cases) (Glasset et al., 2016; 
Jessberger et al., 2018).

Existing studies have shown that many vegetables are efficiently 
colonized by HPMOs. However, there are reports that some plants, 
e.g., cauliflower, broccoli, and okara byproducts, have antimicrobial 
potential against different food-borne pathogens, including S. enterica 
serovar Typhimurium, E. coli O157: H7 and B. cereus (Sanz-Puig et al., 
2015). In the case of L. monocytogenes, similar observations were 
made for tomatoes and carrots (Gorski et al., 2003). Radish (annual 
herb, member of Brassicaceae, commonly consumed by humans) may 
belong to the group of vegetables less susceptible to colonization by 
HPMOs. In 1947, it was found that raphanin contained in radish seeds 
has bacteriostatic activity against different bacteria (Staphylococcus 
and E. coli) (former Bact. coli) (Ivánovics and Horváth, 1947). Over 
the next years, knowledge about the antibacterial compounds 
contained in radish seeds was extended. The following pathogens, i.e., 
Streptococcus pyogenes, E. coli, Salmonella enteritidis 110, Cronobacter 
sakazakii KCTC 2949, B. cereus ATCC 10876 and Staphylococcus 
aureus ATCC 6538 are sensitive to radish metabolites (Jadoun et al., 
2016; Lim et al., 2019). The effect of red-peel radish root extract on 52 
food-borne bacteria confirmed the presence of compounds with 
antimicrobial activity (Jadoun et al., 2016; Kaymak et al., 2018). The 
authors emphasized the potential role of these compounds in 
preventing microbial contamination of food (Kaymak et al., 2018).

The main aim of our research was to determine the interactions 
between radish and selected species of HPMOs: E. coli PCM 2561, 
S. enterica subsp. enterica PCM 2565, L. monocytogenes PCM 2191 and 
B. cereus PCM 1948. We hypothesized that (i) radish roots, rich in 
bactericidal substances, would be the plant organ least susceptible to 
colonization by the tested food-borne pathogens compared to leaves 
and shoots and (ii) HPMOs would have a negative effect on plant 
growth. In this study, we used one-week- and two-week-old radish 
organs (roots, stems and leaves) to examine their colonization level by 
the tested species with culture-dependent plating and culture-
independent qPCR methods. Using the FISH technique, we  also 
determined in situ the colonization of bacteria in the organs of all 
variants of plant cultivation. Additionally, the impact of pathogens on 
plant growth parameters (root, aboveground plant and plant length, 
fresh and dry weight of leaves, stem, root and whole plant) 
was investigated.

Materials and methods

Experimental design

Raphanus sativus seeds were obtained from Plantico Company. 
Healthy and uniform-sized seeds were surface sterilized with 70% 
ethanol for 2 min, rinsed three times with sterile distilled water, treated 
with 30% sodium hypochlorite for 2 min and washed three times with 
sterile distilled water. The liquid obtained from the last washing was 
used to assess the efficiency of sterilization by plating on R2A (Difco) 

and Martin (BTL) agar media. Bacterial strains, i.e., E. coli Group A 
PCM 2561, S. enterica subsp. enterica serovar Choleraesuis PCM 2565, 
L. monocytogenes serovar 01/2 PCM 2191 and B. cereus PCM 1948, 
were cultivated in liquid trypticase soy broth (TSB, BD) with shaking 
at 37°C for 24 h. Then, suspensions containing 1.5 × 108 cells/ml 
(equivalent to McFarland OD = 0.5) were prepared. Surface-sterilized 
seeds were incubated in suspensions of the respective HPMO strains 
for 45 min with shaking (120 rpm) (Figure 1). As a control, sterilized 
distilled water was used instead of bacterial suspension. Treated seeds 
were cultivated in MS medium (Duchefa) in plastic rectangular 
shaped containers (107 × 94 × 96 mm, Duchefa, 10 plants/container, 10 
containers/one variant) under controlled environmental conditions 
(temperature: 22°C ± 2°C and light/dark: 16 h/8 h). After 1 and 
2 weeks, plants were carefully removed from the containers, surface 
sterilized with 70% ethanol for 2 min, rinsed with sterile distilled water 
and dried on sterile tissue paper. Collected plants were analyzed as 
shown in Figure 1.

Plant growth parameters analysis

Different growth parameters were analyzed, including total plant 
length, shoot and root length, fresh and dry weight (72 h drying at 
85°C) of leaves, stems, roots and plants.

Estimation of total endophytic bacteria and 
selected HPMOs density in different organs 
of Raphanus sativus

Separated plant organs (leaves, stems or roots; five biological 
replicates per variant) were homogenized using a mortar and pestle 
with sterile distilled water in a 1:9 ratio (sample weight:volume of 
sterile distilled water). Serial dilutions (10−1 −10−3) of all homogenates 
were plated in triplicate on trypticase soy agar (TSA, BD) and 
appropriate selective media for S. enterica (Chromogenic, Salmonella 
LAB-AGAR TM and Salmonella Chromogenic Supplement, 
Biomaxima), E. coli (E. coli Chromogenic Medium, Biomaxima), 
B. cereus (B. cereus Selective LAB – AGAR™ Base and B. cereus 
Supplement, Biomaxima), and L. monocytogenes (Chromogenic 
Listeria acc. to Ottaviani and Agostii LAB -AGAR™ Base and 
Chromogenic Listeria Supplement acc. to ISO 11290, Biomaxima). 
Prepared plates were incubated for two (selective media) and three 
(TSA medium) days at 37°C. Colonies were counted each day. After 
24 h, all colonies of E. coli, B. cereus and L. monocytogenes were fully 
grown, while the highest density of S. enterica was observed after two 
or three (in the case of TSA medium) days of cultivation. Colony 
forming units (CFU) were counted and calculated per g of fresh plant 
weight using plates with 30–300 colonies.

