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Introduction: Ginseng (Panax ginseng C.A. Meyer) has multiple effects on

human health; however, soil degradation seriously affects its yield. Trichoderma

spp. play an important role in improving plant biomass by influencing the soil

environment. Therefore, it is necessary to screen efficient Trichoderma strains

that can increase ginseng biomass and determine their mechanisms.

Methods: Herein, we selected six Trichoderma species (T. brevicompactum,

T. velutinum, T. viridescens, T. atroviride, T. koningiopsis, and T. saturnisporum)

isolated from ginseng rhizosphere soil, and evaluated their growth promoting

effects on ginseng and their influence on the microbiome and chemical

attributes of the ginseng rhizosphere soil.

Results: Except for T. saturnisporum (F), compared with the control, the other

five species increased ginseng biomass. In terms of chemical properties, the

pH value, available potassium content, and available phosphorus content in

the ginseng rhizosphere soil increased by 1.16–5.85%, 0.16–14.03%, and 3.92–

38.64%, respectively, after root irrigation with spores of Trichoderma species.

For the soil microbiome, fungal Chao1 and Ace richness indices decreased.

Application of Trichoderma enhanced the relative level of Proteobacteria, but

reduced the relative level of Ascomycota. At the genus level, application of

Trichoderma enhanced the relative levels of Sphingomonas, Blastomonas, and

Trichoderma, but reduced the relative level of Fusarium. Available K and available

P were the most important elements that affected the structure of the bacterial

community, while total K was the most influential element for the structure of

the fungal community structure.

Conclusion: The results indicated that the application of Trichoderma spp. could

increase soil nutrients and regulate the structure and composition of the soil

microbial community, thereby enhancing the biomass of ginseng. The results

will provide guidance for soil improvement in ginseng cultivation.

KEYWORDS

ginseng, Trichoderma spp., biomass promotion, soil nutrients, rhizosphere microbiome

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1283492
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1283492&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.3389/fmicb.2024.1283492
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1283492/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1283492 January 30, 2024 Time: 10:37 # 2

Zhang et al. 10.3389/fmicb.2024.1283492

1 Introduction

Ginseng has multiple beneficial effects on human health (Yu
et al., 2017; Riaz et al., 2019). Ginseng has been artificially cultivated
in large areas because of its high medicinal value (Sun et al., 2017).
However, over time, cultivation of ginseng has led to decreased
soil nutrients and beneficial soil microorganisms, but an increase
in harmful microorganisms, especially those causing soil-borne
diseases (Wang et al., 2020). To reduce the incidence of diseases and
increase production, chemical fertilizers and pesticides have been
widely used; however, this has caused problems such as persistence
of pesticide residues and environmental pollution (Tang, 2020; Kai
and Adhikari, 2021). Therefore, how to promote ginseng growth
safely and effectively has become an important issue in ginseng
cultivation (Chen et al., 2016).

Trichoderma spp. are widely distributed in soil, with functions
such as inhibiting soil borne pathogens, improving soil, and
promoting plant growth (Javeria et al., 2020; Jamil, 2021). Wu
et al. (2022) found that Trichoderma applied after fumigation
significantly improved cucumber yield and the soil chemical
properties. Liu L. et al. (2022) found that biofertilizer containing
T. harzianum increased the yield and quality of Bupleurum
chinense, increased the content of available nutrients in the
rhizosphere soil, and enhanced the activities of sucrase and catalase.
Trichoderma spp. isolated from ginseng rhizosphere soil could
improve the soil nutrient status and further affect the diversity of
the soil fungal community (Ma et al., 2023).

However, there are few reports on whether Trichoderma species
have broad spectrum biomass promoting effects on ginseng,
and their relationship with the microbiome and physicochemical
properties of ginseng rhizosphere soil. In the present study, we
selected six Trichoderma species isolated from ginseng rhizosphere
soil to evaluate their biomass promoting effects on ginseng and
their influence on the microbiome and physicochemical properties
of the ginseng rhizosphere soil. The results will provide guidance
to improve the soil for ginseng cultivation and the development of
biological fertilizers.

