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Introduction: Evidence suggests that negative cognitive processing bias (NCPB) is

a significant risk factor for depression. The microbiota–gut–brain axis has been

proven to be a contributing factor to cognitive health and disease. However, the

connection between microbiota and NCPB remains unknown. This study mainly

sought to explore the key microbiota involved in NCPB and the possible pathways

through which NCPB affects depressive symptoms.

Methods: Data in our studies were collected from 735 Chinese young adults through

a cross-sectional survey. Fecal samples were collected from 35 young adults with

different levels of NCPB (18 individuals were recruited as the high-status NCPB group,

and another 17 individuals were matched as the low-status NCPB group) and 60

with different degrees of depressive symptoms (27 individuals were recruited into

the depressive symptom group, as D group, and 33 individuals were matched into

the control group, as C group) and analyzed by the 16S ribosomal RNA sequencing

technique.

Results: As a result, the level of NCPB correlated with the degree of depressive

symptoms as well as anxiety symptoms and sleep quality (p < 0.01). The β-diversity

of microbiota in young adults was proven to be significantly different between

the high-status NCPB and the low-status NCPB groups. There were several

significantly increased bacteria taxa, including Dorea, Christensenellaceae, Christe

-senellaceae_R_7_group, Ruminococcaceae_NK4A214_group, Eggerthellaceae,

Family-XIII, Family_XIII_AD3011_group, Faecalibaculum, and Oscillibacter. They were

mainly involved in pathways including short-chain fatty acid (SCFA) metabolism.

Among these variable bacteria taxa, Faecalibaculum was found associated with

both NCPB and depressive symptoms. Furthermore, five pathways turned out to

be significantly altered in both the high-status NCPB group and the depressive

symptom group, including butanoate metabolism, glyoxylate and dicarboxylate

metabolism, propanoate metabolism, phenylalanine, tyrosine, and tryptophan

biosynthesis, valine, leucine, and isoleucine degradation. These pathways were

related to SCFA metabolism.

Discussion: Fecal microbiota is altered in Chinese young male adults with high status

NCPB and may be involved in the biochemical progress that influences depressive

symptoms.
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Introduction

From the cognitive perspective, negative cognitive processing
bias (NCPB), which was characterized as negative bias in attention,
explanation, memory, and rumination being accompanied by poor
sleep quality, has been reported to be the core feature of depression
(Disner et al., 2011; Rozenman et al., 2014; Gobin et al., 2015).
The information processing involving sensory, perception, attention,
memory, learning, and so on constitutes cognition, which has been
proven to be essential for maintaining physical and mental health
(Kwak et al., 2016; Bayne et al., 2019; Liu et al., 2020; Ling et al.,
2021). For the last decade, the cognitive(Aatsinki et al., 2022) function
has been linked with microbiota composition. Initially, germ-free
(GF) mice were found to exhibit anxiolytic basal behavior utilizing
the elevated plus maze (EPM) compared to the specific pathogen-
free (SPF) mice (Neufeld et al., 2011). Furthermore, GF mice were
proven to be exhibiting changes in learning, memory recognition,
and emotional behavior resulting from the absence of microbiota
(Connell et al., 2022). The studies on the fecal microbiota of 8-month-
old infants described the association between early microbiota and
later fear bias. It observed a lower abundance of Bifidobacterium and
a higher abundance of Clostridium with an increased “fear bias” of
infants . Chronic antibiotic depletion of microbiota populations alters
cognition-related metabolism and the expression of key cognitive
signaling molecules, leading to long-lasting effects on cognition
(Fröhlich et al., 2016; Connell et al., 2022). The administering
probiotics, such as Bifidobacterium longum 1714, modulate the
behavior or cognition in both rodents and humans (Savignac et al.,
2015; Akbari et al., 2016; Connell et al., 2022). Novel perspectives
suggest that the dynamic bidirectional communication systems of the
microbiota–gut–brain axis may be a contributing factor to cognitive
health and diseases. Still, the exact mechanisms, especially on NCPB,
remain unknown (Connell et al., 2022).