Assessment of HPMOs in plant tissue using 
real-time PCR

Plant material collection and genomic DNA 
isolation

Surface sterilized roots, stems and leaves were packed separately 
in 1.5 mL Eppendorf tubes and stored at −80°C. Three biological 
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replicates were prepared per plant organ: roots, stems and leaves (nine 
samples per variant were obtained in total). Genomic DNA isolation 
was performed using a Plant and Fungi DNA Purification Kit (EURx, 
Poland) following the manufacturer’s procedure with a modified 
homogenization step (FastPrep-24 bead-beater, three cycles of 20 s at 
4.5 m/s). DNA was quantified using a Qubit™ dsDNA HS Assay Kit 
(Invitrogen™). DNA was stored at −80°C.

Real-time quantitative PCR assay
Absolute quantifications of each investigated HPMO (due to lack 

of specific primers for B. cereus this microorganism was not tested 
with qPCR) and total 16S rRNA gene copy (expressed as pEF copy 
number) determination in roots, stems and leaves of R. sativus were 
carried out using LightCycler 480 and LightCycler 480 SYBR Green 
I Master Kit (Roche). qPCR was performed in a total volume of 10 μL, 
which contained 5 μL of 2x SYBR Green I Master Mix (Roche), 3.5 μL 
of H2O, 0.25 μL of each specific primer (10 pmol/μl, Table 1) and 1 μL 
of DNA template (20 ng/μl for stems and leaves and 6 ng/μl for roots). 
The cycling conditions included initial denaturation for 5 min at 95°C, 
then 40 cycles of 10 s of denaturation at 95°C, 20 s of annealing at the 
optimal temperature for the primer pair (Table 1), 20 s of elongation 
at 72°C, and finally a melting curve with a continuous temperature 
increase from 65°C to 95°C. Positive (DNA of specific strains) and 
negative (molecular grade water) controls were analyzed in parallel 
with experimental samples. All qPCR analyses were performed in 
three biological and technical replicates (nine results for each variant 
were obtained).

Standard curves for quantifications of 16S rDNA copy number for 
each strain were prepared based on amplicons generated with 27F 
(5′AGA GTT TGA TCM TGG CTC AG 3′) and 1492R (5′ TAC GGY 
TAC CTT GTT ACG AC 3′) universal primers (Lane, 1991). PCRs 
were prepared using 2x Plus Taq Mix (Qiagen). Annealing conditions 
for the primer pair used in PCR included incubation for 30 s at 
50°C. Amplicons were purified with AMPure XP (Beckman Coulter) 
and checked for their concentration with a Qubit™ dsDNA HS Assay 
Kit (Invitrogen™, USA) and Qubit fluorometer (ThermoFisher 
Scientific, USA). Standard curves were prepared using 10-fold 
dilutions of amplicons containing 10 million, 1 million, 100,000, 
10,000, 1,000, and 100 copies per reaction. Based on the standard 

curve, the reaction efficiency was determined for each primer set. The 
results of absolute quantification were expressed as copies of specific 
bacterial 16S rRNA genes in 1 ng of total plant DNA. To determine the 
fold change in HPMO quantity in plant organs, the values were then 
calculated against the control samples. Furthermore, the percentage 
of HPMOs was calculated in relation to the total copy number of 
bacterial 16S rRNA genes.

FISH detection of HPMOs in plant organs

The roots, stems and leaves of R. sativus seedlings (three per 
variant) were fixed in 4% paraformaldehyde (Polyscience, USA) and 
0.25% glutaraldehyde (Sigma-Aldrich, USA) in phosphate-buffered 
saline (PBS) buffer pH 7.2 overnight at 4°C and after dehydration were 
embedded in BMM resin (butyl methacrylate, methyl methacrylate, 
0.5% benzoyl ethyl ether) (Sigma-Aldrich, USA) with 10 mM DDT 
(Thermo Fisher Scientific, USA) according to Niedojadło et al. (2015). 
The material was cut on a Leica UCT ultramicrotome into serial cross 
semithin sections and collected on Thermo Scientific™ Polysine 
(Thermo Fisher Scientific, USA) adhesion microscope slides. Before 
FISH reaction, the resin was removed with two changes of acetone and 
washed in distilled water and 4xSSC (Saline-Sodium Citrate buffer, 
Sigma-Aldrich, USA) and incubated with lysozyme 1 mg/mL (Thermo 
Fisher Scientific, USA). A E. coli, L. monocytogenes and S. enterica 
specific sequences targeting the 16S rRNA were used as specific FISH 
probes (Genomed, Poland) and were resuspended in hybridization 
buffer (Sigma-Aldrich, USA) with 30% v/v formamide at a 
concentration of 50 pmoL/mL. The following antisense DNA 
oligonucleotides labeled with Cy3 were used for the reactions for the 
detection of: E. coli 5′-Cy3-ACATCCGATGGCAAGAGGCCCGAA 
GGT-3′, L. monocytogenes 5′-Cy3-CGATAGCCGAAACCATCTTTCA 
AAAGCGTGG-3′, S. enterica 5′-GCTGCGGTTATTAACCACAAC 
ACCTTCCTC-3′. Hybridization was performed overnight at 42°C in 
a humidified chamber. After reaction the material was stained for DNA 
detection with Hoechst 33342 (1,1,000) (Invitrogen, USA) and 
mounted in ProLong Gold Antifade reagent (Invitrogen, USA). The 
positive control reactions were performed using only embedded 
bacteria. Two types of the negative control reactions were carried out: 

FIGURE 1

Experimental design.
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the samples were incubated only with hybridization buffer or reaction 
was performed on the samples from an uninoculated R. sativus seedling.