2 Materials and methods

2.1 Experimental materials

The Trichoderma strains were provided by the Institute of
Special Wild Economic Animal and Plant Sciences, Chinese
Academy of Agricultural Sciences (Changchun, China), and
were also isolated from ginseng roots collected in Wanliang
Town, Fusong County, Changbai City, Jilin Province, China.
After morphological and molecular biological analyses, they were
identified as: T. brevicompactum, T. velutinum, T. viridescens, T.
atroviride, T. koningiopsis, and T. saturnisporum. Among them,
T. brevicompactum, T. velutinum, T. viridescens, T. atroviride,
and T. koningiopsis have been preserved in the China General
Microbiological Culture Collection Center (preservation numbers:
CGMCC NO. 23213, CGMCC No. 23211, CGMCC No. 23212,
CGMCC No. 23214, and CGMCC No. 23210, respectively) (Wang
et al., 2022a,b,c,d,e).

The Trichoderma strains were inoculated onto 90 mm potato
dextrose agar (PDA) plates and incubated at 25◦C for 7 days.

After the spores were fully grown on the plate, an appropriate
amount of sterile water was added to wash them off gently, followed
by dispersal of the spores into a 6 g·L−1 sodium carboxymethyl
cellulose (CMC) solution to obtain a spore suspension at 1 × 107

colony forming units (CFU)·mL−1.

2.2 Experimental design

The experiment was conducted at the Wild Economic Animals
and Plants Institute of CAAS, Changchun, China (E125◦24′53′′,
N43◦46′19′′). Farmland soil was added to a 20 cm diameter pot,
with 2 kg of soil per pot. The basic information of the foundation
soils is shown in the FS treatment in Table 1. Same sized, healthy
1-year-old ginseng plants were selected for transplantation into
the pots. The plants were grown in a room under a luminous
intensity of 100 lux at 25◦C and 60% humidity, and watered
every 5 days. 7 treatments were set: A. T. brevicompactum, B.
T. velutinum, C. T. viridescens, D. T. atroviride, E. T. koningiopsis, F.
T. saturnisporum and CK [untreated plants (control)], respectively.
Each treatment was performed using 4 replicates, with 5 plants
per replicate. A total of 30 mL of prepared spore suspension of
each fungal species was used for root irrigation after planting. Soil
samples were collected after 90 days of ginseng seedling growth.
We collected the rhizosphere soil and bulk soil in sterile plastic
bags. The soil present within approximately 3 cm around the root
of the ginseng seedling was considered the bulk soil, and the
remaining soil attached to the ginseng roots was considered the
rhizosphere soil. A portion of each soil sample was placed at−80◦C
for subsequent extraction of DNA, and the rest of each sample was
dried naturally before analysis of its chemical attributes. The whole
ginseng plant was washed thoroughly, and the fresh weight of the
whole plant and roots were measured. The dry weight of the whole
plant and roots were then measured after drying at 105◦C.

2.3 Analysis of soil chemical properties

The soil pH value was measured using a pH/oxidation
reduction potential (ORP) acidity meter. The ammonium nitrogen
(NH4

+-N), nitrate nitrogen (NO3
−-N), total nitrogen (TN),

and total carbon (TC) contents were determined as described
previously (Jin et al., 2022a). The salt content (S) was determined
using a conductivity meter, and the agricultural soil chemical
analysis method (Bao, 2000) was used to determine the total
potassium (TK), total phosphorus (TP), available potassium (AK),
and available phosphorus (AP).

2.4 Soil DNA extraction, PCR, and
sequencing

A MoBio Laboratories PowerSoil DNA Isolation Kit (MoBio
Laboratories, Carlsbad, CA, USA) was employed to extract
DNA. The 16S rRNA in the DNA sample was amplified
using the primers 806R (GGACTACHVGGGTWTCTAAT) and
338F (ACTCCTACGGGAGGCAGCA) (Fu et al., 2023) using
the following reaction conditions: 95◦C for 10 min, followed
by 40 cycles of 15 s at 95◦C, 60 s at 55◦C, and 90 s at
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72◦C, with a final extension of 7 min at 72◦C. Likewise,
primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS2
(GCTGCGTTCTTCATCGATGC) (White et al., 1990; Gardes and
Bruns, 1993) were used to amplify the internal transcribed spacer
(ITS) region as follows: 95◦C for 5 min, then 35 cycles of 95◦C
for 1 min, 53◦C for 45 s, and 72◦C for 1 min. The amplicons
were purified and then subjected to Illumina MiSeq sequencing
(Illumina Inc., San Diego, CA, USA).

