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Evidence suggests that the gut microbiome may play a role in multiple sclerosis 
(MS). However, the majority of the studies have focused on gut bacterial 
communities; none have examined the fungal microbiota (mycobiota) in persons 
with pediatric-onset multiple sclerosis (POMS). We examined the gut mycobiota 
in persons with and without POMS through a cross-sectional examination of the 
gut mycobiota from 46 participants’ stool samples (three groups: 18 POMS, 13 
acquired monophasic demyelinating syndromes [monoADS], and 15 unaffected 
controls). Using metataxonomic sequencing of the fungal internal transcribed 
spacer region 2, the fungal profiles were compared between participants using 
visualizations, statistical tests, and predictive analysis. While the mycobiome α- 
(Shannon and inverse Simpson indices) and β-diversity differed across the three 
groups [analysis of variance (ANOVA), p < 0.05], further post-hoc analysis of 
the β-diversity identified a difference between monoADS vs. POMS participants 
[p = 0.005 (adjusted)]. At the genus level of taxonomy, 7 out of 10 of the majority 
of abundant genera were similar among all three groups, with Saccharomyces 
spp. and Candida spp. being in the highest abundance. The Agaricus genus was 
especially high in POMS participants, dominated primarily due to the species Agaricus 
bisporus (widely consumed as white button mushrooms). The commonality of 
high abundance fungi found in our cohort suggests a possible connection to diet. 
Predictive modeling of differential abundance associated with Candida albicans, 
Cyberlindera jadinii, and Fusarium poae revealed that these fungi were strongly 
associated with the POMS participants. Our study provides novel insight into the 
fungal gut mycobiota in POMS. While findings indicate that the gut mycobiome 
of participants with POMS may largely comprise fungi considered transient from 
the diet, the differential predictive analysis suggested rare or under-detected 
fungal markers being of potential importance, warranting consideration in future 
mycobiome-MS-related studies.
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1 Introduction

Multiple sclerosis (MS) is a complex, immune-mediated, and 
neurodegenerative disease of the central nervous system (CNS; Filippi 
et al., 2018) The cause(s) of MS remain incompletely understood, but 
emerging evidence suggests that the gut microbiota may play a role. 
Potential mechanisms are thought to include alterations in gut–brain 
signaling and disrupting tight junctions of the blood–gut and blood–
brain barriers (Parodi and Kerlero de Rosbo, 2021; Cantoni 
et al., 2022).

The fungal component of the gut microbiota (the mycobiota) is often 
understudied, and while some evidence of a fungal etiology in MS exists; 
studies are limited. For example, the presence of fungi in the cerebrospinal 
fluid was reported in a case series of 12 MS participants using molecular 
and immunological assays (Pisa et al., 2013). Molecular signatures for 
fungi were also observed in the postmortem brain tissues of 8 of 10 MS 
participants when amplifying for the fungal internal transcribed spacer 
(ITS) region (Alonso et al., 2018). In mice with experimental autoimmune 
encephalomyelitis, a commonly used animal model for MS, an 
inoculation of the fungi Candida albicans exacerbated symptoms, and 
tissue analysis by histopathology of biopsy samples detected CNS fungal 
invasion (Fraga-Silva et al., 2015). Interestingly, the disease-modifying 
drug dimethyl fumarate is known to have antifungal effects and is 
approved for regulatory use to manage MS, although it is unclear whether 
its fungicidal effects are relevant in MS (Ma et  al., 2017; Derfuss 
et al., 2020).

Investigation of the gut fungal role in MS is also lacking; to date, only 
two studies have reported on the association of the gut mycobiome and 
MS (Shah et al., 2021; Yadav et al., 2022). Both studies included adults and 
comprised 20–25 MS cases and 22–33 unaffected controls. To our 
knowledge, no study has investigated the role of the gut mycobiome in 
pediatric-onset multiple sclerosis (POMS) participants. Although POMS 
is considered a rare disease, it offers a unique opportunity to examine the 
gut mycobiome relatively early in the disease course, before the accrual of 
complex exposures such as comorbidities, medications, or tobacco use 
over several decades (MSIF, 2020; Yusuf et al., 2023).

We sought to investigate the gut fungal profiles in a cohort of 
POMS participants and compared their gut fungal profiles to 
participants with a monophasic acquired demyelinating syndrome 
(monoADS) and to unaffected participants using stool samples. The 
findings reported here address the knowledge gap regarding the 
existence of a gut fungal association between POMS and 
unaffected controls.

2 Materials and methods

2.1 Study cohort

Our study cohort included participants enrolled in a Canadian 
Pediatric Demyelinating Disease Network study, details of which have 
been described previously (Tremlett et  al., 2021). Briefly, to 
be included in the current study, participants had to be ≤24 years of 
age at the time of stool sample collection (between 2015 and 2019), 
and have provided the stool sample without taking an antibiotic in the 
prior 30 days. Participants included were those diagnosed with POMS 
or monoADS with symptom onset (first clinical attack), <18 years of 
age, or who were unaffected controls. MS cases fulfilled the McDonald 

diagnostic criteria (Polman et  al., 2011; Thompson et  al., 2018). 
MonoADS was defined as an initial acute clinical episode of symptoms 
involving the CNS, with evidence of inflammatory demyelination and 
with no new/subsequent clinical or MRI findings of recurrent 
demyelination (Fadda et al., 2018). Unaffected controls had no known 
neurological or (auto)immune-related condition (headache/migraine, 
asthma, and allergies were permissible).