The images were captured with Olympus FV3000 confocal laser 
scanning microscope (CLSM). The optimized pinhole, long exposure 
(400 Hz), and 63X (numerical aperture 1.4) Plan Apochromat DIC H 
oil immersion lens were used. The images were collected 
simultaneously in the blue (Hoechst 33342) and red (Cy3) channels. 
To minimize bleed-through between the channels, we employed low 
laser power (1.5% of maximum power) and sequential collection. For 
all probes and plants organs, the obtained data were corrected for 
background autofluorescence, as determined by negative-control 
signal intensities. All image acquisition was performed using constant 
parameters (laser power, detector gain, emission band, and resolution).

Statistical analyses

One-way ANOVA and Newman–Keuls post hoc tests were used to 
compare growth parameters (including fresh and dry weight of leaves, 
stems, roots, plant, as well as length of roots and shoots) and 
colonization level (total density of endophytes and HPMOs in leaves, 
stems and roots) between treatments (i.e., uninoculated R. sativus – 
Ctr and plants inoculated with HPMOs: L. monocytogenes PCM 
2191/L.m., B. cereus PCM 1948/B.c., E. coli PCM 2561/E.c. and 
S. enterica subsp. enterica PCM 2565/S.e.) depending on the 
cultivation time (1 or 2 weeks). Calculations were performed with the 
Statistica 10.0 software package (StatSoft, 2006).

The effect of treatment (Ctr, L.m., B.c., E.c, S.e.) on the growth 
parameters of R. sativus and the rate of its colonization by endophytes 
and HPMOs was checked with multivariate statistical analysis 
including principal component analysis (PCA) (R software). The 
analyses were performed for samples collected after the first and the 
second week of the experiment. For each PCA, the statistical 
significance was checked using the ‘arleyc/PCAtest’ R package. 
Statistically significant results were used to prepare the PCA plot.

Results

HPMOs affect the growth of Raphanus 
sativus

Inoculation of R. sativus with HPMOs (L.m., B.c., E.c, S.e.) 
negatively affected the investigated plant growth parameters; however, 

the level of impact depended on the plant age (1 or 2 weeks) and the 
species of pathogen (Figures  2–4). Changes in radish growth 
parameters in response to the presence of specific bacterial strain were 
more evident in one-week-old seedlings than in two-week-old 
seedlings (Figures 2–4). One-week-old seedlings upon inoculation 
were characterized by both lower total fresh biomass and decreased 
fresh weight of leaves compared to the control (Ctr, noninoculated 
plants) (Figure  2). Among the tested HPMOs, L. monocytogenes 
influenced the highest number of growth parameters in one-week-old 
radish, including root length (decreased by 39% compared to the 
control variant), stem fresh weight (reduced by 57%) and dry weight 
of leaves, stem and whole plant (decreased by 66, 57 and 43%, 
respectively) (Figures 2–4). The remaining strains negatively affected 
only some growth parameters, e.g., B. cereus reduced plant length (by 
45%), while E. coli decreased stem fresh (by 51%) and dry (by 31%) 
weight (Figures 2–4). In the case of two-week-old plants, S. enterica 
and B. cereus decreased the length of whole plants (23 and 17%) and 
roots (33 and 22%), and E. coli reduced stem fresh (49%) and dry 
(48%) weight (Figures 2–4).

Abundance of endophytes and HPMOs in 
plant tissues of Raphanus sativus: 
cultivation-dependent and 
cultivation-independent methods

Cultivation-dependent methods revealed that the total numbers 
of endophytes and HPMOs in the studied R. sativus organs (roots – R, 
stems – S and leaves – L) were associated with the plant age and the 
bacterial strain chosen for inoculation (Supplementary Figure S1 and 
Tables 2, 3).

The time of plant cultivation significantly affected the total 
abundance of endophytes. Higher numbers of endophytes were noted 
in the roots of one-week-old R. sativus in almost all variants (with the 
exception of plants inoculated with E. coli) compared to stems and 
leaves. The aboveground parts of R. sativus were more intensively 
colonized after 2 weeks of cultivation, with the exception of leaves of 
plants treated with S. enterica and stems of plants inoculated with 
E. coli, where a similar total density of endophytic bacteria was 
observed (Supplementary Figures S1A–C and Table 2).

The inoculation of plants with HPMOs resulted in a decrease in 
the total density of endophytes in the roots of one-week- and 
two-week-old R. sativus compared to the noninoculated control 
variant (for L.m.: 18.7% vs. 56.0%, B.c.: 3.9% vs. 30.8%, S.e: 40.9% vs. 

TABLE 1 Oligonucleotide sequences used in qPCR.

Oligo name Sequence (5  →  3) Detected bacteria Annealing temperature Reference

EcRTF1 GAAGGGAGTAAAGTTAATAC E. coli 57 This study

EcRTR1 AGTATCAGATGCAGTTCC E. coli This study

SeRTF1 TGGTCTGAGAGGATGCCAG S. enterica 59 This study

SeRTR1 GCGGTTATTAACCACACACC S. enterica This study

47F GTG ACA AAT GTG CCG CCA AG L. monocytogenes 63 This study

892R TCC GAG GTT ACC GTC GAT GA L. monocytogenes This study

S-D-Bact-0907-a-S-20 ACG AGC TGA CGA CAG CCA TG Total bacteria 59 ProbeBase

S-D-Bact-1054-a-A-20 AAA CTC AAA GGA ATT GAC GG Total bacteria ProbeBase
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61.6%). Interestingly, in the case of E. coli, the amount of bacteria was 
similar regardless of the cultivation time (Supplementary Figure S1C 
and Table 2). In stems and leaves of one-week-old plants, a similar 
density of endophytes was noted for all tested variants with the 
exception of S. enterica-treated plants (increases of 36.4 and 44.7% 
were observed in stems and leaves, respectively). The presence of 
HPMOs significantly changed the total density of endophytes in the 
aboveground parts of two-week-old plants. The number of endophytes 
in stems and leaves increased in L.m. variant (by 10.8 and 28.2%, 
respectively). Opposite observations were made for the B.c. variant, 
where a decrease in the abundance of bacteria was noted (by 43.1% in 
stems and 68.5% in leaves) (Supplementary Figures S1A,B and 
Table 2).

