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Introduction: Understanding the response of cross-domain co-occurrence 
networks of soil microorganisms to phosphorus stability and the resulting 
impacts is critical in ecosystems, but the underlying mechanism is unclear in 
artificial grassland ecosystems.

Methods: In this study, the effects of four phosphorus concentrations, P0 (0 
kg P ha−1), P1 (15.3 kg P ha−1), P2 (30.6 kg P ha−1), and P3 (45.9 kg P ha−1), on the 
cross-domain co-occurrence network of bacteria and fungi were investigated 
in an artificial Leymus chinensis grassland in an arid region.

Results and discussion: The results of the present study showed that phosphorus 
addition significantly altered the stem number, biomass and plant height of the 
Leymus chinensis but had no significant effect on the soil bacterial or fungal 
alpha (ACE) diversity or beta diversity. The phosphorus treatments all increased 
the cross-domain co-occurrence network edge, node, proportion of positively 
correlated edges, edge density, average degree, proximity to centrality, and 
robustness and increased the complexity and stability of the bacterial-fungal 
cross-domain co-occurrence network after 3 years of continuous phosphorus 
addition. Among them, fungi (Ascomycota, Basidiomycota, Mortierellomycota 
and Glomeromycota) play important roles as keystone species in the co-
occurrence network, and they are significantly associated with soil AN, AK and 
EC. Finally, the growth of Leymus chinensis was mainly due to the influence of 
the soil phosphorus content and AN. This study revealed the factors affecting 
the growth of Leymus chinense in artificial grasslands in arid areas and provided 
a theoretical basis for the construction of artificial grasslands.
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1 Introduction

Phosphorus (P) is a crucial mineral element necessary for the 
growth and development of plants within terrestrial ecosystems 
(Wang et al., 2017). However, the proportion of phosphorus in the soil 
that plants can directly absorb and utilize is very low (Heuer et al., 
2017; Luo et al., 2019). Many studies have shown that the cooperation 
of bacteria and fungi can not only promote the absorption of 
phosphorus by plants but also play a key role in plant phosphorus 
uptake (Rashid et al., 2016; Anzuay et al., 2017; Ceci et al., 2018). 
Furthermore, climate change also has an important impact on the 
healthy growth of plants (Deveau et al., 2018). Microorganisms in the 
soil demonstrate a remarkable level of sensitivity to changes in their 
immediate surroundings. These alterations in the environment can 
directly or indirectly influence the range of species within the 
microbiome, as well as their diversity in terms of structure and 
function (Bragazza et al., 2012; Deveau et al., 2018; Guo et al., 2018). 
It has been shown that under phosphorus addition, there is a 
significant response from the microbial community (Li et al., 2015;  
Tian et  al., 2015). The exact mechanism through which soil 
microorganisms interact in artificial grasslands under phosphorus 
addition conditions has not been determined. Therefore, it is 
important to explore the response of microbial co-occurrence 
networks to phosphorus addition and its effect on artificial grasslands 
to develop a rational fertilization program.

The community of microbial species in the soil environment is not 
only rich and diverse but also complex (Faust and Raes, 2012). 
Co-occurrence network analysis is a method for describing complex 
microbial community structures and can be  used to visualize the 
relationships between microbial communities and reveal symbiotic 
relationships and influencing factors (Fuhrman, 2009; Zhou et al., 
2010). This method has been used to explore microbial interactions in 
soil environments (Ma et al., 2018). For example, it has been shown 
that positive interactions in the bacterial-fungal mutualism network 
are enhanced and negative interactions are reduced after exogenous 
nutrient addition, which may be due to the fact that nutrient addition 
enriches the trophic structure of the community and eases competition 
(Banerjee et al., 2016a). This method can be used to calculate the 
influential keystone species in the network (Banerjee et al., 2016b). 
Each node in a co-occurring network can be assigned a role based on 
its topological attributes, where the topological characteristics are its 
connectivity within and between network modules. These keystone 
species are highly connected groups that have significant spatial and 
temporal effects on the stability, structure, and function of microbial 
communities (Banerjee et al., 2018; Wagg et al., 2019). These groups 
not only provide communities with greater biological connectivity but 
also serve as important indicators of community change. 
Co-occurrence network complexity can be assessed by correlation 
network scores such as those derived from connectivity and clustering 
elements that indicate connectivity among taxa (ASVs). The keystone 
species in microbial communities are highly important for ecosystems. 
One study revealed that the keystone species of the microbial 
community are correlated with soil health and quality (Liu et  al., 
2022). Notably, long-term fertilization can change the key groups in 
the co-occurrence network (Lin et al., 2019), and changes in keystone 
species may lead to changes in the structural and functional diversity 
of microbial communities (Herren and McMahon, 2018; Fan et al., 
2019). For example, keystone species in the microbial community 