2.2 DNA extraction and sequencing from 
stool

Stool samples were shipped on ice and stored at −80°C before 
genomic DNA extraction using the Zymo Quick-DNA™ Fecal/Soil 
Microbe Miniprep Kit (Zymo Research, Irvine, CA, USA). Genomic 
DNA library preparation targeting the fungal internal transcribed spacer 
2 (ITS2) region was PCR amplified using forward primer ITS7-XT99 
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACA 
GGTGARTCATCGAATCTTTG) and reverse ITS4-XT101 
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTCC 
GCTTATTGATATGC), where non-underlined nucleotides correspond 
to Illumina overhang adapter sequences. The targeted amplicon 
polymerase chain reaction (PCR) reaction was performed using the 
KAPA HiFi HotStart ReadyMix (Roche, Pleasanton, CA, USA). The 
resulting ITS2 amplicons were then purified with 20-μl AMPure XP 
(Beckman Coulter Canada, LP, Mississauga, Ontario, Canada), and a 
secondary amplification was performed to attach multiplexing indices. 
Indexed amplicons were purified using 56-μl AMPure XP, and then the 
libraries with positive concentrations were quantitated using PicoGreen 
and pooled in equimolar amounts. Gating of the pooled libraries was 
selected using BluePippin 1.5% cassettes (Sage Science, Inc., Beverly, MA, 
USA) for 300–1,000 bp fragments. Size-selected libraries were then 
purified using 0.6X AMPure XP, assessed for size on an Agilent 
Tapestation analyzer (Agilent Technologies Canada, Inc., Mississauga, 
Ontario, Canada), and quantitated on a Qubit 2.0 (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA).

The libraries were then denatured using 0.5 N NaOH to 11 pM 
and spiked with 25% PhiX control DNA and subsequently sequenced 
using the Illumina, San Diego, CA, USA V3 (600 cycles; 2 × 300 bp). 
A total of 134 samples were sequenced, 65 in the first run and 69 in 
the second. Each MiSeq run was performed with an extraction water 
blank no-template control, and a positive control (mock community). 
A nineteen-taxon mock fungal community of “Staggered A” 18S rRNA 
proportions was used in duplicate as a positive control (Bakker, 2018). 
The resulting FASTQ sequences were demultiplexed and assessed for 
sequencing quality by fast quality control (FastQC - Bioinformatics 
pipeline is open source but developed at: Babraham Institute, 
Cambridge, UK) v0.11.9 and multiple quality control (MultiQC-  
Bioinformatics pipeline is open source but developed at: National 
Genomics Infrastructure, Stockholm, Sweden) v1.8 (Andrews, 2010; 
Ewels et al., 2016).

2.3 Sequence clustering and taxonomic 
assignment

Sequences of fungal ITS2 amplicons from Illumina MiSeq were 
processed using the less operational taxonomic unit script (LotuS)
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(Bioinformatics pipeline is open source but developed at: Quadram 
Institute Bioscience (QIB) & Earlham Institaute (EI), Norwich, UK) 
and sdm v1.62 pipeline (Hildebrand et al., 2014). The lotus.pl script 
was run using the following parameters: gate sequences of length 
100–1,000 bp, post-trimming minimum average base quality of 33, 
removal of sequences with ambiguous bases, maximum homopolymer 
length of 15 bp, base quality of ≥25 within a 50-bp k-mer window, and 
50 bp sequence ends were trimmed if the sequence quality score fell 
below 25.

The Unified Search (USEARCH) v11.0.667 sequence clustering 
tool was used to cluster reads with a ≥ 97% sequence identity (Edgar, 
2010). Chimeric and PhiX sequences were removed by alignment 
against the Unoise CHIMEras (UCHIME) v7.2 fungal database 
(Nilsson et al., 2019b). Read pairs overlapping by at least 10 bp with 
an overall average quality score of 33 were merged using Fast Length 
Adjustment of SHort Reads (FLASH: John Hopkins University, 
Baltimore, MD USA) v1.2.10 (Magoč and Salzberg, 2011). The merged 
reads were then subjected to filtering for fungal ITS2 sequences by the 
ITSx tool: Chalmers University of Technology and University of 
Gothenburg, Goteborg, Sweden (Bengtsson-Palme et  al., 2013). 
Fungal taxonomic assignment was designated by alignment against 
the mothur release of the UNITE v8.2 fungal ribosomal database 
using the Basic Local Alignment Search Tool+ (BLAST+: National 
Institutes of Health, Bethesda, MD, USA Camacho et al., 2009; Nilsson 
et al., 2019b). Standard parameters were used for all bioinformatics 
tools of this analysis when applicable.

2.4 Data cleaning, counts transformation, 
and mock community checks

The R package LULU was used to group operational taxonomic 
units (OTUs) with a high sequence similarity in an attempt to decrease 
spurious counts without removing them from downstream statistical 
analysis (Frøslev et al., 2017). A matched list of sequences is used to 
align the fungal ITS2 identities characterized by the LotuS pipeline 
against itself in an all-against-all similarity comparison using BLAST+. 
The parameters set for BLAST+ retained sequence alignments with 
≥84% sequence identity and ≥ 80% query coverage per high-scoring 
sequence pair. Good’s coverage index was calculated for each sample 
in the resulting table of read counts, and samples with an overall count 
of ≤500 OTUs were excluded from the study to retain a coverage 
index of ≥96.5% (Good, 1953; Kowalchuk et al., 2004).