HPMOs were found in all organs of one-week-old plants, while 
in the case of two-week-old R. sativus, no pathogens were detected 
in specific organs. The absence of L.m., E.c. and S.e. was observed 
in roots. Surprisingly, the leaves of plants inoculated with B.c. and 
S.e. were pathogen-free (Supplementary Figures S1D–F and 

Table  3). In general, HPMOs (excluding B.c.) more efficiently 
colonized the aboveground parts of plants, regardless of their age. 
B.c. preferentially inhabited the roots of two-week-old plants 
(Supplementary Figures S1D–F and Table  3). L. monocytogenes 
showed the highest ability to colonize R. sativus leaves at both 
cultivation times and stems of two-week-old plants compared to 
other tested HPMOs (Supplementary Figures S1D,E and Table 3).

Principal component analysis (PCA) showed a dispersion of 
the investigated variants in the ordination space of PC1-PC2. The 
PC1 and PC2 axes explained nearly 75% (49.52 and 25.10%, 
respectively) of the total variance. PC1 was significant (p value 
0.01) in explaining the variance between the samples. The variables 
having significant loadings on PC1 included root and whole plant 
length, leaf and stem fresh weight and HPMO content in leaves (all 
parameters are marked in the PCA plot with asterisks). The 
inoculation with L. monocytogenes and E. coli exerted a similar 
effect on one-week-old plants, as both were associated (positively 
correlated) with root fresh weight and elevated HPMO density in 

FIGURE 2

Normalized fresh leaves, stems, roots and plant weight of R. sativus inoculated with L. monocytogenes PCM 2191 – L.m., B. cereus PCM 1948 – B.c., E. 
coli PCM 2561 – E.c. and S. enterica subsp. enterica PCM 2565 – S.e. after 1 and 2  weeks of plant cultivation. Significant differences (p  <  0.05, one-way 
ANOVA with Newman–Keuls post hoc comparisons) between the control (noninoculated) and inoculated variants at each time of R. sativus cultivation 
are denoted by different marks (*).
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leaves and to a lesser extent in roots (Figure  5). The impact of 
S. enterica was different because a negative correlation of this 
pathogen with all tested parameters was observed (Figure  5). 
Ordination analysis for samples collected after the second week 
was not statistically significant.

The culture-independent method (qPCR analysis) partially 
confirmed the results obtained with the use of microbiological media. 
In this assay, inoculation with L. monocytogenes also showed no effect 
on the total 16S rRNA gene copy number in either the first or the 
second week of plant cultivation (with the exception of two-week-old 
plants leaves). Similarly, inoculation with E. coli caused an increase in 
the total 16S rRNA gene copy number in leaves of two-week-old 
R. sativus compared to the uninoculated variant (Figure 6). Only the 
presence of S. enterica was associated with a significantly increased 
16S rRNA gene copy number in stems of one-week-old plants 
(Figure 6). Contrary to the results based on cultivation, qPCR showed 
no effect of inoculation with tested strains on 16S rRNA gene copy 

number in stems of two-week-old R. sativus. Additionally, inoculation 
with S. enterica did not influence the 16S rRNA gene copy number in 
leaves of one-week-old plants compared to control variants, but an 
increase in that number was noticed after 2 weeks (Figure 6).

qPCR analysis showed a higher proportion of L. monocytogenes 
and E. coli in relation to the total number of bacteria in plant leaves 
(1 week: L.m. – 0.41% and E.c. – 0.77%; 2 weeks: L.m. – 0.75% and E.c. 
– 20.43%) compared to stems (1 week: L.m. – 0.02% and E.c. – 0.24%; 
2 weeks: L.m. – 0.01% and E.c. – 3.57%) (Figure 7). The distribution 
of S. enterica in leaves (1 week: 4.46% and 2 weeks: 3.80%) and stems 
(1 week: 3.36% and 2 weeks: 4.31%) was similar in both tested 
cultivation variants (1 and 2 weeks) (Figure 7). The relative level of 
L. monocytogenes in leaves and stems was the lowest in comparison to 
the other investigated pathogens. Based on the qPCR results, E. coli 
had the highest ability to colonize leaves of two-week-old R. sativus, 
while S. enterica preferentially colonized the stems of both 
one-week-old and two-week-old plants (Figure 7).

FIGURE 3

Normalized dry leaves, stem, root and plant weight of R. sativus inoculated with L. monocytogenes PCM 2191 – L.m., B. cereus PCM 1948 – B.c., E. coli 
PCM 2561 – E.c. and S. enterica subsp. enterica PCM 2565 – S.e. after 1 and 2  weeks of plant cultivation. Significant differences (p  <  0.05, one-way 
ANOVA with Newman–Keuls post hoc comparisons) between the control (noninoculated) and inoculated variants at each time of R. sativus cultivation 
are denoted by different marks (*).
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Visualization of HPMOs colonization in 
plant organs of Raphanus sativus

To verify and visualize the bacterial colonization pattern of 
R. sativus roots, stems and leaves we used a E. coli, L. monocytogenes 

and S. enterica specific sequences targeting the 16S rRNA as specific 
probes to FISH technique. At first, we optimized the FISH protocol for 
embedded bacteria detection as positive control of reactions 
(Figures  8A,E,I) and next we  localized the bacteria in semithin 
sections of inoculated one-week and two-week-old plants. 