First, the original data was filtered employing Trimmomatic
0.33 (Bolger et al., 2014), and primer sequences were removed
employing Cutadapt 1.9.1 (Martin, 2011). Subsequently, Usearch
(version 10) (Edgar, 2013) was employed to splice the double-ended
reads, with chimeras being removed using UCHIME (version 4.2)
(Edgar et al., 2011) to leave sequence of high quality for subsequent
analysis. Using a cutoff of 97% similarity, the sequences were
clustered into operational taxonomic units (OTUs) using Usearch.
OTUs with counts less than two in all samples were filtered out.
Taxonomy annotation of the resulting OTUs was carried out using
the Naive Bayes classifier in QIIME2 (Bolyen et al., 2019), utilizing
the SILVA database (release 138.1) (Quast et al., 2013), with a
confidence threshold of 70%. Meanwhile, Alpha and Beta diversity
analyses were performed using the QIIME2 software to assess the
species diversity within each sample. This involved calculating the
Shannon, Simpson, ACE, and Chao1 indices to obtain information
on the diversity of species within the samples. Additionally,
information on the common and unique OTUs between different
samples or groups was obtained.

2.5 Statistical analysis

SAS version 9.1 (SAS institute, Cary, NC, USA) was employed
to analyze the soil bacteria and fungi diversity indices (e.g.,
Shannon and Chao1) and soil chemical attributes. One-way
analysis of variance (ANOVA) with the least significance difference
(LSD) test were used to compare the mean vales for the samples
and variability in the data was expressed as the standard error
(n = 4). Differences at P < 0.05 or P < 0.01 were considered
statistically significant. We performed linear discriminant analysis
Effect Size (LEfSe) analysis according to the method of Segata
et al. (2011). Redundancy analysis (RDA) of soil chemical factors
and microbial diversity was carried out using CANOCO 5.0. The
environmental variables were evaluated using a partial Monte
Carlo permutation test (499 permutations) with an unrestricted
permutation to investigate their statistical significance (Huang
et al., 2017).

3 Results

3.1 Effects of different treatments on the
fresh weight and dry weight of ginseng
plants

As shown in Figure 1, the control group showed symptoms
of ginseng wilt disease, with dry leaf tips and edges, while the
symptoms of ginseng wilt disease in Trichoderma treatment groups
were almost non-existent or reduced. Compared with CK, the fresh
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FIGURE 1

Characterization of ginseng plants under different treatments.

TABLE 2 Effects of different treatments on fresh weight and dry weight
(mean ± SE).

Treatment Fresh weight (g) Dry weight (g)

CK 2.46± 0.17cd 0.51± 0.07b

A 2.97± 0.13a 0.76± 0.12a

B 2.77± 0.29abc 0.74± 0.08a

C 2.71± 0.22abc 0.69± 0.09a

D 2.57± 0.30bcd 0.76± 0.06a

E 2.84± 0.09ab 0.69± 0.03a

F 2.36± 0.15d 0.51± 0.07b

CK, without treatment. A, T. brevicompactum; B, T. velutinum; C, T. viridescens; D,
T. atroviride; E, T. koningiopsis; F, T. saturnisporum. Different lowercase letters are statistically
significant at P < 0.05.

and dry weight of ginseng under A and E treatments increased
significantly (P < 0.05), while the dry weight of ginseng under B,
C, and D treatments increased significantly (P < 0.05). The fresh
weight of ginseng under A treatment increased by 20.73% and the
dry weight increased by 49.02%. The fresh weight of ginseng under
E treatment increased by 15.45% and the dry weight increased by
35.30%, the dry weight of ginseng under B, C, and D treatments
increased by 45.10, 35.30, and 49.02%, respectively (Table 2). Thus,
treatment with A had the best effect on increasing the fresh and
dry weight of ginseng, followed by E treatment, and B, C, and D
treatments were beneficial only for the dry weight accumulation of
ginseng. There was no significant difference between F treatment
and the control group.