Since OTUs with zero counts cannot undergo a log transformation, 
the table of counts was transposed, and values with an abundance of 
0 were given a pseudocount using the Geometric Bayesian 
multiplicative method with a threshold of 0.5 implemented by the 
zCompositions R package (Palarea-Albaladejo and Martín-Fernández, 
2015). The table of OTU counts was then transformed using the center 
log ratio transformation via the clr function from the compositions R 
package (van den Boogaart et  al., 2021). Central log ratio (CLR) 
transformed samples were visually inspected for normality and 
skewness by quantile–quantile (Q–Q) plot and density distribution 
using the ggplot2 R package (Wickham, 2016). The mock community 
control was not subject to LULU curation or transformation of counts 
as the relative ratio and identities of the control are known. Instead, 
the mock community data was visually inspected for the presence or 
absence of expected taxa at the species level.

2.5 Top 10 genera and statistical analysis

Visual inspection of the top  10 genera was performed for 
participant groups (POMS, monoADS, or unaffected controls). To 
ease interpretation, raw counts were transformed to a proportion, 
while CLR-transformed values were used in the analyses (except for 
α-diversity). All visualizations were generated using the ggplot2 R 
package (Wickham, 2016).

Biodiversity was estimated by α-diversity using the number of 
observed OTUs, and Shannon and inverse Simpson indices. 
α-Diversity was compared among the POMS, monoADS, and 
unaffected participants using the Kruskal–Wallis ANOVA and Dunn’s 
post-hoc testing using Benjamini–Hochberg correction via the ggpubr 
and rstatix R packages (Kassambara, 2020, 2021). As a complementary 
approach, α-diversity was also examined by sex or age at stool samples 
collection (grouped as “child” ≤14 years of age or “youth” 15–24 years 
of age) for all participants combined due to an insufficient number of 
study participants to perform statistical testing on groupings further 
stratified by diagnoses. The examination of α-diversity on sex or age 
group was performed using the Wilcoxon rank-sum test.

β-Diversity was examined using principal component analysis 
(PCA) and non-metric multidimensional scaling (NMDS) specifying 
the Euclidean distance with the aid of the PCAtools and vegan R 
packages (Blighe and Lun, 2020; Oksanen et al., 2020). Euclidean 
distances resulting from PCA and NMDS were compared between 
groups using permutational multivariate ANOVA (PERMANOVA), 
facilitated by the adonis2 function of the vegan R package, followed by 
pairwiseAdonis (Arbizu, 2017). Pairwise p-values were adjusted by 
Benjamini–Hochberg correction using the stats R package 
(RCT, 2021).

Analysis of differential species abundance among the POMS, 
monoADS, and unaffected control participants was performed using 
the ANOVA-Like Differential Expression (ALDEx2) R package on 
untransformed raw counts and by linear discriminant analysis effect 
size (LEfSe: Harvard T.H. Chan, Boston, MA, USA) on 
CLR-transformed counts via the microbiomeMarker R package 
(Segata et al., 2011; Gloor et al., 2016; Cao, 2021). Both ALDEx2 and 
LEfSe are statistical packages used for differential abundance analysis 
of biological data through predictions by machine learning-like steps. 
ALDEx2 differs from LEfSe in its first step, whereby posterior 
probabilities are generated for the counts of each OTU, and Monte–
Carlo sampling from a Dirichlet distribution is used to resample the 
data, which is then transformed (Fernandes et al., 2014). The LEfSe 
algorithm forgoes the resampling process and directly transforms 
OTU data in preparation for downstream steps. Both ALDEx2 and 
LEfSe compare the POMS, monoADS, and unaffected control 
participants using the Kruskal–Wallis ANOVA and Wilcoxon rank 
sum test. Effect sizes (generated by LEfSe) were plotted using a 
modified plot_ef_bar function to display data according to taxonomic 
levels. In all statistical tests, an α level of ≤0.05 was used to 
indicate significance.

The BLAST+ sequence alignment software package and the 
BLAST fungi National Center for Biotechnology Information (NCBI) 
Reference Sequence (RefSeq) ITS database were used to reassign 
organisms resulting from the differential abundance analyses above 
the species level to a lower taxonomic level. The following BLAST+ 
parameters were used: qcov_hsp_perc 80 and perc_identity 80 (Schoch 
et al., 2014). The BLAST results were filtered for hits with the lowest 
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expected value and the highest query coverage per high-scoring 
segment pair, followed by the highest percent identity.

To identify a larger number of Unknown and unclassified Eurotiales 
genera—which were particularly apparent in the monoADS 
participants (using the UNITE v8.2 fungal ribosomal database in the 
current study)—the latest update of the UNITE v10.0 (2024-04-04) 
was used in a local BLAST+ sequence alignment to provide possible 
reclassification of these organisms. The same parameters, as 
aforementioned, were used, but an additional filter for ≥97% percent 
identity was performed.