TABLE 2 Total density of endophytic bacteria in leaves, stems and roots of R. sativus for control (Ctr, uninoculated plants) and variants inoculated with 
L. monocytogenes, B. cereus, E. coli and S. enterica after 1 and 2  weeks of cultivation.

Total density of 
endophytes

Organ Ctr L. monocytogenes B. cereus E. coli S. enterica

1 week old seedlings Leaves 2.9134 (0.085) a 3.2486 (0.355) a 2.8216 (0.230) a 3.9860 (0.070) b 4.2157 (0.283) b

Stems 3.3117 (0.004) b 2.8968 (0.114) a 2.8503 (0.062) a 3.5997 (0.751) b 4.5158 (0.034) b

Roots 4.6608 (0.030) c 3.7884 (0.091) b 4.4771 (0.000) b 2.6278 (0.086) a 2.7558 (0.145) a

2 week old seedlings Leaves 4.0012 (0.1351) b 5.1304 (0.0487) c 1.2594 (0.2413) a 5.3859 (0.0518) c 3.8690 (0.1534) b

Stems 3.7128 (0.0906) a 4.1135 (0.0231) b 2.1150 (0.0560) b 3.4370 (0.1185) a 4.6952 (0.0175) c

Roots 3.7321 (0.0210) a 1.6414 (0.2967) a 2.5820 (0.1816) c 3.9635 (0.0189) b 1.4337 (0.2298) a

Significant differences (based on p < 0.05, one-way ANOVA with Newman–Keuls post hoc comparisons) between organs for each cultivation time (1 and 2 weeks) are denoted by different 
letters. Mean values of log10 CFU/g dry weight and standard deviation are presented (n = 3).

FIGURE 4

Normalized aboveground plant length, root length and plant length of R. sativus inoculated with L. monocytogenes PCM 2191 – L.m., B. cereus PCM 
1948 – B.c., E. coli PCM 2561 – E.c. and S. enterica subsp. enterica PCM 2565 – S.e. after 1 and 2  weeks of plant cultivation. Significant differences 
(p  <  0.05, one-way ANOVA with Newman–Keuls post hoc comparisons) between the control (noninoculated) and inoculated variants at each time of R. 
sativus cultivation are denoted by different marks (*).
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FISH-CLSM analysis confirmed in situ presence of all bacteria 
populations in all organs (roots Figures  8B,F,J and stems 
Figures 8C,D,G,H,K,L). The fluorescence spots indicating the presence 
of bacteria were mainly visible in the extracellular matrix of all cell 
layers of roots, stems and leaves. We also detected bacteria in some the 
individual cells (for example, Figures 8C,D,G). Similarly, the strong 
autofluorescence of chloroplasts in leaves completely made impossible 

the precise localization of bacteria in the apoplast or inside the cells 
(not shown). Therefore, in this variant of organs further studies of 
intracellular presence of bacteria at the ultrastructure level in electron 
microscopy are necessary. In all the negative control reactions no 
FISH signals were observed. In an uninoculated R. sativus 1-week 
seedling root and shoot only the autofluorescence of cell walls and the 
chloroplasts are visible (Supplementary Figure S2).

TABLE 3 Density of HPMO in leaves, stems and roots of R. sativus for variants inoculated with L. monocytogenes, B. cereus, E. coli and S. enterica after 1 
and 2  weeks of cultivation.

Density of HPMO Organs L. monocytogenes B. cereus E. coli S. enterica

1 week old seedlings Leaves 4.2605 (0.0395) c 2.8189 (0.0299) c 3.4182 (0.1118) a 1.2007 (0.1738) b

Stems 3.0785 (0.0290) b 2.5676 (0.1049) b 3.891 (0.0461) c 3.0352 (0.1974) c

Roots 1.2007 (0.1738) a 0.94837 (0.0894) a 3.6353 (0.0810) b 0.5773 (0.5774) a

2 weeks old seedlings Leaves 4.8055 (0.0737) c 0.0000 (0.0000) a 3.2275 (0.0625) c 0.0000 (0.0000) a

Stems 3.7984 (0.0661) b 2.0473 (0.0961) b 2.7940 (0.1136) b 3.1491 (0.2654) b

Roots 0.0000 (0.0000) a 2.5396 (0.1085) c 0.0000 (0.0000) a 0.0000 (0.0000) a

Significant differences (based on p < 0.05, one-way ANOVA with Newman–Keuls post hoc comparisons) between organs for each cultivation time (1 and 2 weeks) are denoted by different 
letters. Mean values of log10 CFU/g dry weight are presented (n = 3).

FIGURE 5

PCA ordination of growth parameters and density of endophytes after one (A) and two (B) weeks of R. sativus cultivation. a-g_plant _len, aboveground 
plant length; root_len, root length; plant_len, plant length; f_w_L, fresh leaf weight; f_w_R, fresh root weight; f_w_S, fresh stem weight; f_w_plant, 
fresh plant weight; d_w_L, dry leaf weight; d_w_R, dry root weight; d_w_S, dry stem weight; d_w_plant, dry plant weight; CFU_L_tot, total density of 
endophytes in leaves; CFU_S_tot, total density of endophytes in stems; CFU_R_tot, total density of endophytes in roots; CFU_L_HPMO, density of 
HPMOs in leaves; CFU_S_HPMO, density of HPMOs in stems; CFU_R_HPMO density of HPMOs in roots.
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Discussion

Plants are an attractive niche for many microorganisms, including 
bacteria, fungi, archaea, viruses, and algae (Truong et al., 2021). Many 
studies have examined the colonization of various vegetables, e.g., 
tomatoes, lettuce, cucumbers, and parsley, by individual HPMOs; 
however, in the case of red radish, there is a lack of comparative 
studies regarding the interaction of radish with different microbes, 
including Gram-negative and Gram-positive bacteria (Szymczak et al., 
2014; Truong et al., 2021).