3.2 Comparisons of soil chemical
properties among different treatments

The soil chemical properties of 1-year-old ginseng treated with
different Trichoderma spp. after a 90-day growth period are shown
in Table 1. The pH value of the soil increased by 1.16–5.85%
compared with CK. The TC under B, C, and D treatments was
increased compared with that in CK; the TN under B treatment
increased significantly compared with that of CK (P < 0.05); the
TP under B and D treatments increased compared with that of CK;

and the contents of TK and NH4
+-N under D treatment increased

compared with that of CK. The NO3
−-N content under D and

F treatments increased compared with that of CK. The contents
of AP and AK under all treatments increased by 0.16–14.03%
and 3.9–38.64% compared with CK, respectively. The S content
under each treatment was decreased compared with that of CK,
demonstrating that Trichoderma application reduced the S content,
in which treatments A, C, and E resulted in significant differences
compared with CK (P < 0.05).

3.3 Diversity analysis of bacteria and
fungi in the soil after various treatments

The indexes of diversity coverage of microorganisms in the soil
were all > 0.97, showing that the results of sequencing accurately
represented the actual situation of the soil bacteria and fungi. For
bacteria, except for treatment C, the Shannon index was higher
in all treatments compared with that of CK. The Ace indices
of treatments A, B, and D were higher than that of CK. The
Chao1 indices of treatments A and B were higher than that of
CK. For fungi, except for treatment E, the Shannon index was
lower than that in CK for all treatments, while the Simpson indices
of treatments D and E were higher than that of CK. The Ace
and Chao1 indices of all treatments were lower than that of CK
(P < 0.05). Therefore, overall, the application of Trichoderma
increased bacterial diversity and reduced fungal diversity (Table 3).

3.4 Soil microbial community
composition among different treatments

3.4.1 Phylum level classification of bacteria and
fungi

After applying Trichoderma, there was no change in the
top 10 bacterial population categories compared with those
in CK; however, there were certain changes in their relative
abundances, and the changes varied with different Trichoderma
treatments. The top 10 soil bacterial phyla by relative abundance
under the various treatments were: Proteobacteria, Acidobacteria,
Chloroflexi, Gemmatimonadetes, Actinobacteria, Verrucomicrobia,
Bacteroidetes, Firmicutes, Patescibacteria, and Cyanobacteria. The
sum of the comparative levels of Acidobacteria and Proteobacteria
reached 58.48–62.45% (Figure 2A). The comparative levels of
Chloroflexi and Proteobacteria in each Trichoderma treatment
group were increased compared with those in CK. Among them,
the relative abundance of Proteobacteria under E treatment was
the highest, and the relative abundance of Chloroflexi under B
treatment was the highest; however, the relative abundance of
Acidobacteria under all treatments was decreased compared with
that in CK. Except for treatment B, the relative abundance of
Gemmatimonadetes under all treatments was increased compared
with that CK.

After applying Trichoderma, there was no change in the top 10
fungal population categories compared with that in CK; however,
there were certain changes in their relative abundances, and the
changes varied with different Trichoderma treatments. The top
10 soil fungal phyla by relative abundance under the various
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TABLE 3 Soil bacterial and fungal diversity indices under different treatments.

Treatment Shannon index Simpson index Ace index Chao1 index

Bacteria Fungi Bacteria Fungi Bacteria Fungi Bacteria Fungi

CK 8.95a 6.58a 0.99a 0.96a 1810.99a 762.41a 1826.96a 790.73a

A 9.09a 5.57b 0.99a 0.93a 1838.67a 523.12c 1853.89a 543.55b

B 8.98a 6.13ab 0.99a 0.95a 1820.96a 557.90bc 1841.39a 545.74b

C 8.92a 6.44ab 0.99a 0.96a 1799.02a 655.25ab 1813.99ab 650.47b

D 9.09a 6.54a 0.99a 0.97a 1814.13a 680.49a 1824.90a 661.53b

E 8.97a 6.83a 0.99a 0.98a 1735.48b 538.69bc 1753.89b 539.98b

F 9.07a 6.55a 0.99a 0.96a 1777.76ab 541.55bc 1789.19ab 532.92b

Different lowercase letters are statistically significant at P < 0.05.