3 Results

3.1 Filtering and cohort characteristics

Of the 91 participants who provided a stool sample, following 
LULU curation and determination of Good’s coverage, 45 
participants were removed due to low read counts (≤ 500), 
leaving 46 participants in the final analyses. Of those included, 
18 had POMS, 13 had monoADS, and 15 were unaffected 
controls. Cohort characteristics are shown in Table 1. The mean 
age at symptom onset was younger for the monoADS participants 
than for the MS cases. The monoADS participants were also 
younger on average at stool sample collection than either the MS 
or unaffected participants. Fourteen of the 18 MS participants 
were exposed to a disease-modifying therapy at the time of stool 
sample collection or within the previous 90 days.

3.2 Data processing

An average of 30,791,070 raw paired-end reads from the 46 
participants were generated, while the mock community yielded, 
on average, 10,168,535 raw paired-end reads between technical 
replicates. After sequencing processing, filtering for quality and 
minimum sample size, and clustering, the 46 participants totaled 
10,525,102 reads and 2,175,124 reads across mock community 
replicates (Table 2). Visual inspection of the density distribution 
for the number of reads in each participant stool community 
showed non-normal distribution, which was confirmed using a 
Q-Q plot (Supplementary Figures S1A,B), but following  
central log ratio (CLR) transformation, sample density  
profiles showed a nearly normal or right-skewed distribution 
(Supplementary Figures S2A,B). A check of CLR-transformed 
values using a Q–Q plot showed that the normality assumption 
was not met in the majority of the sequenced samples 
(Supplementary Figure S3).

Out of 19 expected fungal organisms in the mock community, 
only six species were identified at the species level: Saitoella complicata, 
Aspergillus fischeri (also known as Neosartorya fischeri—the 
telomorphic form), Aspergillus flavus, Chytriomyces hyalinus, 
Rhizophagus irregularis, and Candida apicola (Figure 1A). The order 
of fungal abundance was in agreement with the “Staggered A” 
community generated in a previous study by Bakker, 2018, with the 
exception of C. apicola, which was found at a lower average abundance 
relative to R. irregularis due to under-sequencing/detection in the 
second replicate (Figure 1B).

3.3 Fungal taxon abundance

Descriptively, the Ascomycota phylum dominated across all three 
groups, representing 93.2% of the relative abundance for the POMS 
participants, 83.7% for the monoADS participants, and 95.4% for the 
unaffected controls, while Basidiomycota appeared higher for the 
POMS participants at 6.62% compared to monoADS (0.622%) and the 
unaffected controls (0.465%; Supplementary Figure S4). In contrast, 
Mucoromycota appeared lower in abundance for the POMS 
participants (0.0659%) compared to monoADS (1.38%) and 
unaffected controls (3.80%).

Figure 2 shows the top 10 genera for the POMS, monoADS, and 
unaffected participants. The relative abundances of observed taxa are 
similar across the three groups, with Saccharomyces detected at the 
highest proportion, comprising 48.8% of the top 10 genera for the 
POMS participants, 52.6% for the monoADS, and 42.0% for the 
unaffected controls. Another six genera were shared among all three 

TABLE 1 Characteristics of the pediatric-onset multiple sclerosis (POMS) 
cases, monophasic acquired demyelinating syndrome (monoADS), and 
unaffected control participants.

Characteristics POMSa,b

n = 18
MonoADSc

n = 13
Unaffected 

control
n = 15

Sex, female: n (%) 15 (83%) 6 (46%) 8 (53%)

Sex, male: n (%) 3 (17%) 7 (54%) 7 (47%)

Age at symptom onset,

years: mean (SD)
15.3 (2.8) 5.2 (3.2) NA

Age at stool sample 

collection,

years: mean (SD)

18.1 (2.4) 12.1 (3.6) 15.3 (3.4)

Disease-modifying drug 

exposure

status at stool sample 

collection (ever): No (%)

14 (78) NA NA

aPOMS, pediatric-onset multiple sclerosis. 
bOf those exposed to a disease-modifying drug, seven participants had used an IFNB, three 
glatiramer acetate, two dimethyl fumarate, one natalizumab, and one Rituximab. 
cmonoADS, monophasic acquired demyelinating syndrome.  
NA, not applicable; SD, standard deviation.

TABLE 2 The number of reads for the 46 included participants (pediatric-
onset multiple sclerosis cases, monophasic acquired demyelinating 
syndrome, and unaffected controls combined) following sequencing and 
bioinformatics processing.

Raw 
sequencing 
(averaged)

Lotusa LULUb

Total reads 30,791,070 10,525,102 10,500,725

Minimum 1,644 563 562c

Medium 11,3,768 37,945 37,907

Mean 669,371 228,807 228,277

Maximum 4,854,072 2,566,757 2,560,308

aLess operational taxonomic unit scripts sequence processing pipeline.
bLULU postclustering sequence filtration; includes filtering >500 reads (according to good’s 
coverage ≥96.5%).
cThe resulting minimum is lower for LULU because a single OTU found in the previous steps 
was identified to be of non-fungal origins, and is therefore removed.
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groups: Aspergillus, Candida, Cladosporium, Mucor, Penicillium, and 
an unidentified genus. The Candida genus was generally the second-
highest in terms of relative abundance (38.0% for POMS, 9.3% 
monoADS, and 43.1% for unaffected control). Of the top 10 most 
abundant genera shared between two or more groups, only the genus 
Cyberlindnera was found for both the POMS and unaffected 
participants, while the genus Malassezia was found for the POMS and 

monoADS participants. In addition, an unclassified genus from the 
order Eurotiales was common to both the monoADS and unaffected 
participants. The genera Aspergillus, Candida, Cladosporium, Mucor, 
Penicillium, Saccharomyces, and unclassified Eurotiales were found in 
all three groups. Within the top 10 genera, Agaricus was found to 
be uniquely abundant in POMS participants, Phoma in monoADS, 
and Exophiala in unaffected controls. We also found that 99.9% of 