have been shown to be directly related to the rate of soil nitrogen 
mineralization and to regulate the divergent-convergent trajectory of 
residue chemistry (Yang et  al., 2021; Wang et  al., 2023a). 
Co-occurrence networks are widely used to study microbial 
community interactions and classify important microorganisms in the 
soil. However, most related studies have focused on analyzing bacteria 
and fungi as separate groups, failing to consider the interrelationships 
between them. Understanding the interactions between bacteria and 
fungi is crucial for a comprehensive understanding of 
ecosystem dynamics.

Leymus chinensis is a perennial C3 plant that has a strong ability 
to adapt to saline and drought conditions (Baoyin et al., 2014; Li et al., 
2016). Grassland ecosystem protection and restoration have significant 
potential for managing and enhancing Xinjiang’s grassland 
ecosystems. In arid regions, we  investigated whether phosphorus 
supplementation affects the composition of soil microbial 
communities and keystone species, resulting in changes in the 
structure of the cross-domain bacteria–fungus co-occurrence network 
and influencing the growth of Leymus chinensis. We hypothesized that 
(1) P addition affects soil environmental factors and the growth of 
Leymus chinensis, (2) P addition changes the co-occurrence network 
structure, and (3) P addition affects the composition and diversity of 
keystone species.

2 Materials and methods

2.1 Study area

Our test site is located at the Sanping Experimental Base of 
Xinjiang Agricultural University, Urumqi, Xinjiang 
(87°35′25″E，43°93′31″N, altitude 580 m). Situated in the Eurasian 
hinterland, the region experiences a prototypical arid continental 
climate, with an average annual temperature measuring 7.2°C. The 
temperature can soar as high as 42°C or plummet to as low as 
−38°C. The area benefits from ample sunlight, with an annual 
accumulated temperature of approximately 3400°C and a sunshine 
duration of 2829.4 hours. Precipitation levels average 228.8 mm 
annually, and evaporation stands at 2647 mm, creating favourable 
conditions for the cultivation of diverse crops (Li et al., 2023). The 
tested soil is calcic soil, and the soil organic matter content is 8.12 
g·kg−1. The content of available phosphorus was 11.22 mg·kg−1, 
available nitrogen was 26.75 mg·kg−1, available potassium was 164.25 
mg·kg−1, and the pH value was 8.2.

2.2 Experimental design

Leymus chinensis (Zhongke No. 1) seeds were obtained from the 
Hutubi Experimental Station, which belongs to Xinjiang Jinfangyuan 
Grassland Ecotourism Development Co., Ltd. and were used as test 
material in this study. The experimental site was established in 
October 2019. The phosphorus gradient had four levels: P0 (0 kg P 
ha−1), P1 (15.3 kg P ha−1), P2 (30.6 kg P ha−1), and P3 (45.9 kg P ha−1). 
The fertilizer used was mono-ammonium phosphate, and the nitrogen 
treatment was unified at each of the four phosphorus levels (150 kg N 
ha−1); the nitrogen fertilizer used was urea, and each year was divided 
into spring fertilization and autumn fertilization, of which 50% 
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nitrogen fertilizer was applied in spring and 40% phosphate fertilizer 
was applied, while the rest were applied in autumn. The plants were 
randomly distributed, each with an area of 5 m*4 m, and there was a 
1 m isolation zone between them.