Traditionally, neurobiological mechanism holds the view that
a loss of neural plasticity explains the occurrence of depression
(Duman et al., 1999; Li and Wang, 2021). At present, abnormality
of the microbiota–gut–brain axis is verified as an important risk
factor for depressive symptoms (Aizawa et al., 2016; Caspani
et al., 2019; Chung et al., 2019; Berg et al., 2020). The germ-free
mice were found to decrease the immobility time in the forced
swimming test more than healthy control mice. Furthermore, fecal
microbiota transplantation of GF mice derived from patients with
major depressive disorder (MDD) leads to aggravating depressive-
like behaviors compared with the colonization of the “health” fecal
microbiota from control individuals (Zheng et al., 2016). According
to Beck’s cognitive theory of depression, individuals suffering from
stressful life events might automatically activate negative cognitive
schemas, which lead to a negative tendency of cognition (Beck,
1967). The unpredictable chronic mild stress (UCMS) model mouse
displays depressive-like behaviors. Fecal microbiota transplantation
could have transferred the depression phenotype from UCMS donor
mice to naive recipient mice (Chevalier et al., 2020). The studies have
revealed that the adverse effects of UCMS-transferred microbiota
were alleviated by complementation with a strain of the Lactobacilli
genus in the mice (Chevalier et al., 2020). Yet the microbiota–brain–
gut axis of NCPB has been largely neglected.

The purpose of our study was to identify the adverse effect
of NCPB on an individual’s depressive symptoms, explore the
role of microbiota in NCPB, and discuss the possible underlying

mechanisms by which NCPB affects depression. We evaluated the
changes in fecal microbial community structure and composition in
subjects with high-status NCPB or depressive symptoms, analyzed
the correlation of the variation tendency involved in NCPB with
the degree of depressive symptoms, and hypothesized that (a) NCPB
positively correlated with depressive symptoms, anxiety symptoms,
and poor sleep quality in young adults; (b) the changes in microbiota
could be observed in individuals with high-status NCPB, as well as
depressive symptoms compared to that in controls; and (c) specific
taxa and functional pathways may be found to potentially mediate
the affection of NCPB on depressive symptoms.

Materials and methods

Study design and participants

Self-report measures
The self-designed socio-demographic information questionnaire

was used to collect personal information including participants’ age,
gender, ethnicity, only-child status, family types, and contact ways.
Moreover, based on Beck’s NCPB theory of depression, the negative
cognitive processing bias questionnaire (NCPBQ) is designed to
assess the degree of an individual’s NCPB (especially for the Chinese
population). In our previous studies, NCPBQ has good reliability
(Cronbach’s alpha coefficient = 0.89) and validity (all factor loads
are over 0.30) in the Chinese population (Yan et al., 2017). It
showed good reliability in this study with Cronbach’s alpha coefficient
being 0.92 (Jiang et al., 2017; Huang et al., 2021; Li et al., 2021).
It is a 4-point scale on four factors: negative attention bias (i.e.,
sustained attention on negative information), negative memory bias
(i.e., tendency to remember or recall negative life events), negative
rumination bias (i.e., rumination on personal negative emotions),
and negative explanation bias (i.e., tendency to make a negative
explanation on events). The total scores of NCPBQ range from 16
to 64, with the higher scores indicating the higher status of NCPB.
In the present study, to recruit participants with a high or low level
of NCPB, we transformed the linear slope from a continuous variable
into three categories on a common way of grouping (bottom 27%, top
27%, and others) (Notebaert et al., 2020; Ge et al., 2022).

Self-Rating Depression Scale (SDS) is a 4-point Likert-type and
self-reported scale used to assess the severity of depressive symptoms.
A total raw SDS score was obtained by summing the ratings of the
20 items, which were divided by 80 to create a depression severity
index. A depression severity index greater than 0.5 was considered
to indicate depressive symptoms. With high internal consistency,
high validity in differentiating between depressed and non-depressed
subjects, and international propagation, SDS has been a worldwide
inventory among the most used self-rating scales for measuring
depressive symptoms (Zung, 1965).