FIGURE 2

Comparative levels of bacterial (A) and fungal (B) phyla. Others: all species other than the top 10 species according to their relative abundance levels.

treatments were: Ascomycota, Mortierellomycota, Basidiomycota,
Unclassified, Chytridiomycota, Glomeromycota, Rozellomycota,
Olpidiomycota, Blastocladiomycota, and Mucoromycota. The sum
of the comparative levels of Ascomycota, Mortierellomycota, and
Basidiomycota reached 83.52–93.01% (Figure 2B). The relative
abundance of Ascomycota in each Trichoderma treatment group
was lower than that in CK and the relative abundance of
Mortierellomycota was higher than that in CK. Except for treatment

B, the relative abundance of Basidiomycota under all treatments was
increased compared with that in CK.

3.4.2 Genus level classification of bacteria and
fungi

As shown in Figure 3A, the bacterial community comprised
a large number of rare species (Other) and Uncultured bacteria,
with relatively low relative abundance and rich species. Except
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FIGURE 3

Comparative levels of bacterial (A) and fungal (B) genera. Others: all species other than the top 10 species according to their relative abundance
levels.

for treatment B, the relative abundance of Sphingomonas under
Trichoderma treatment was increased compared with that in CK.
The relative abundance of Gemmatimonas under each treatment
was increased compared with that in CK, and except for treatments
E and F, the comparative level of Bryobacter was increased
compared with that in CK.

As shown in Figure 3B, for fungal genera, the comparative level
of Unclassified and Other fungi were high, indicating that there
were more unclassified flora and rare species under each treatment,
and the sum of their relative abundances reached 45.8–61.3%.
The comparative level of Mortierella under each Trichoderma
treatment was higher than that in CK. Except for treatment D,
the comparative level of Fusarium was lower under Trichoderma
treatment than that in CK, and except under treatment D, the
comparative level of Trichoderma was increased compared with
that in CK.

3.5 Difference analysis of the microbial
communities in the soil

The LEfSe statistical result analysis (Figure 4) indicated that
the bacterial species under C and F treatments did not differ
significantly, thus these two groups were omitted from the analysis.
Xanthobacteraceae and Rhizobiales in group A; Bifidobacterium

in group B; Udaeobacter and Chthoniobacterales in group D;
Proteobacteria, Gemmatimonadaceae, Sphingomonadaceae, and
Thermoleophilia in Group E; and Acidobacteria and Bacteroidia
in Group CK were identified as biomarkers. The fungal species
under A, C, and F treatments did not differ significantly, thus
these groups were omitted from the analysis. Mortierella in group
B, Pyronemataceae in group D, Alternaria and Pleosporaceae in
group E, and Aspergillus in group CK were identified as biomarkers
(Figure 5).

3.6 RDA of the microbial communities
and nutrients in the soil under different
treatments

Figure 6A shows the RDA of the soil bacterial community
structure and soil chemical properties. The first two axes of
the RDA plot explain 53.31 and 22.09% of the total variance,
respectively (75.40% combined). The Monte Carlo test results
showed that available potassium (F = 2.7, P = 0.018) was the
most important factor affecting the soil bacterial community, and
95% of the bacterial community variation between samples could
be explained by this environmental factor. The environmental
factors exerted their effects, from large to small, in the order:
available potassium, salt, available phosphorus, pH value, and total
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FIGURE 4

LEfSe analysis of the structure of the soil sample bacterial communities. The circle, from inside to outside, indicates bacteria from phylum to species,
respectively. Yellow points indicate that bacteria had no notable differences among the treatment groups, and biomarker bacteria in the different
treatments were classified using different colors.

FIGURE 5

LEfSe analysis of the fungal community in soil samples. The circle, from inside to outside, indicates fungi from phylum to species, respectively.
Yellow points indicate that fungi had no notable differences among the treatment groups, and biomarker fungi in the different treatments were
classified using different colors.

nitrogen. As shown in Figure 6A, available potassium and available
phosphorus correlated positively with the relative abundance of
Proteobacteria and Gemmatimonadetes, and negatively with the
relative abundance of Firmicutes.