2.3 Sample collection

Soil samples were collected in the third year after Leymus chinensis 
construction (July 12, 2022). A soil auger (with a length of 20 cm and 
an inner diameter of 4 cm) was used to collect 0–20 cm of soil from 
each plot, for a total of five points in each plot. Then, the soil was 
mixed together evenly and partially loaded into 5 mL centrifuge tubes 
and placed into ice boxes. The samples were subsequently transported 
to the laboratory and stored at −80°C for DNA extraction. The other 
part was put into self-sealing bags, labeled for direct return to the 
laboratory to dry naturally and stored at room temperature for the 
determination of soil physicochemical properties. A 1 × 1 m square 
was used to select a representative Leymus chinensis plant with 
uniform growth in the plot, and each experimental treatment was 
repeated three times. The stem number of Leymus chinensis in each 
square was recorded, the plant height was measured, and then they 
were killed at 105°C for 30 min and finally dried at 70°C to a constant 
weight and the weight was recorded.

2.4 Index measurement

2.4.1 Soil physical and chemical property indices
At the College of Resources and Environment, Xinjiang 

Agricultural University, an analysis was conducted on the soil samples 
to examine their physical and chemical properties. These properties 
were determined in accordance with the guidelines outlined in the 
“Soil Agricultural Chemical Analysis” document (Bao, 2000). The 
values of pH and EC were measured using a potentiometry technique 
at a soil–water ratio of 1:5. The leaching of sodium bicarbonate and 
the molybdenum-antimony sulfate resistance colorimetric method 
were employed to determine the available phosphorus (AP) in the soil. 
The ammonium acetate extraction method coupled with flame 
photometry was utilized to determine the available potassium (AK) 
in the soil. The alkaline hydrolysis diffusion method was employed to 
determine the available nitrogen (AN), while the molybdenum 
antimony colorimetric method was used to determine the total 
phosphorus (TP) concentration. An elemental analyzer (EA3000) was 
used to determine the total carbon (TC) and total nitrogen (TN) in 
the soil.

2.4.2 Extraction of soil DNA
We used a TGuide S96 magnetic bead method DNA extraction kit 

(Tiangen Biochemical Technology (Beijing) Co., Ltd., model: DP812) 
to complete the extraction of soil nucleic acids according to the 
manufacturer’s instructions, after which an enzyme labeling 
instrument (model: synergyHTX) was used to determine the 
concentration of nucleic acids. DNA samples from bacteria and fungi 
were analyzed using specific primer sets to amplify the target gene 
regions. For the bacterial 16S rRNA gene V3-V4 region, the primers 
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACT 
ACHVGGGTWTCTAAT-3′) were utilized (Quast et al., 2013). In the 

case of fungi, the region with high variability in the ITS gene was 
targeted using the primers ITS1F (5′-CTTGGTCATTTAGAG 
GAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′) to 
amplify the ITS1 region of the 18S rRNA gene (Koljalg et al., 2013). 
After amplification, the integrity of the PCR products was tested by 
electrophoresis with agarose at a concentration of 1.8%, and a 
sequencing library was established quantitatively and uniformly. The 
established library was first inspected and subsequently sequenced on 
an Illumina NovaSeq 6000.

2.4.3 Computational analysis
To preprocess the data, we employed Trimmomatic v0.33 software 

to filter the raw reads obtained from sequencing. Cutadapt 1.9.1 
software was subsequently used to detect and eliminate primer 
sequences, resulting in clean reads devoid of any primer sequences. 
Then, paired-end sequence splicing was performed with Usearch v10 
software to concatenate overlapping clean reads from each sample, 
and length filtration was applied based on the specific ranges in 
different regions. Finally, the final valid data (nonchimeric reads) were 
obtained by denoising and removing chimeric sequences using the 
dada2 method in QIIME2 2020.6 software (Callahan et  al., 2016; 
Bolyen et al., 2019).