Anxiety symptoms were assessed by self-report with the Chinese
version of the Self-rating Anxiety Scale (SAS), which has been
validated in the Chinese population in several studies (Zung, 1971;
Gong and Chan, 2018; Wu et al., 2019). Cronbach’s alpha coefficient
measured in the current study was 0.79.

Pittsburgh Sleep Quality Index (PSQI) is a measurement tool used
for assessing sleep quality, which has been widely used in clinical and
healthy populations all over the world. The higher scores indicate
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FIGURE 1

Flow diagram of the study. HS group, the high-status NCPB group; LS
group, the low-status NCPB group; D group, the depression symptom
group; C group, the control group.

poorer sleep quality. A Chinese version of the PSQI has been validated
with adequate reliability (Buysse et al., 1989; Guo et al., 2016).

Study design and participants

The study design was approved by the Human Research Ethics
Committee of the Army Medical University (the number was: IEC-C-
[B013]-02-J.02). A cross-sectional survey was conducted in Mianyang
city, Sichuan province, between November and December 2019,
which covered 766 individuals. According to the results of the survey,
18 young adults with high-status NCPB and 17 with low-status
NCPB (HS represented the high-status NCPB and LS represented
the low-status NCPB) were recruited in the following experimental
study. Meanwhile, 27 people with severe depressive symptoms and
33 people as the control were also recruited. In the trial phase, fecal
samples were collected to analyze the structure of fecal microbiota
after subjects were given 1 month of the same balanced diet. The
detailed design is shown in Figure 1. Written informed consent was
obtained from all participants.

In the cross-sectional survey, eligible subjects are defined as
follows: (1) young adults aged 18–25 years old and (2) young adults
who were willing to take part in the survey. All subjects consumed
the same balanced diet according to Chinese Recommended Dietary
Allowance (Ge, 2011; Yang et al., 2018) for 1 month (Sanz, 2010;
Jing et al., 2021) to avoid the influence of diet and forbidden snacks.

A total of 766 individuals were approached for participation, and 31
of them were excluded from our analysis. Finally, as many as 95.95%
(735/766) of young adults were included in the statistical analysis.

In the experimental study section, 18 individuals were recruited
as the HS group if their scores of NCPBQ were in the top 27%.
Similarly, another 17 individuals were matched as the LS group
with scores of NCPB in the bottom 27% as in previous studies
(Notebaert et al., 2020; Ge et al., 2022). Moreover, 27 individuals
with an SDS index (see later) higher than 0.6 were recruited into
the depressive symptom group (D group), and 33 individuals lower
than 0.5 were matched as the control group (C group) (Zung, 1965).
Considering that a variety of factors might influence microbiota
composition, we excluded subjects in the previous 1 month if
any of the following criteria were met, including (1) a history of
severe cardiac, pulmonary, hepatic, renal, intestinal diseases, or any
kind of tumor; (2) antibiotic, probiotic, prebiotic and synbiotic
application, as well as active bacterial, fungal or viral infections,
gastrointestinal surgery; (3) a history of other psychiatric diseases
except depression (e.g., schizophrenia); and (4) they were not willing
to participate in the experiment. All the subjects needed to meet
the following conditions: (1) young adults aged 18–25; (2) Han
nationality; (3) male; and (4) they were willing to take part in the
experiment.

Cross-sectional survey

The cross-sectional survey was carried out after a clear
illumination. The participants were asked to complete the
questionnaires designed for collecting personal information
and estimating the degree of NCPB, depressive symptoms, anxiety
symptoms, and sleep quality.

Fecal sample collection and DNA isolation

According to the results of the cross-sectional survey, 18 young
adults with high-status NCPB and 17 age- and gender-matched with
low status were recruited. Moreover, 27 young adults with high
depressive symptoms were selected into the depressive symptom
group, and 33 age- and gender-matched young adults with low
depressive symptoms were also recruited. The fecal samples collected
from the recruited participants in the morning were numbered and
stored at −80◦C before analyses. According to the instruction, the
standard Power Soil DNA Isolation Kit was used to extract DNA
(QIAGEN, Germany).