FIGURE 1

Relative ratios of a “Staggered A” 19-member mock fungal community transformed on a log2 scale used as study controls. In (A) fungal ITS2 ratios 
from this study averaged between technical replicates of six detected mock organisms; (B) expected 18S ribosomal RNS (rRNA) ratios of all 19 
organisms (Bakker, 2018).

FIGURE 2

Top 10 most abundant fungal genera for pediatric-onset multiple sclerosis, monophasic acquired demyelinating syndrome, and unaffected control 
participants. Raw read counts are converted to a proportion in the percentage of the top genera.
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Agaricus species present for the POMS participants were composed of 
A. bisporus, and the remaining percentages belonged to an unclassified 
Agaricus spp. and Agaricus kriegeri. Although the Agaricus genus was 
not within the top 10 most abundant for the monoADS and unaffected 
controls, the species A. bisporus constituted 100% of this genus in 
monoADS and 89.8% in unaffected control participants.

3.4 α- and β-diversity by disease status

The α-diversity results are presented in Figures 3A–C. There were 
no statistically significant differences among the three groups for the 
number of unique species (p = 0.08 Kruskal–Wallis ANOVA and all 
p > 0.05 for the pairwise group comparisons [adjusted], Figure 3A). 
While the three groups differed for Shannon and inverse Simpson 
indices (p = 0.041) and Kruskal–Wallis ANOVA (p = 0.034), 
respectively (Figures 3B,C), none of the pairwise group comparisons 
reached significance after post-hoc testing (all p > 0.05 [adjusted]). 
Regarding the ratio of unique species, unaffected control participants 
exhibited higher gut mycobiota diversity than POMS (4:5 
POMS:unaffected controls) and monoADS individuals (2.6:5 
monoADS:unaffected controls).

From the complementary analyses (when all participants were 
combined), some of the diversity metrics differed by age and sex 
(Figures 4A,B). Female participants exhibited a higher overall fungal 
richness but a lower inverse Simpson diversity index than male 
participants (both p ≤ 0.05 [adjusted]), with no significant differences 
observed for the Shannon diversity index (p = 0.08 [adjusted]). 
Similarly, for age, youth (age: 15+ years) exhibited a higher overall 
fungal richness but a lower inverse Simpson diversity index than 
children (age: ≤14 years) (both p ≤ 0.05 [adjusted]), with no 
significant differences observed for the Shannon diversity index 

(p = 0.08 [adjusted]). Significant individual heterogeneity was detected 
when testing the mycobiota between individuals within each group 
(POMS/monoADS/unaffected controls, sex and age groups, Kruskal–
Wallis ANOVA, all p < 0.05).

For β-diversity, while no obvious or distinct clustering patterns 
could be visually observed between the MS, monoADS, and unaffected 
participants (Figure 5), quantification by PERMANOVA suggested a 
significant difference among the three groups (p = 0.02). Specifically, 
the pairwise comparisons indicated a significant difference between 
the monoADS and POMS (p = 0.005 [adjusted]), but not between the 
unaffected and POMS (p = 0.08 [adjusted]) or monoADS (p = 0.27 
[adjusted]) participants.

Further examination of β-diversity upon stratifying diagnoses by 
sex or age group yielded no visible clustering between any of the 
stratified groups, although these observations should be interpreted 
with due caution as some group sizes were very small 
(Supplementary Figures S5, S6). Naturally, no formal statistical 
analyses were performed with these small groups (e.g., POMS male 
n = 3, and POMS child n = 1).

3.5 Differential abundance analysis

Analysis of taxonomic abundances between the groups yielded no 
significant differences by the ALDEx2 analysis. However, the LEfSe 
analysis predicted potential marker organisms (Figure 6). The species 
C. albicans, Cyberlindera jadinii, and Fusarium poae were predicted as 
the markers specific to the POMS participants. Acremonium fusidioides, 
Cyberlindnera rhodanensis, Exophiala lecanii-corni, Talaromyces 
islandicus, and an unclassified fungal species were predicted to 
be  markers of monoADS by LEfSe. In unaffected participants, 
Penicillium aurantiogriseum and Penicillium solitum were predicted. A 

FIGURE 3

Three different α-diversity metrics were calculated for the pediatric-onset multiple sclerosis cases, monophasic acquired demyelinating syndrome, and 
unaffected control participants. In (A) the number of observed operational taxonomic units (OTUs) represents unique species—also known as the 
richness; (B) the Shannon diversity index accounts for richness and abundance but weighs more toward richness; (C) the inverse Simpson diversity 
index accounts for richness and abundances but weighs more toward abundance. Calculations are based on raw counts.
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BLAST analysis of species-level taxa identified by LEfSe yielded 
multiple unclassified identities noted in Supplementary Table S1.