2.5 Data analysis

Univariate analysis of variance (LSD for multiple comparisons) 
was used for soil physicochemical property and microbial alpha 
diversity data. Beta diversity was analyzed by nonmetric 
multidimensional scaling (NMDS) with “vegan” in R and Bray–Curtis 
dissimilarity, and the differences in microbial communities under 
different phosphorus treatments were tested by ANOSIM. Correlations 
between keystone species at the phylum level abundance and soil 
physicochemical properties determined via redundancy analysis 
(RDA) (performed with Canoco software). Relationships between 
environmental factors and topological properties of the co-occurrence 
network were analyzed based on Pearson correlation-based analysis. 
In addition, we used the “relaimpo” package in R to evaluate the effects 
of soil physicochemical properties, microbial diversity and keystone 
species in the bacteria–fungus cross-domain co-occurrence network 
on the growth of Leymus chinensis (Jiao et al., 2019).

The relative abundances of bacteria and fungi were screened 
before conducting the ecological network analysis. To ensure the 
accuracy of the network analysis, only the top 0.1% of the bacterial 
and fungal taxa were chosen based on their relative abundance. 
Additionally, more than 60% of the soil samples were included in the 
network analysis (Yang et al., 2022). We analyzed the bacterial-fungal 
cross-domain co-occurrence network under different fertilization 
conditions. First, the “phyloseq” package in R was used to construct 
the data frame for bacterial and fungal ASVs, and the correlation 
between the ASVs of bacteria and fungi was calculated using the 
“ggClusterNet” software package (Spearman correlation was used, 
R2 > 0.9; p < 0.05) (Wen et al., 2022). The networks were evaluated by 
calculating their topological characteristics, including the number of 
edges, average degree, and average path length, Finally, visualization 
with Cytoscape 3.9.1. Robustness and natural connectivity are used to 
determine the stability of the network, and nodes are randomly 
removed from the constructed co-occurrence network to describe the 
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natural connectivity changes. Robustness was calculated by randomly 
removing network nodes (50% of nodes were removed) as the ratio 
between natural connectivity and nonremoval (Deng et  al., 2012; 
Wang et al., 2023). Keystone species were identified as network hubs 
and module hubs based on the intramodular connectivity (Zi) and 
intermodular connectivity (Pi) of bacteria-fungi cross-domain 
co-occurrence networks. Connectors have Pi values higher than 0.62, 
while module hubs have Zi values greater than 2.5. Conversely, 
peripherals are characterized by Pi values less than 0.62 and Zi values 
less than 2.5 (Cong et al., 2015; Shi et al., 2020a).

3 Results

3.1 Effects of phosphorus on soil 
physicochemical properties, growth of 
Leymus chinensis

Phosphorus addition significantly increased soil nutrients at 
0–20 cm in the artificial Leymus chinensis grassland (Table  1). 
Compared with P0, AP, AN and TP increased with the addition of 
phosphorus, increasing by 58.02%–137.61%, 2.45–22.47% and 
0–24.32%, respectively. Phosphorus addition had no significant effect 
on the soil pH, EC, or TN (p > 0.05). Phosphorus significantly changed 
the growth of Leymus chinensis (Table  2). Compared with P0, 
phosphorus addition enhanced the number of stems, biomass, and 
plant height of Leymus chinensis in by 43.69%–54.96%, 10.20%–
24.04%, and 12.38%–23.04%, respectively.

3.2 Effects of phosphorus treatments on 
the diversity of soil bacteria and fungi

Through high-throughput sequencing, 959,619 and 935,153 
effective chimeric sequences were obtained for bacteria and fungi 
from 12 soil samples, respectively, among which 958,122 (99.84%) and 
931,844 (99.65%) were high-quality sequences. The OUT dilution 
curve was used to reflect whether the test results covered all taxonomic 
groups, and the results of the dilution curve showed that the 
sequencing data covered all taxonomic groups (Figures 1A,B).