16S rRNA gene sequencing and analysis

The V3–V4 variable region of the bacteria’s 16S ribosomal
RNA (rRNA) gene was amplified by PCR amplification
technology with barcode-indexed primers, including 338F
(5′-ACTC-CTACGGGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). The PCR amplification
system and reactions were consulted in the previous studies (Zhuang
et al., 2018). In the experimental section, raw reads were filtered
and quality-controlled to remove chimeric sequence reads. All
remaining sequence reads were assigned to operational taxonomic
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units (OTUs) with a 97% threshold of pairwise identity using the
UCLUST comparison tool of the quantitative insights into microbial
ecology (QIIME) pipeline (version 1.8.01) and then taxonomically
classified with the RDP reference database. α-Diversity including
the ACE index, Chao index, Simpson index, and Shannon diversity
index was calculated for each sample or group. β-Diversity was
also evaluated by principle coordinate analysis (PCoA) of weight
and unweight UniFrac distances and Bray–Curtis dissimilarity
as previously described (Chung et al., 2019). Furthermore, the
taxonomic distributions of OTUs were performed and graphics were
constructed based on the relative abundance of microbiota in each
taxon in the samples and groups. The linear discriminant analysis
(LDA) effect size (LEfSe) method was used to identify significant
OTUs differentially. Moreover, Mann–Whitney U-test was conducted
to assess differences in socio-demographic characteristics, species
diversity indexes, and the relative abundance of microbiota among
the various taxonomic levels using SPSS 22.0 (IBM, Armonk, NY,
USA). Finally, the KEGG database2 was used in the signal pathway
analysis to annotate pathways. We analyzed functional pathways by
STAMP (version 2.1.3) (Parks et al., 2014) to explore the potential
functional properties of the identified microbiota. All tests mentioned
earlier were two-tailed, with a p-value of< 0.05 considered statistical
significance.

Statistical analysis

In the analysis of cross-sectional survey results, reliability
and internal consistency were estimated using Cronbach’s alpha
coefficient. Descriptive statistics, t-test, one-way ANOVA or Chi-
square test, Pearson’s correlation analysis, and logistic regression
analysis were performed with SPSS 22.0 (IBM, Armonk, NY, USA).

Results

Results of cross-sectional survey

A total of 735 young adults were finally enrolled in the statistical
analysis. Those subjects were all male adults, ranging from 18 to
26 years old (23.76 ± 3.67). A majority of them were Han ethnicity,
who showed less depressive or anxiety symptoms and better sleep
quality (∗p < 0.05). Detailed socio-demographic variables are shown
in Supplementary Table 1.

Negative cognitive processing bias is positively correlated with
depressive symptoms and anxiety symptoms, as shown in Table 1.
Correlations among study variables showed that NCPB positively
correlated with depressive symptoms, anxiety symptoms, and sleep
quality in young adults. It was also found in the relationship between
depressive symptoms, anxiety symptoms, and sleep quality. The
results of regression analyses showed that NCPB. could positively
predict the degree of depressive symptoms and anxiety symptoms and
negatively predict the quality of sleep, covering the proportion of total
variance of 16.7, 31.8, and 20.5%, respectively. Detailed information
is shown in Table 2.

1 http://qiime.org/

2 http://www.genome.jp/kegg/pathway.html

Comparison of the microbiota in the
high-status and low-status NCPB groups

As shown in Supplementary Table 2, no significant difference
was found in gender, ethnicity, age, only-child status, and the body
mass index (BMI) between the high-status and low-status NCPB.
We have already verified the sample size of flora analysis and the
data collection volume is sufficient before the comparision of the
microbiota in different groups, as shown in Supplementary Figure 1.

Overall, Adonis unweighted UniFrac dissimilarity metrics
showed that the fecal microbial communities significantly differed
with different statuses of NCPB (Adonis ∗∗p = 0.007) (Figures 2A,
B), suggesting dissimilar microbiota composition between the high-
status and low-status groups. The level of α-diversity was slightly
higher in the high-status group, but not statistically significant
(Supplementary Table 3 and Figure 2C).