In this study, we  checked the colonization of R. sativus var. 
radicula organs by selected pathogens. The first critical choice 
we made regarded the method of bacterial inoculation. We decided to 
inoculate the plant seeds directly by short-term incubation in 
OD-adjusted HPMO suspensions. Seed inoculation is one of the most 
effective methods of bacterial delivery to plants (O’Callaghan, 2016; 

Luna-Guevara et  al., 2019). Numerous studies have shown that 
vegetable contamination by HPMOs can originate from pathogen 
inoculation into the soil, substrate or water used for plant watering 
(Islam et al., 2004a,b; Jechalke et al., 2019). Our results, based on 
culture-dependent and culture-independent methods, revealed the 
ability of all tested HPMOs, including E. coli, S. enterica, 
L. monocytogenes and B. cereus, to colonize one- and two-week-old 
radish. Torres et al. (2005) stressed that adhesion is the most important 
step in the colonization of plants by inoculated pathogens. All studied 
pathogens are characterized by high adhesion and biofilm formation 
capacity (Gorski et al., 2003; Yaron and Römling, 2014; Antequera-
Gómez et al., 2019; Elpers et al., 2020; Lin et al., 2022). In the adhesion 
process, an important role is assigned to motility and chemotaxis due 
to flagellar rotation ability and the presence of the lipopolysaccharide 
(LPS) layer (Elpers et al., 2020). Liu et al. (2005) confirmed the ability 
of S. enterica and enterohemorrhagic E. coli (EHEC) to attach to 

FIGURE 6

Normalized pEF copy number in leaves and stems of R. sativus after 1 and 2  weeks of plant cultivation. Significant differences (p  <  0.05, one-way 
ANOVA with Newman–Keuls post hoc comparisons) between control and inoculated (inoculated with L. monocytogenes PCM 2191, E. coli PCM 2561 
and S. enterica subsp. enterica PCM 2565) treatments are denoted by different marks (*).

FIGURE 7

Significant differences (p  <  0.05, one-way ANOVA with Newman–Keuls post hoc comparisons) between percentage share of HPMO 
(L. monocytogenes, E. coli, S. enterica) in stem and leaves of R. sativus obtained for two tested times of plant cultivation (1 and 2  weeks). The presented 
values were calculated in relation to total density of bacteria (based on pEF gene copy number) amounting 100%. Standard error (box) and standard 
deviation (whiskars) are shown.
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vegetable seeds. Gorski et  al. (2003) revealed high adherence of 
L. monocytogenes to radish slices, and the highest ability was observed 
in the range of temperatures (20 and 30°C) corresponding to the 
conditions in which we  incubated the seeds in the bacterial 
suspension (26°C).

The next step of plant colonization after the adhesion of pathogens 
to the seed surface is their translocation to internal tissues (Melotto 
et  al., 2014). Many scientists have reported a more intensive 
colonization of internal plant tissues after seed inoculation compared 
to seedling inoculation (Schoeller et al., 2002; Kim et al., 2018). It is 
associated with the occurrence of cracks during root development. 
The cracks are potential places for pathogens to enter the plant. Using 
these natural openings, bacterial invaders may slow the immune 
system reaction or even evade plant immune responses (Truong et al., 
2021). Our studies showed a high level of one-week R. sativus tissue 
colonization by the tested HPMOs (up to approximately 103 and 
104 CFU/g dry weight of shoots and leaves, respectively), which 

corresponds to the abundance of endophytes observed in plants 
growing under natural conditions (Compant et al., 2021). A rapid 
increase in the level of plant colonization by Salmonella and E. coli 
O157:H7, reaching from 0.1 log CFU/g to as high as 6 log units, was 
observed under sprouting conditions (Howard and Hutcheson, 2003). 
Schoeller et al. (2002) determined the growth and survival capacity of 
alfalfa sprouts treated with L. monocytogenes. In this investigation, 
plants showed a drastic increase in the density of pathogenic bacteria 
1 day postinoculation of seeds. In the same study, the inoculation of 
sprouted seeds with L. monocytogenes performed later (on Day 5) did 
not result in such an increase (2002). Similarly, Kim et  al. (2018) 
compared the growth dynamics of the S. enterica population after 
inoculation of alfalfa seeds or fully germinated sprouts. The authors 
found a higher number of pathogens in the case of seed inoculation. 
Undoubtedly, the choice of inoculation method (in our case, direct 
seed inoculation) has a key impact on the level of internal plant tissue 
colonization by bacteria.