There was no significant effect (p > 0.05) on the bacterial or fungal 
abundance (ACE) or diversity (Simpson) after 3 years of continuous 

phosphorus addition (Table  3). The overall structure of the soil 
microbial communities was analyzed based on the Bray–Curtis 
variability (NMDS) method, which revealed differences in the 
structure of bacteria and fungi at different phosphorus concentrations; 
however, according to the ANOSIM test results, phosphorus did not 
significantly (p > 0.05) change the beta diversity of the bacterial and 
fungal communities (Figures 1C,D).

3.3 Effect of phosphorus addition on the 
bacterial-fungal cross-domain 
co-occurrence network

The complexity of the bacteria–fungi cross-domain co-occurrence 
network differed significantly under the addition of different levels of 
phosphorus (Figure  2; Table  4). The P0 co-occurrence network 
contained 592 edges among 11,846 nodes, and the percentage of 
positive edges was 52.11%. Edges, nodes and average degree were all 
greater than those of P0. An elevated topological metric can directly or 
indirectly indicate an increase in the stability and intricacy of the 
co-occurrence network or a decrease in its stability and complexity. 
Stability was also assessed by network robustness natural connectivity, 
which was highest at P3 (Figure  3A). By calculating the natural 
connectivity of the network through the randomized removal of nodes, 
it was observed that the network’s natural connectivity decreased with 
an increasing number of removed nodes. The highest natural 
connectivity was achieved at P0 and increased as the concentration of 
phosphorus added increased (Figure 3B). Among the co-occurrence 
networks associated with different phosphorus concentrations, 
we found that the nodes associated with bacteria were much more 
abundant than those associated with fungi; moreover, the proportion 
of positively correlated edges first increased and then decreased, and 
that associated with P2 was the highest.

3.4 Relationships between soil physical and 
chemical properties, keystone species and 
network topological characteristics

By analyzing the importance of nodes in the dominant network, 
key nodes (network hubs, module hubs, and connectors) were 
identified (Figure 4). In this study, we found that keystone species 

TABLE 1 Effects of different phosphorus concentrations on soil physical and chemical properties.

Treatment pH EC (μS cm−1) AP (mg  kg−1) AN (mg  kg−1) AK (mg  kg−1)

P0 8.04 ± 0.06a 223.30 ± 17.63a 15.34 ± 4.08c 46.10 ± 3.63c 171.91 ± 6.149b

P1 8.05 ± 0.02a 188.16 ± 11.98a 24.24 ± 2.93b 47.23 ± 2.49bc 197.63 ± 8.06a

P2 8.08 ± 0.02a 227.23 ± 37.08a 25.02 ± 1.00b 54.15 ± 4.02ab 190.15 ± 23.53ab

P3 8.09 ± 0.01a 199.07 ± 30.67a 36.45 ± 3.26a 56.46 ± 5.67a 177.56 ± 7.40ab

Treatment TP (g  kg−1) TN (g  kg−1) TC (g  kg−1) C/N

P0 0.37 ± 0.00b 0.14 ± 0.02a 7.33 ± 0.60a 52.64 ± 5.47a

P1 0.37 ± 0.01b 0.14 ± 0.01a 6.89 ± 0.09ab 48.63 ± 2.93ab

P2 0.42 ± 0.01ab 0.15 ± 0.01a 6.50 ± 0.11b 43.75 ± 1.07b

P3 0.46 ± 0.06a 0.15 ± 0.01a 7.60 ± 0.55a 51.84 ± 5.10a
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were mainly concentrated in module hubs. These species were found 
in 56 ASVs in the fungal kingdom, mainly Ascomycota, Basidiomycota, 
Mortierellomycota, and Glomeromycotan. At these taxa levels, 
we identified 50 keystone genera (Schedule 1). The relative abundance 
of keystone species increased under phosphorus-addition conditions 
compared with that under P0 conditions (Figure 5A). The RDA results 
revealed significant relationships between keystone species and EC 
(p < 0.01) and between AN and AK (p < 0.5) (Figure 5B).