In addition, the composition of the fecal microbiota was
different in the high-status NCPB and the low-status groups. A total
of 18 pivotal discriminatory OTUs were identified by using the
Random Forest algorithm, including five OTUs (assigned to the
genus of Bacteroides, Faecalibaculum, Family_XIII_unclassified,
Christensenellaceae_R-7_group, and Coriobacteriales_unclassified)
were overrepresented in the HS group, while six OTUs (assigned to
the genus of Bacteroides, Bacteria_unclassified, and Butyricimonas)
were overrepresented in the low-status NCPB group (Figure 3A).
The taxonomic compositions of fecal microbiota in the two groups
are shown in Figure 3B.

Further analysis revealed that several targets were
significantly higher in the high-status group, including four
families (Family_XIII, Christensenellaceae, Peptococcaceae,
and Eggerthellaceae) and 12 genera (Faecalibaculum,
Family_XIII_unclassified, Ruminococcaceae_UCG-010, Ruminoco-
ccaceae_unclassified, Eggerthellaceae_unclassified, Dorea, Chris-
tensenellaceae_R7_group, Ruminococcaceae_NK4A214_group, Eub-
acterium, Peptococcus, Family_XIII_AD3011_group, and
Oscillibacter) (Supplementary Table 4). The heat map of 50
top genera in HS and LS group was showed in Figure 4A.

Linear discriminant analysis effect size analysis
[LDA scores (log10) >2] identified nine meaningful
pregnancy taxa in the high-status NCPB group, inclusive of
Dorea, Christensenellaceae, Christensenellaceae_R_7_group,
Ruminococcaceae_NK4A214_group, Eggerthellaceae, Family
-_XIII, Family_XIII_AD3011_group, Faecalibaculum, and
Oscillibacter (Figure 4B).

Shared bacteria associated with NCPB and
depressive symptoms

As shown in Supplementary Table 5, young adults in the
depressive symptom group also had more severe anxiety symptoms.
No significant difference was found in gender, ethnicity, age and only-
child status, and BMI between the depressive symptom group and
normal controls.

α-Diversity and β-diversity of the fecal microbiota were not
significantly different, as shown in Supplementary Table 6 and
Supplementary Figure 2A. Still, analyses revealed several taxon
targets for the depressive symptom group, as shown in Figure 5
and Supplementary Figure 2B and Supplementary Table 7.
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TABLE 1 Correlation among study variables (r).

Variable NCPB Depressive symptoms Anxious symptoms Sleep quality

NCPB –

Depressive symptoms 0.41** –

Anxious symptoms 0.56** 0.70** –

Sleep quality 0.45** 0.41** 0.52** –

**p< 0.01.

TABLE 2 Regression analysis of NCPB on depressive symptoms, anxiety symptoms, and sleep quality.

Variable B SE β t p

Depressive symptoms 0.32 0.03 0.41 12.13 <0.01

Anxious symptoms 0.35 0.02 0.56 18.50 <0.01

Sleep quality 0.13 0.01 0.45 13.69 <0.01

FIGURE 2

β-Diversity measures (A,B) and α-diversity measures (C) including (C-1) ACE, (C-2) Chao, (C-3) Shannon, and (C-4) Simpson of the fecal microbiota in HS
and LS groups. HS, the high-status NCPB; LS, the low-status NCPB.

FIGURE 3

Heat map of relative abundance at the level of OTU (A) and composition (B) of the fecal microbiota at the level of (B-1) phylum, (B-2) class, (B-3) order,
and (B-4) family in HS and LS groups. HS, the high-status NCPB; LS, the low-status NCPB.
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FIGURE 4

Heat map of 50 top genera in HS and LS groups (A) and difference of meaningful bacterial taxa (B) in HS and LS groups. (B-1) Taxonomic represents a
statistical difference in groups. (B-2) Histogram of the LDA scores for differential abundant genera. HS, the high-status NCPB; LS, the low-status NCPB.