Figure 6B shows the RDA analysis of the soil structure of
the fungal community structure and chemical properties of the
soil. The first two axes of the RDA plot explain 47.29 and
20.00% of the total variance, respectively (67.29% combined). The

Monte Carlo test results showed that total potassium (F = 2.3,
P = 0.064) and total nitrogen (F = 3.5, P = 0.062) were the
most important factors affecting the soil fungal community, and
98.3% of the fungal community variation between samples could
be explained by these environmental factors. The environmental
factors exerted their effects, from large to small, in the order:
total potassium, total nitrogen, total phosphorus, available
phosphorus, and available potassium. As shown in Figure 6B,
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FIGURE 6

Analysis of redundancy for soil nutrients and the soil bacterial (A) and fungal (B) communities.

total potassium and total nitrogen were positively correlated with
Ascomycota and Chytridiomycota and negatively correlated with
Blastocladiomycota.

4 Discussion

Soil degradation seriously affects the yield and quality of
ginseng. Trichoderma spp. play an important role in improving
plant biomass by influencing the soil environment (Meng et al.,
2019; Wang et al., 2021). Therefore, it is necessary to screen
high-efficiency Trichoderma strains that can increase the biomass
of ginseng. Previous research demonstrated that T. koningiopsis
could promote plant growth via increased levels of volatile organic
compounds (You et al., 2022). After treatment with T. atroviride,
the aerial and root dry weights of tomato increased (Rao et al.,
2022). Herein, we found that five out of six Trichoderma species
isolated from ginseng rhizosphere soil showed biomass promoting
effects on ginseng plants, among which T. brevicompactum had the
best effect on increasing ginseng fresh and dry weight, followed by
T. velutinum and T. koningiopsis; and T. atroviride was beneficial
to dry weight accumulation of ginseng. These results identified
excellent Trichoderma materials to improve ginseng production.

Microorganisms are an important component of soil, and
are closely related to soil health and quality (de Vries et al.,
2020). Studies have shown that Trichoderma spp. can alter the
soil microbiome. Zhang et al. (2020) found that inoculation with
T. asperellum reduced fungal diversity and increased bacterial
diversity. In particular, it increased the relative abundance of
rhizosphere microorganisms that promote plant growth, such as
Sphingomonas, Trichoderma, Actinomadura, Pseudomonas, and
Rhodanobacter. Li et al. (2023) found that dual inoculation with
dark septate endophytes and T. koningiopsis altered the microbial
community structure in the rhizosphere, in which the levels of
Acidobacteriae, Ascomycota, Firmicutes, and Actinobacteriota
increased significantly, resulting in Vicinamibacteria and

Trichoderma being enriched in the soil. After fumigation,
Trichoderma application enhanced the relative abundance
of beneficial microorganisms, which can improve the soil
microbiome (Wu et al., 2022). In this study, we found that
Trichoderma application reduced fungal richness, which might
have been caused by the antagonism of Trichoderma against
some pathogenic fungi. At the phylum level, all six Trichoderma
species enhanced Proteobacteria levels, which were highest under
treatment with T. koningiopsis (E). Certain Proteobacteria have
major functions in increasing plant yield, such as nitrogen fixation,
phosphorus solubilization, and plant growth promotion (Huang
et al., 2020; Martínez, 2023), which help ginseng to absorb and
utilize nutrients in the soil. At the genus level, all six Trichoderma
species increased the relative abundance of Gemmatimonas.
Except for treatment B, they increased the relative abundance
of Sphingomonas and Trichoderma, and except for treatment D,
they decreased the relative abundance of Fusarium. There was a
significant and positive correlation between Gemmatimonas and
soil nutrient components, and thus Gemmatimonas might be an
indicator genus in response to changes in soil nutrient contents.
Besides, Gemmatimonas can solubilize insoluble elements, such
as phosphorus, and induce plant stress resistance or produce
antifungal antibiotics, which have been proven to promote
plant growth and enhance nutrient uptake (Shang and Liu,
2020; Liu C. et al., 2022). Recent studies have detailed the role
of Sphingomonas species in plant growth promotion via the
production of phytohormones and increased stress tolerance
(Matsumoto et al., 2021; Jin et al., 2022b; Lombardino et al., 2022).
Meanwhile, the relative abundance of Trichoderma increased
after inoculation, indicating that Trichoderma could grow and
reproduce in the treated soil. Root rot is the main disease
responsible for decreases in the yield and quality of ginseng, and
the main pathogen causing root rot is Fusarium (Guan et al., 2014;
Wang et al., 2016). Fusarium is a common plant pathogen that can
hinder the growth of many crops (Pegg et al., 2019; Srinivas et al.,
2019; Kong et al., 2023). The observed decrease of Fusarium in the