Soil physical and chemical properties and co-occurrence network 
topological characteristics were analyzed based on Pearson 
correlation, and the results showed that soil C/N pair network edges 
and centralization closeness, AN, pH, and TN pair robustness, and AK 
had a significant relationship with average path length and degree 
centrality, while TC had a significant relationship with centralization 
closeness (Figure 5C) (Schedule 2).

3.5 Effects of soil physical and chemical 
properties and network keystone species 
on the growth of Leymus chinensis

The effects of soil physicochemical properties, microbial diversity 
and keystone species in the bacterial-fungal cross-domain 
co-occurrence network on the growth of Leymus chinensis were 
analyzed using multiple regression models (Figure  6). The results 
showed that soil nutrients were the main factors affecting the growth 
of Leymus chinensis plants under the different phosphorus addition 

TABLE 2 Effects of different phosphorus concentrations on the stem 
number, biomass and plant height of Leymus chinensis.

Treatment Stem 
number 

(plant/m2)

Biomass  
(g/m2)

Plant 
height 
(cm)

P0 551.70 ± 11.14b 457.20 ± 15.29b 54.68 ± 1.20c

P1 792.75 ± 33.30a 503.85 ± 9.95ab 61.45 ± 0.73b

P2 810.47 ± 11.89a 559.97 ± 29.62a 62.18 ± 1.31b

P3 854.90 ± 12.08a 567.10 ± 21.09a 67.28 ± 1.61a

FIGURE 1

Analysis of soil bacterial and fungal diversity. (A,B) Show bacterial and fungal dilution curves. Nonmetric multidimensional scale (NMDS) analysis was 
conducted using the Bray–Curtis difference method. (C,D) Show the differences in bacterial and fungal microbial communities, respectively. ANOSIM 
was used to test the differences in microbial communities under different fertilization gradients.
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gradients. For example, soil AP, TP and AN were the main variables 
affecting stem number, biomass and plant height. However, most of 
the keystone species in the co-occurrence network exhibited a 
negative correlation with the growth of Leymus chinensis. For example, 
the effects of Glomeromycotan on the stem number and biomass of 
Leymus chinensis were negatively correlated.

4 Discussion

4.1 Effects of phosphorus on soil 
physicochemical properties, Leymus 
chinensis growth and microbial diversity

The addition of phosphorus to grassland ecosystems can 
supplement the nutrients needed by plants, thereby improving soil 
fertility and productivity. The results of this study showed that pH, AP, 
AN, TP and TC increased with the addition of phosphorus (Table 1). 
These results are consistent with those of previous studies (Yu et al., 
2009; Zhang et  al., 2019; Jiang et  al., 2022). These findings may 

be attributed to the concentration of phosphorus added and residual 
absorption by Leymus chinensis (Zhao et al., 2014; Shi et al., 2020b). 
In our study, phosphorus significantly affected the growth of Leymus 
chinensis (Table 2) because phosphorus is involved in many metabolic 
processes during plant growth, such as photosynthesis and other 
important life processes (Hasan et al., 2016; Li et al., 2016).

In our study, we examined how different levels of phosphorus 
affect the diversity of soil microbial communities in arid regions. 
We focused on engineered Leymus chinensis ecosystems and analyzed 
both alpha and beta diversity (Table 2) (Figures 1C,D). Changes in 
soil phosphorus content can directly or indirectly affect microbial 
species richness and diversity (DeForest and Scott, 2010; Luo et al., 
2015). Our results showed that phosphorus addition did not 
significantly (p > 0.05) affect soil bacterial or fungal abundance (ACE) 
or diversity (Simpson), consistent with previous results, this is due to 
the strong buffering capacity of soils, where soil properties stabilize 
quickly after shorter nutrient additions, so exploring soil microbial 
changes in response to the environment requires long-term 
investigations (Xia et  al., 2020; Ma et  al., 2022). Changes in soil 
microbial richness may be directly or indirectly caused by changes in 

TABLE 3 Effects of different phosphorus concentrations on the alpha diversity of bacteria and fungi.