Using the updated UNITE v10.0 fungal ribosomal database in an 
attempt to reclassify the large number of Unknown and unclassified 
Eurotiales genera particularly evident in the monoADS participants 
resulted in more distinct fungal identities (Supplementary Table S2). 
However, issues related to possible ambiguous identification remained. 
For example, OTU 483, previously labeled “Unknown,” was reclassified 
possibly as Fungi gen Incertae sedis or Filobasidium, OTU 169 as 
Pleosporales gen Incertae sedis or Malassezia, etc.

4 Discussion

Few studies have characterized the gut fungal profile in persons 
with MS and fewer in those with pediatric-onset MS (POMS). We also 
compared participants with POMS to both monoADS and unaffected 
control participants. While there was some indication of differences 
among the three groups for both the mycobiome α- and β-diversity 
metrics when each participant group was compared to the other, only 
β-diversity showed a significant difference, specifically between the 

monoADS and POMS participants [p = 0.005 (adjusted)]. Moreover, 
at the genus taxa level, 7 of the top 10 most abundant genera were 
similar between all three groups, with Saccharomyces and Candida 
being in the highest abundance. These are also commonly observed in 
other gut mycobiome studies and appear largely in transit, passing 
from food into the stool. In the POMS cases, the Agaricus genus 
dominated, primarily due to A. bisporus which is considered transient 
and commonly consumed, for example, as the white button mushroom 
(Webster and Weber, 2007; Auchtung et al., 2018). However, predictive 
modeling of differential abundance showed that C. albicans, C. jadinii, 
and F. poae were strongly associated with the POMS participants. Our 
study provides novel insight into the fungal gut mycobiota in 
POMS. While findings indicate that the gut mycobiota of participants 
with POMS may comprise fungi that are considered rather transient 
(Auchtung et  al., 2018), differential predictive analyses were also 
suggestive of rare or under-detected fungal markers being of potential 
importance, warranting consideration in the future mycobiome-MS-
related studies.

We found only two other studies—one study by Shah et al., 2021 
and another by Yadav et  al., 2022—with which we compared our 
findings. Both studies explored the gut mycobiome in adults with MS 

FIGURE 4

Three different α-diversity metrics were calculated for 46 study participants stratified by either sex or age groups. In (A) the total study cohort is 
stratified by sex (n = 29 female participants and n = 17 male participants) and is measured for the number of observed operational taxonomic units 
(OTUs) that represent unique species, also known as the richness, Shannon diversity index, which accounts for richness and abundances but weighs 
more toward richness, and the inverse Simpson diversity index which accounts for richness and abundances but weighs more toward abundance; 
(B) shows a stratification by age groups of child (≤14 years old, n = 13), and youth (between 15 and 24 years old, n = 33).
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compared to unaffected controls, recruiting between 20 and 25 MS 
participants and between 22 and 33 unaffected controls. Despite the 
modest size of these studies and the types of participants included 
(adults vs. youth/children), some consistency in findings was observed 
across the studies. For example, in both of these previous studies, the 
gut mycobiota of the MS cases and controls alike were dominated by 
the presence of the phylum Ascomycota. Our study also observed the 
same overwhelming presence of Ascomycota which represented over 
80% of the relative abundance of the gut mycobiome for our POMS, 
monoADS, and unaffected controls. Both previous studies also 
identified Basidiomycota as predominant among their MS cases and 
controls. While we also found Basidiomycota, our findings suggested 
that it was more abundant in the POMS cases compared to the other 
participants. Of the top  10 most abundant genera, we  observed 
Saccharomyces at the highest abundance in all three groups, in 
addition to Aspergillus, Candida, Cladosporium, Mucor, and 
Penicillium, which were also seen in high abundance within both 
previous studies (Shah et al., 2021; Yadav et al., 2022). This consensus 
of fungal genera found between studies suggests there is a 
commonality composing the human gut mycobiota regardless of 
participant grouping. There is a potential that rare or under-detected 
fungi may better explain the pathogenesis of MS.

A majority of the top 10 represented genera overlapped among the 
three participant groups in our study, but they differed in the 
proportionality of specific genera. Interestingly, we detected a distinctly 

abundant genus within each of the groups: Agaricus in POMS 
(Nreads = 456,760 for POMS, 87 for monoADS, and 1,777 for unaffected 
participants), Phoma in monoADS (Nreads = 46 for POMS, 946 monoADS, 
and 102 for controls), and Exophiala in unaffected participants 
(Nreads = 1,240 for POMS, 150 monoADS, and 6,059 for controls). Further 
examination of the data showed that A. bisporus is composed of 99.9% of 
the Agaricus genus in POMS participants. A. bisporus is edible and 
commonly consumed as the white button mushroom (Webster and 
Weber, 2007). Although the Agaricus genus comprised only 0.0198% of 
the total genera in monoADS participants and 0.062% in unaffected 
controls, A. bisporus constituted a majority of the Agaricus spp. (100% for 
the monoADS and 89.8% for the unaffected controls). This echoes the 
current understanding that the gut mycobiome is likely largely impacted 
by diet and is transient in nature (Auchtung et al., 2018). Consistent with 
this, we also detected Saccharomyces spp. and Candida spp. at the highest 
proportion in all three groups. These are the two common fungal species 
reported as the transient residents of the gut acquired through diet 
(Auchtung et al., 2018).