FIGURE 5

Boxplots of relative abundance of several genera with a significant difference in depression symptom and the control groups. (A) Difference of
meaningful bacterial taxa in depression symptom and the control groups and (B) in depressive symptom and control groups. (B-1) Taxonomic represents
a statistical difference in groups. (B-2) Histogram of the LDA scores for differentially abundant genera.

LEfSe was also performed [LDA scores (log10) >1.5] and
identified the meaningful taxa. Agathobacter, Faecalibaculum (LDA
score was 1.9992248338), and Ruminococcus_2 were significantly
increased in the depressive symptom group, while Bilophila,
Eggerthella, Deltaproteobacteria, Erysipelotrichaceae_UCG_003, and
Ruminococcus_gnavus_group were decreased (Figure 5).

The results of the fecal microbial structure indicated a significant
fecal microbial imbalance in young male adults with a high level
of NCPB or depressive symptoms. NCPB and depressive symptom
groups shared similar bacteria (Figure 6A). Faecalibaculum was

increased in both NCPB and the depressive symptom group, and a
graphical representation is shown in Figure 6B.

Predictive microbiota functional profiling
and shared pathways associated with
NCPB and depressive symptoms

Functional profiling of microbial communities was predicted
based on OTUs. A total of 11 pathways were found significantly

Frontiers in Microbiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2023.989162
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-989162 February 28, 2023 Time: 8:39 # 7

Xu et al. 10.3389/fmicb.2023.989162

FIGURE 6

Analysis of commonly associated genera with NCPB and depressive symptom groups. (A) The common associated genera with NCPB and depressive
symptom groups (B) as well as the results of Faecalibaculum. HS, the high-status NCPB; LS, the low-status NCPB; D, the depression symptom group;
C, the control group.

different in the predictive microbiota functional profiling between
the high-status and low-status NCPB groups. The predicted pathways
mainly included compound metabolism (carbohydrate, amino acid
metabolism, and lipid), membrane transport, cell growth, and death
pathways. Detailed results are displayed in Figure 7A (p< 0.05).

Nevertheless, the predictive microbiota functional profiling was
changed relative to depressive symptoms. In the functional pathway
analyses, a total of 25 pathways were significantly enriched and 47
were depleted in the depressive symptom group. These pathways
mainly included compound metabolism (e.g., carbohydrate, amino
acid metabolism, nucleotide, and lipid), biosynthesis processes
(e.g., lysine, arginine, fatty acid, phenylalanine, tyrosine, and
tryptophan), degradation (e.g., lysine, fatty acid, and RNA), and
signal transduction (e.g., two-component system), with detailed
results partly presented in Figure 7B (p < 0.01) and whole in
Supplementary Figure 3 (p< 0.05).

In addition, the results also showed that NCPB and depressive
symptom groups shared similar pathways. Several common pathways
related to both NCPB and depressive symptoms were also found
including butanoate metabolism, glyoxylate and dicarboxylate
metabolism, propanoate metabolism, phenylalanine, tyrosine and
tryptophan biosynthesis, valine, leucine, and isoleucine degradation
(Figure 7C).

Discussion

NCPB is positively correlated with
depressive symptoms and anxiety
symptoms

Depression is considered to be one of the most common
mental disorders, and its pathogenesis is still unknown. In many
cases, it is a common outcome of exposure to traumatic events,
which influence information processing, modify attention or memory
functions, and promote dysfunctional interpretations of current
experiences (LeMoult and Gotlib, 2019; Qu et al., 2019; Vidańa
et al., 2020). Referring to Beck’s model, cognitive distortions and
negative shelf schema, often based on childhood experiences, bring

about depression and co-occur with mood disorders (Sanchez et al.,
2017; Beevers et al., 2019; Li et al., 2021; Noworyta et al., 2021).
Apart from substantial research examining depressive cognitive
content as a vulnerability factor (e.g., negative thoughts), a promising
line of research highlights the role of NCPB in the development,
maintenance, and relapse/recurrence of depressive symptoms or
clinical depression (De Raedt and Koster, 2010; Dagmara et al., 2019;
LeMoult et al., 2020).