FIGURE 8

CLSM (confocal laser scanning microscopy) analysis of bacterial (E. coli, L. monocytogenes, S. enterica) colonization pattern of R. sativus 1-week 
seedling root and shoot detected by FISH. The representative images of the positive control of FISH reaction, bars 5  μm (A,E,I), the localization of 
bacteria in root and in shoot, bars 20  μm (B,D,G,L), bars 10  μm (F,H,J) and bars 50  μm (C,K). The arrows indicate the presence of bacteria in analyzed 
organs: in the extracellular matrix or inside the cells (arrows). The autofluorescence of the chloroplasts are visible (C,D,G,H,K,L), EP, epidermis; CT, 
cortex tissue; ST, stele tissue; P, pith.
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In nature, a higher number of bacteria is observed in the roots 
(from 105 to 107 cultivable bacteria per gram) than in the aboveground 
parts (103–104) (Compant et al., 2021). Our results for the uninoculated 
variant, where only endophytes were present inside the plants, showed 
a high density of bacteria in all radish organs following the trend of 
roots (ap. 104.5) > shoots > leaves (ap. 103) in the first week after sowing 
the seeds. Seeds of most plant species are not axenic and are 
characterized by the presence of bacteria and/or fungi (Truyens et al., 
2015; Pitzschke, 2018). We also observed morphologically different 
bacterial colonies during germination of surface-sterilized radish 
seeds. Schoeller et al. (2002) observed a drastic increase in the total 
number of bacteria after 24 h of sprout development from 
uninoculated seeds (from ca. 3.5 log CFU/g to ca. 8.0 log CFU/g). The 
longer cultivation time was associated with a more equal distribution 
of bacteria in shoots (ap. 103.7) and roots (ap. 103.7) of two-week-old 
R. sativus, while leaves were characterized by the highest density of 
bacteria (104). It is possible that the presence of compounds with 
antimicrobial effects in radish roots may cause the movement of 
bacteria toward the aboveground parts of plants (Beevi et al., 2009). 
Moreover, in variants inoculated with HPMOs, the interaction 
between the tested strains and autochthonous endophytes can 
significantly shape the total number of endophytic microbes, which in 
turn may affect the process of plant colonization by HPMO (Truong 
et al., 2021). The presence of HPMOs significantly decreased the total 
density of bacteria in the roots of one-week R. sativus, while in the 
shoots and leaves, no effect was noted. The exception was a variant 
treated with S. enterica, where an increase in the total density of 
bacteria in stems and leaves of the week-old radish was observed.

The results of our research confirmed the ability of the tested 
pathogens not only to colonize plants but also to move from the roots 
toward the aerial parts. In situ studies using FISH-CLSM revealed the 
presence of HPMOs primarily in apoplast and some cells of roots, 
stems and leaves in the one-week-old inoculated seedlings. Penetration 
ability via apoplast has been observed for many HPMOs including 
E. coli serotype O157:H7 (in case of lettuce and spinach through roots 
and leaves), L. monocytogenes (in romanian lettuce) and S. enterica 
(tomatoes) (Shenoy et  al., 2017; Wright et  al., 2017; Zarkani and 
Schikora, 2021). The translocation of multiple Salmonella serovars 
(including S. Javiana, S. Newport, S. Poona and S. Montevideo) to the 
lower stems of cucumber (3–5 cm) 1 week post inoculation into the 
root zone was observed by Burris et al. (2020). In the case of tomatoes, 
7 days after inoculation, distant migration of S. enterica (reaching up 
to 10 cm) from the soil to the shoots was shown (Zheng et al., 2013). 
There are also reports confirming the ability of L. monocytogenes and 
E. coli to translocate from the root zone to the aboveground part 
(Quilliam et al., 2012; Hofmann et al., 2014; Standing et al., 2014). It 
was previously discussed that this phenomenon depends on various 
factors, including the type of substrate and cultivar, time of inoculation 
and serotype applied (Hirneisen et al., 2012; Burris et al., 2020; Esmael 
et  al., 2023). In this study, E. coli showed the highest capacity to 
colonize roots and stems of one-week-old plants. Most likely, the short 
time of E. coli multiplication (approximately 20 min) influenced the 
obtained result (Dewachter et al., 2018). Our observation is in line 
with results described by Standing et al. (2014). The authors, who 
compared the average density of internalized E. coli O157:H7, 
L. monocytogenes, S. enterica subsp. enterica serovar Typhimurium 
and S. aureus in one-week-old lettuce roots and leaves, found the 
highest abundance of E. coli in the plant roots, while leaves were 

characterized by the highest number of L. monocytogenes (2013). 
Similarly, we  also observed that L. monocytogenes exhibited the 
highest ability to translocate along the plant and colonize leaves in 
both one- and two-week-old plants. Distant translocation of bacteria 
can be associated with flagellum presence and may occur via plant 
vasculature (Melotto et al., 2014). Shenoy et al. (2017) demonstrated 
the high mobility of L. monocytogenes in the vascular system after 
inoculation of romaine lettuce seeds.

The raphanin contained in radish seeds and leaves has an 
antimicrobial effect against several bacteria, including E. coli, 
Pseudomonas pyocyaneus, Salmonella typhi, Bacillus subtilis, S. aureus, 
streptococci and pneumococci, as well as Listeria, Micrococcus, 
Enterococcus, Lactobacillus and Pedicoccus species (Shukla et al., 2011). 
Our research showed a significant effect of plant age (one- or 
two-week-old plants were investigated) on colonization by the tested 
HPMOs. Selected HPMOs had the ability to colonize all organs of 
one-week R. sativus; however, in the case of two-week-old plants, 
we  noted significant changes. Most likely, the concentration of 
antimicrobial compounds in leaves and roots of R. sativus increases 
with the age of the plant. Among the tested HPMOs, S. enterica was 
the most sensitive strain, and its presence was detected only in stems 
of two-week-old R. sativus. A previous study considering the impact 
of R. sativus extracts on bacterial growth confirmed the higher 
sensitivity of S. enterica compared to other pathogens (Lim et al., 
2019). Lim et al. (2019) indicated that R. raphanistrum subsp. sativus 
(radish) extract inhibited the growth of S. enteritidis 110, Cronobacter 
sakazakii KCTC 2949, B. cereus ATCC 10876, and Staphylococcus 
aureus ATCC 6538, while it showed no effect against L. monocytogenes 
ATCC 51776 and E. coli 23,716. The roots of two-week-old plants 
seemed to be a difficult niche for most bacterial strains compared to 
stems and leaves, as only spore-forming B. cereus was able to survive 
in that organ (Moteshareie et al., 2022). Among extracts prepared 
from roots, shoots and leaves of R. sativus, the first one showed the 
greatest antibacterial activity against foodborne pathogens, including 
B. subtilis, S. aureus, Staphylococcus epidermidis, Enterococcus faecalis, 
Salmonella typhimurium, Enterobacter aerogenes, Enterobacter cloacae, 
and E. coli (Beevi et al., 2009). Moreover, Shukla et al. (2011) checked 
the effect of radish root juice on Klebsiella pneumoniae, Staphylococcus 
aureus, Pseudomonas aeruginosa, Enterococcus faecalis and E. coli 
growth. The authors observed a greater antibacterial effect on gram-
negative than gram-positive bacteria, which is in line with our results 
showing that gram-negative strains avoided the colonization of radish 
roots (Shukla et al., 2011).