Some similarities in terms of mycobiome diversity findings were 
observed across studies, as all three studies (including ours) reported at 
least some differences between participant groups. For example, 
β-diversity—the communal differences between groups differed between 
the adult MS and control participants in both previous studies (Shah et al., 
2021; Yadav et al., 2022). While we also observed a difference between our 
three participant groups, this only remained significant when our POMS 

FIGURE 5

β-Diversity analysis by non-metric multidimensional scaling for the pediatric-onset multiple sclerosis cases, monophasic acquired demyelinating 
syndrome, and unaffected control participants. Calculations are based on central log ratio (CLR) transformed counts. Ellipses represent 95% 
confidence intervals, and the Euclidean distance is used for calculations.
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were compared to our monoADS individuals (neither were significant 
when compared to our unaffected participants). However, visually, 
β-diversity analysis revealed no distinctive clustering among our 
participant groups. We  also investigated heterogeneity between 
individuals within the stratified groups (POMS/monoADS/unaffected 
controls, sex, and age groups), and significant differences were detected. 
Whether this occurred by chance alone was unclear, although others have 
observed that the gut mycobiota was highly variable within and between 
participants enrolled in the Human Microbiome Project (Nash et al., 
2017). It is possible that with larger sample sizes, some of these diversity-
related differences will become more apparent.

Our study also examined if there was a difference in α-diversity 
between male participants vs. female participants, and by age groups 
(child ≤14 years of age vs. youth age range 15–24 years). We did detect 
significant differences in the richness of both stratifications by sex and 
age groups. However, when we  examined differences in fungal 
diversity, only the inverse Simpson diversity measure indicated 
differences between male participants and female participants, as well 
as between children and youth. Since both Shannon and inverse 
Simpson indices measure diversity in similar ways—they both account 
for the overall richness as well as the relative abundance of each 
species—the significance detected by the inverse Simpson index and 
not the Shannon index, can perhaps be attributed to their contrast in 
scale calculations, as the inverse Simpson is scaled toward higher 
abundances while the Shannon index favors richness (Roswell et al., 
2021). Few have explored the relationship between age, sex, and the 
gut mycobiome. A study by Strati et al., 2016 recruited 111 “healthy” 
Italian volunteers and reported that the gut mycobiota exhibited 

higher richness in 48 children (3–10 years) and 24 adolescents 
(11–17 years) when compared to 21 adults (≥18). This explanation of 
higher richness at lower age groups during a period of eubiosis in 
healthy individuals—when intestinal homeostasis is maintained, and 
a balanced composition of microbes exists—may explain why our 
POMS cohort has a less rich—but not statistically significant—
mycobiota compared to unaffected participants (Al-Rashidi, 2022). 
This is because the mycobiota in our POMS participants may 
be undergoing dysbiosis—the dysregulation of homeostasis associated 
with an imbalanced microbial composition—which could lower the 
overall number of unique fungi as compared to unaffected controls. 
Furthermore, when examining β-diversity by participant diagnosis 
paired with their sex or age group, there was no visual indication that 
a common mycobiota existed between groups (e.g., POMS male and 
unaffected control male). Our findings suggest that age and sex should 
be  taken into consideration when conducting future mycobiota 
analyses, as we found female individuals and youth have higher fungal 
richness but lower diversity when compared to male individuals and 
children. Future studies involving a larger cohort of individuals are 
required to investigate the associations between sex or age and the gut 
mycobiota across different disease groups.

We further explored the idea that rare species play an important 
role by employing LEfSe predictive analyses. We  focus only on 
significant OTUs assignable to a known fungal species using the 
UNITE database because of multiple ambiguous taxonomic 
classifications when attempting to resolve identities using the RefSeq 
ITS database. Our LEfSe analysis predicted F. poae as a possible 
marker of relevance to our POMS participants. This organism has a 

FIGURE 6

Operational taxonomic unit (OTU) differential abundance analysis by linear discriminant analysis effect size (LEfSe) for pediatric-onset multiple sclerosis 
cases, monophasic acquired demyelinating syndrome, and unaffected control participants. Significantly predicted OTUs are subject to linear 
discriminant analysis modeling, and effect size is determined to find the strongest class association. Effect sizes are converted into a score and plotted 
on a log10 scale.
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role in agriculture as a plant pathogen that commonly contaminates 
animal feed (Yang et al., 2014; Ghimire et al., 2021; Tan et al., 2021). 
Additionally, the genus Fusarium has the potential to produce 
mycotoxins, which have been shown in vitro to inhibit sphingosine 
biosynthesis important for the formation of sphingomyelin lining the 
neuronal axon (Norred et al., 1992). Our LEfSe analysis also predicted 
C. jadinii to be associated with our POMS cohort, and this organism 
can be  identified under the telomorphic name of Candida utilis. 
Several Candida species are known opportunistic pathogens able to 
cause invasive Candidiasis (Goering et al., 2019).