Frontiers in Microbiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1283492
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1283492 January 30, 2024 Time: 10:37 # 9

Zhang et al. 10.3389/fmicb.2024.1283492

soil showed that the addition of Trichoderma inhibited Fusarium
and could prevent root rot of ginseng. Therefore, the results of
our study, combined with those of previous studies, indicated
that inoculation with Trichoderma could promote the growth
of beneficial microorganisms and decrease the proliferation of
deleterious microbes.

Soil pH value is a key indicator of ginseng planting site selection
(Kim et al., 2015), and many soil borne diseases are affected by the
soil pH value. A decreased in soil pH might increase the incidence
of ginseng root diseases (Jin et al., 2022a). Herein, we demonstrated
that Trichoderma inoculation increased soil PH value, and the
available phosphorus and available potassium contents, which was
conducive to the prevention and control of ginseng soil-borne
diseases and the promotion of ginseng growth. Thus, inoculation
with Trichoderma, which colonized and grew in the soil and
would secrete organic acids and other factors, changed the pH
and increased the available phosphorus and available potassium
content (Tekaya et al., 2018). In this study, Trichoderma species
had different effects on soil physicochemical properties, among
which T. velutinum (B), T. atroviride (D), and T. koningiopsis
(E) improved the physicochemical properties. Parada et al. (2019)
showed that inoculating microbials into acidic soil could alleviate
soil acidification, which agreed with our findings. The enhancement
of available phosphorus and available potassium contents might
also have been caused by the activation of beneficial microbial
populations in the soil after inoculation with Trichoderma (Qi
et al., 2022). Beneficial microorganisms and their activities facilitate
the transformation of plant nutrients from non-effective forms
to effective forms, thereby improving soil fertility (Jain et al.,
2015; Yuan et al., 2016). Saravanakumar et al. (2013) found that
Trichoderma has a solubilizing effect on phosphate. Mao and Jiang
(2021) reported that the contents of alkali-hydrolysable nitrogen,
organic matter, available potassium, and available phosphorus
in soil increased after application of T. hamatum, which was
consistent with our results.

Soil properties might influence the structure and diversity of
soil microbial communities (Khan et al., 2016; Sun et al., 2019). In
this study, RDA was carried out at the species level for bacteria
and fungi, and among soil nutrients, available K and available P
were the most influential elements for the structure of the bacterial
community, whereas total K had the largest influence the structure
of the fungal community. This was consistent with the results of
Zhu and Yu (2022). Available potassium and available phosphorus
correlated positively with Proteobacteria and Blastomonas levels,
indicating that application of Trichoderma could increase the
contents of available potassium and phosphorus in ginseng soil, and
increase the comparative levels of Proteobacteria and Blastomonas
in soil, thus promoting ginseng growth.

5 Conclusion

The results of this study indicated that different Trichoderma
spp. have different effects on the biomass of ginseng, and
the chemical properties and microbiome of ginseng soil.
Most of the selected Trichoderma spp. had beneficial effects
on ginseng biomass, improved soil nutrients, increased the
relative abundance of beneficial microbial populations (such as

Gemmatimonas, Sphingomonas, and Trichoderma), and reduced
the relative abundance of harmful microbial populations (such
as Fusarium). In particular, T. koningiopsis (E) was superior to
the other tested species and has potential for application. This
study provides a theoretical basis for soil improvement and
biological control of diseases in ginseng cultivation. However,
the limitations of greenhouse cultivation mean that additional
long-term field experiments should be conducted with different
climatic conditions.
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