A plant is a good alternative host for HPMOs, and its colonization 
can be crucial for the survival of pathogens, first, because the plant 
provides a refuge for bacteria when it enters the soil, and second, the 
presence in the plant gives the pathogen a chance for returning to 
herbivorous and omnivorous hosts (Brandl et al., 2013). Rhizosphere 
and endophytic microorganisms significantly influence the growth of 
the host plant (Szymańska et al., 2016). Moreover, HPMOs are also 
considered important regulators of plant productivity (Nautiyal et al., 
2010; Afzal et al., 2019). The plant-HPMO interaction is not fully 
understood, but it has been indicated that plants can recognize human 
enteric pathogens and activate basic defense signaling pathways 
(Brandl et al., 2013). The results of our research suggested that in the 
first week, the presence of HPMOs may cause a pronounced plant 
stress reaction, which was manifested, among the others, by the 
decrease in plant fresh weight. After 2 weeks, the plant response was 
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less noticeable, which may indicate that the plants are adapting to the 
stress caused by the presence of pathogens. Jechalke et  al. (2019) 
showed that lettuce responded to the presence of S. typhimurium 
14,028 s through upregulation of genes associated with the stress 
response and genes related to the plant immune response. Among the 
pathogens studied by us, L. monocytogenes exerted the most 
unfavorable effect on the radish growth parameters. Similar to our 
results, Klerks et al. (2007) observed the inhibition of lettuce seedling 
growth and their biomass reduction after inoculation with Salmonella 
Dublin. Furthermore, the negative impact of HPMOs on many 
different plants, e.g., tomato, romaine lettuce, and Medicago truncatula, 
was previously found (Jayaraman et al., 2014; Deering et al., 2015; 
Simko et al., 2015). Furthermore, the symptoms noticed in plants after 
HPMO inoculation included chlorosis, wilting, tissue necrosis or root 
growth inhibition, which was also observed by researchers (Klerks 
et al., 2007; Schikora et al., 2008; Berger et al., 2011).

In summary, we conclude that all tested HPMOs (E. coli, S. enterica, 
L. monocytogenes and B. cereus) have the ability to colonize radish no 
later than in the first week of its growth. E. coli and L. monocytogenes were 
characterized by the highest ability to migrate along the plant (from roots, 
through shoot to leaves) and to colonize the above-ground plant organs. 
Plant age significantly influenced the distribution of HPMOs in R. sativus 
organs. The tested HPMOs did not colonize the two-week-old radish 
roots (with the exception of B. cereus, which most likely survived due to 
the formation of spores). Only L. monocytogenes and E. coli preferred to 
colonize the leaves of two-week-old radish. Limited colonization of roots 
and leaves of two-week-old R. sativus by HPMOs could be related to the 
presence of compounds with antibacterial properties in these radish 
organs. On the other hand, the presence of pathogens in plant organs 
inhibits the growth of radish, which is manifested by a decrease in growth 
parameters after the first week. Nevertheless, R. sativus can adapt to the 
presence of pathogens, causing no further decrease in the growth rate of 
two-week-old plants.
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SUPPLEMENTARY FIGURE S1

Density of cultivable endophytes (total density of endophytes; (A-C) and 
human pathogenic microorganism (HPMO, including L. monocytogenes 
PCM 2191 – L.m., B. cereus PCM 1948 – B.c., E. coli PCM 2561 – E.c. and S. 
enterica subsp. enterica PCM 2565 – S.e.; (D-F) in the roots, stems and leaves 
of R. sativus after one and two weeks of plant cultivation. Significant 
differences (p < 0.05, one-way ANOVA with Newman-Keuls post hoc 
comparisons) between treatments (Ctr, control, noninoculated; L.m., 
inoculated with L. monocytogenes PCM 2191; B.c., inoculated with B. cereus 
PCM 1948; E.c., inoculated with E. coli PCM 2561 and S.e., inoculated with S. 
enterica subsp. enterica PCM 2565) at each R. sativus organ are denoted by 
different letters (including capital and small letters in the case of one- and 
two-week-old plants, respectively); differences between values obtained for 
each variant of experiment (Ctr, L.m., B.c., E.c. and S.e.) in the case of tree 
tested organs are marked with different marks (*). The mean ± standard 
deviation are presented (n = 3).

SUPPLEMENTARY FIGURE S2

The representative CLSM (confocal laser scanning microscopy) images of the 
negative control of FISH reaction of bacterial (E. coli, S. enterica, L. 
monocytogenes) colonization of an uninoculated R. sativus 1-week seedling 
root and shoot, bars 50 µm (A, B, D, E, G, H) and bars 30 µm (C, F, I). Only the 
autofluorescence of cell walls and the chloroplasts are visible, EP – 
epidermis, CT – cortex tissue, ST – stele tissue, P – pith.
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