Perhaps the majority of interesting LEfSe predictive association 
with POMS participants was C. albicans. Although C. albicans is 
widely recognized to be part of the human gut mycobiome, it is also a 
known opportunistic human pathogen (Nash et al., 2017; Auchtung 
et  al., 2018; Goering et  al., 2019). Furthermore, C. albicans has 
previously been detected in the cerebrospinal fluid and in postmortem 
brain tissue samples from people with MS (Ramos et al., 2008; Pisa 
et al., 2011, 2013; Alonso et al., 2018). Additionally, in the mouse 
model of MS, experimental autoimmune encephalomyelitis, it has 
been shown that C. albicans exacerbates inflammation and 
demyelination, but a decrease of C. albicans alleviated these effects 
(Fraga-Silva et al., 2015). In studies of other neurological diseases, 
C. albicans was also found to play a role in the mice model of 
Alzheimer’s disease (Wu et al., 2019). Although evidence remains 
rather limited, it would be of value for future studies to evaluate the 
role of C. albicans in MS, especially because spp. from the Candida 
genus are known to coexist as a large part of our normal mycobiota 
without disease, until perhaps there is overt dysregulation in the hosts’ 
immune system (Nash et al., 2017; Goering et al., 2019).

In our monoADS cohort, LEfSe analysis identified A. fusidioides, 
E. lecanii-corni, and T. islandicus as predicted species. Relatively little 
information can be found on A. fusidioides but this fungus has been 
shown to produce compounds able to inhibit the growth of HL-60 human 
leukemia cells in vitro (An et  al., 2016). In a rare isolated case of 
phaeohyphomycosis, which has a documented mortality rate of ~70% in 
CNS infections, E. lecanii-corni was identified as the causative agent 
(Revankar et al., 2004; Lee et al., 2016). Furthermore, studies show that 
T. islandicus is capable of producing the mycotoxin, cyclic pentapeptide 
cyclochlorotine, which is said to have mutagenic and toxic effects on 
humans (Schafhauser et  al., 2015). Although these organisms were 
predicted as significant markers, more research is necessary to understand 
their role in monoADS.

The Penicillium genus was largely predicted to associate with 
unaffected control participants according to our LEfSe analysis, 
namely, P. aurantiogriseum, P. solitum, P. aurantiogriseum. Of interest, 
P. solitum has been reported to produce many types of metabolites 
important for sustaining human health, such as compactin, 
benzodiazepine alkaloids, and meroterpenoids (Boruta et al., 2018).

Methods to study the fungal mycobiome require further development 
to better understand the role of the gut mycobiota in MS. Our study 
provides a high-level characterization of the fungal gut community for 
participants with POMS, compared to monoADS and unaffected controls. 
POMS is a rare condition that limited the size of our study, as did the 
necessary step of removing any study participant in the post-data filtration 
stage to prevent bias by the low-quality reads (Nilsson et al., 2019a; Cao 
et al., 2021). We were also unable to substratify our cohorts to explore the 
possible impact of, for example, the use of disease-modifying drugs. In 
the future, larger studies are also needed to explore the effects of sex and 

age on the gut mycobiome composition. In addition to a larger sample 
size, future studies could be  enhanced by exploring the relationship 
between the fungal and bacterial gut microbiota in POMS.

The current cross-sectional study would benefit from the 
longitudinal collection of participant stool to, for example, investigate 
the potential role of age on the gut mycobiota composition over time. 
As expected in a cohort of individuals with POMS early in their 
disease course, disability scores, indicated by the Expanded Disability 
Status Scale, were low (scores averaged ~1–1.5). Longitudinal sample 
collection would also allow monitoring of disease activity or disability 
progression and the relationship with the gut mycobiota composition, 
including investigation of differences when stratifying by sex. 
Furthermore, while we purposely chose the commonly used internal 
transcribed spacer 2 (ITS2) region (also employed by one of the two 
previous MS-related mycobiome studies), it is worth noting that the 
choice of primer will influence the amplification of different fungal 
phyla and will affect comparisons between studies (Frau et al., 2019; 
Mbareche et al., 2021; Yadav et al., 2022).

We also acknowledge that comprehensive and well-curated 
reference databases are critical for mycobiome studies. A proportion of 
fungal sequences in our study were unclassified fungal organisms in 
each of the three groups (POMS, monoADS, and unaffected controls), 
exposing a limitation of the currently available database for fungal 
taxonomic assignment (Webster and Weber, 2007). Our study was able 
to identify certain fungi at the species level using the RefSeq ITS 
database that could not be  definitively assigned using the UNITE 
database. Although the use of the RefSeq ITS database did provide a 
higher taxonomic resolution for the majority of the significant OTUs 
from our LEfSe analysis, some OTUs could not be unambiguously 
classified to a single species level. In addition, our attempt to reclassify 
a large proportion of the Unknown and unclassified genera, which were 
particularly evident in the monoADS participants, resulted in 
improved resolution as we conducted a local BLAST against the latest 
version of the UNITE fungal ribosomal database. However, it should 
be  noted that the fungal nomenclature system is experiencing an 
ongoing period of reorganization with many fungal organisms yet to 
be discovered and characterized (Siqueira et al., 2018; Goering et al., 
2019; Nilsson et al., 2019b).

5 Conclusion

Although modest in size, our study provides novel insight into the 
fungal gut mycobiota in persons with and without POMS. While our 
findings suggested that the gut mycobiome of POMS participants may 
be largely dominated by transient colonizers, the possibility that rare 
or under-detected fungal markers may play a role in the 
pathophysiology of POMS warrants further consideration. Our 
findings guide future “-omics” based investigations in MS, which 
ideally include a more granular assessment of the gut mycobiome, 
especially in pediatric-onset participants, its functional potential, and 
interaction(s) with the wider gut microbiome community.
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