Bacteria Fungi

Treatment ACE Simpson ACE Simpson

P0 1569.41 ± 18.96a 0.998 ± 0.000a 383.35 ± 26.86a 0.956 ± 0.012a

P1 1611.93 ± 60.33a 0.998 ± 0.000a 375.72 ± 23.98a 0.962 ± 0.018a

P2 1646.28 ± 18.83a 0.997 ± 0.001a 384.27 ± 39.91a 0.942 ± 0.043a

P3 1552.56 ± 85.05a 0.997 ± 0.000a 387.01 ± 26.39a 0.963 ± 0.004a

FIGURE 2

Cross-domain co-occurrence network of bacteria-fungi under different phosphorus level treatments.
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environmental factors, such as pH (Gao et al., 2019; Wang et al., 
2023b). P has no significant effect on soil pH for three consecutive 
years according to our results. The different phosphorus treatments 
had no significant effect on the microbial beta diversity (p > 0.05) 
(Figures  1C,D). It can be  inferred that the response of the soil 
microbial community to phosphorus addition is low (Widdig et al., 
2020), this because changes in soil microbial communities under 
phosphorus conditions are mainly due to nitrate dominance (Xia 
et al., 2020).

4.2 Effects of phosphorus addition on 
keystone species in co-occurrence 
networks

Co-occurrence network keystone species can have an enormous 
impact on other microorganisms and play an important role in 

maintaining ecosystem function (Berry and Widder, 2014; Ma et al., 
2016; Banerjee et  al., 2018). Keystone species richness in the 
co-occurrence network varies under different phosphorus conditions 
(Figure  5A), the fungal community structure under phosphorus 
conditions is affected by AN (Huang et al., 2016; Ai et al., 2018; Wu 
et al., 2023), which is consistent with our results. Basidiomycota and 
Mortierellomycota are closely related to soil pH, and phosphorus 
addition affects soil pH and thus abundance (Deng et al., 2021; Tarin 
et al., 2021). Some studies have shown that Ascomycota can promote 
soil nutrient cycling (Guo et al., 2020; Chang et al., 2022), this is in line 
with our findings that its abundance is positively correlated with soil 
nutrient content (Figure 5B). Glomeromycotans belong to a phylum of 
arbuscular mycorrhizal fungi that promote nutrient uptake (Spatafora 
et al., 2016; Wipf et al., 2019; Muneer et al., 2020). We speculate that 
the alteration of soil nutrients directly or indirectly promotes its 
mutually beneficial relationship with Leymus chinensis, thus affecting 
its richness.

TABLE 4 Topological characteristics of the bacterial–fungal cross-domain co-occurrence network under phosphorus addition.

Network metrics P0 P1 P2 P3

Edges 11,846 12,176 13,961 11,978

Num pos edges 6,173 6,285 8,181 6,026

Num neg edges 5,673 5,891 5,780 5,952

Positive (%) 52.11% 51.62% 58.60% 50.31%

Nodes 592 598 597 598

Bacteria nodes 505 511 511 512

Fungus nodes 87 87 86 86

Edge density 0.068 0.068 0.078 0.067

Average degree 40.02 40.72 46.77 40.06

Average path length 1.78 1.75 1.75 1.77

Degree centrality 0.30 0.21 0.26 0.29

Centralization betweenness 0.0053 0.0023 0.0039 0.0035

Centralization closeness 0.65 0.74 0.83 0.64

FIGURE 3

Co-occurring network stability. (A) Shows the robustness of the co-occurrence network (where 50% of the nodes are removed), with an average of 
±SE and n  =  3. (B) Is the change between the natural connectivity of the co-occurring network and the number of removed nodes.
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FIGURE 5

Keystone species abundance, keystone species and environmental factors and network topological characteristics and environmental factor 
relationships. (A) Is the relative richness at the key phylum level. (B) RDA of keystone species and environmental factors. (C) Based on the relationship 
between Pearson correlation environmental factors and cooccurrence network topological features. * Indicates that the significance level is p  <  0.05, 
** Indicates that the significance level is p  <  0.01.

FIGURE 4

Effects of the addition of different phosphorus levels on the keystone species in the cooccurrence networks. Nodes are classified to identify keystone 
species in the network based on connectivity within a co-occurring network module (Zi) and connectivity between modules (Pi); connectors s: Pi > 
0.62, module network hubs: Pi > 0.62, Zi  >  2.5 and module hubs: Zi  >  2.5 are identified as keystone species.
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4.3 Influence of phosphorus addition on 
the co-occurrence network

Microbial co-occurrence network analysis can be used not only 
to determine the interrelationships among groups but also to 
identify the keystone species that are closely related to the microbial 
community (Liu et al., 2013; Banerjee et al., 2016a,b). The results 
of this study showed that phosphorus treatment increased the 
stability and complexity of the bacteria–fungi co-occurrence 
networks. We hypothesize that this difference may be attributed to 
the increase in and accumulation of soil nutrients, which promote 
cooperation between microbial communities (Johnson, 2010; 
Trivedi et al., 2020; Lastovetsky et al., 2022). Among the keystone 
species in this study, Glomeromycotan is an arbuscular mycorrhizal 

fungus (AMF), and interactions between plants and AMF occur 
through the participation of many microorganisms that have 
positive effects on plant nutrient uptake. For example, the supply of 
phosphorus by AMF is facilitated by interactions with phosphorus-
soluble bacteria. Phosphorus-soluble bacteria can move along AMF 
mycelia to reach organophosphorus patches that plants cannot 
reach (Zhang et al., 2014; Paul et al., 2017; Qian et al., 2019; Jiang 
et al., 2021). However, in our study, Glomeromycotan abundance 
was negatively correlated with the growth of Leymus chinensis 
(Figure  6). When Glomeromycotan plants form a symbiotic 
relationship with the root system of Leymus chinensis, they need to 
rely on the absorption of phosphorus and other nutrients and 
Leymus chinensis nutrient exchange to obtain carbon to maintain 
normal life activities, and when the phosphorus content in the soil 
increases, the symbiotic relationship between the two plants will 
increase (Williams et al., 2016; Qin et al., 2020). The reciprocal and 
antagonistic relationships between microbial community species 
can be  represented by positive and negative correlation edges, 
respectively, in the co-occurrence network (Xu et al., 2017). Our 
study showed that P2 had the highest proportion of positively 
correlated edges (Table  3), possibly because the addition of 
phosphorus increased soil nutrients, thereby alleviating 
competition between microbial communities (Banerjee et  al., 
2016a,b). In addition, the keystone species in the co-occurrence 
network under different phosphorus levels were all fungi, which 
may be due to the long life cycle of fungi and the slow community 
replacement rate. In addition, changes in soil environmental factors 
caused by phosphorus addition had a relatively small impact on 
fungi, and the community had a high diffusion ability (Stegen et al., 
2013; Zhou and Ning, 2017).

5 Conclusion

The use of microbial co-occurrence networks to determine the 
response of microbial communities to environmental changes is a 
novel approach. However, the response mechanism of microbial 
co-occurrence networks to phosphorus addition in artificial grassland 
ecosystems and the resulting impact systems are unclear. The results 
of the present study showed that phosphorus significantly affects the 
growth of Leymus chinensis but has no significant effect on soil 
bacterial or fungal alpha or beta diversity. The keystone species in the 
co-occurrence network exhibited significant relationships with AN, 
AK, and EC, and phosphorus enhanced the stability and complexity 
of the bacteria–fungi cross-domain co-occurrence network. The 
growth of artificial Leymus chinensis was mainly due to the soil 
phosphorus content and effects of AN. This study revealed the factors 
influencing the growth of Leymus chinensis in artificial grasslands in 
arid zones and provided a theoretical basis for the construction of 
artificial grasslands.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/supplementary material.

FIGURE 6

Analysis of soil physicochemical and microbial diversity and the 
contributions of keystone species in the co-occurrence network to 
the growth of Leymus chinensis based on correlation and optimal 
multiple regression models. The size of the circle indicates the 
significance of the variable, and the color represents Spearman’s 
correlation.
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