In our studies, the relationship between NCPB, depressive
symptoms, anxiety symptoms, and sleep quality among 735 Chinese
young adults were discussed. In line with former studies, we
certified that the scores on NCPBQ positively correlated with scores
of depressive symptoms, anxiety symptoms, and sleep quality in
Chinese young male adults. Further results in regression analyses
showed that NCPB could positively predict the degree of depressive
symptoms and anxiety symptoms and negatively predict sleep quality,
covering the proportion of total variance of 16.37, 31.8, and 20.5%.

There is substantial evidence for general cognitive deficits in
depression which is revealed in the literature (Joormann and Gotlib,
2010; Koster et al., 2011; Joormann and Vanderlind, 2014; Sanchez
et al., 2017; Van den Bergh et al., 2018). Patients with cognitive deficits
are typically characterized by impairments in attention, motor skills,
working memory, and executive functions, which are prominent
features of psychosis (LeMoult and Gotlib, 2019). Pathology-
congruent interpretative biases are found in the prodromal phase;
then, this presents an exciting new treatment possibility (Aronoriaga-
Rodriguez and Fernandez-Real, 2019). Cognitive models have been
proposed originally as etiological theories of depression (Mathews
and MacLeod, 2005; Bomyea et al., 2017; Poole et al., 2017; Buckley
et al., 2020).

The composition of the microbiota is
significantly associated with the level of
NCPB

Nowadays, the microbiota–gut–brain axis has been proposed
as a key regulator of stress responses, providing possibilities
for the prevention and treatment of stress-related disorders
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FIGURE 7

Analysis of functional pathways in NCPB groups and depressive symptom groups. (A) The high-status and low-status NCPB groups, (B) the depressive
symptom and control groups, (C) and shared pathways associated with NCPB and depressive symptoms. HS, the high-status NCPB; LS, the low-status
NCPB.

(Gubert et al., 2020). The fecal microbiome seems to exert
psychological effects affecting cognitive and emotional reactivity
(Proctor et al., 2017; Vuong et al., 2017; Foster et al., 2021). Studies
have found that disturbances in the homeostasis of the microbiota,
such as a consequence of antibiotics, result in alterations at neural,
hormonal, and immunological levels and are involved in the
physiological stress response and behavior in both animals and
humans, including patients with depression (Campos et al., 2016;
Zheng et al., 2016; Sarkar et al., 2018). However, it is still unknown
on the connection between the NCPB and the consequences of fecal
microbial composition structure transform.

In our studies, we assessed the changes in the composition of the
bacteria at different levels of NCPB. The significantly diverse fecal
bacteria β-diversity and increase in the relative abundance of several
microbiota, such as Family_XIII, Christensenellaceae, Peptococcaceae,
and Eggerthellaceae, confirmed that the fecal bacteria comparison
is variations of the alteration of the NCPB levels (Figure 2). We
speculated that the degrees of our volunteers’ depressive symptoms
might weaken the shift of microbial composition structure which
has been verified in patients with MDD in previous studies (Ritchie
et al., 2022). There were neither α-diversity nor β-diversity significant
differences at the phylum level caused by aggravated depressive
symptoms (Supplementary Figure 2A). Nevertheless, we found
that some of the relative abundances of fecal microbiota, such as
Deltaproteobacteria, had changed significantly, as shown in Figure 5.
The cognition disorders involved in emotional disturbance, such as
anxiety, have been associated with the imbalance of intestinal flora
via the stress response in the clinical data (Ritchie et al., 2022).
Several specific microbial families and genera have been associated
with cognitive decline, anxiety behaviors, and affective disorders,

such as Bifidobacterium lactis CNCM I-2494, Lactobacillus bulgaricus,
Streptococcus thermophilus, and Lactobacillus lactis. The probiotic
mixture containing these microbiota have been reported substantially
to alter brain activity during the emotional reactivity test in healthy
volunteers (Cryan and Dinan, 2012). To the best of our knowledge,
how the gut microbiome might vary specifically from patients with
depression with and without the NCPB specifier had not been
explored previously.

Faecalibaculum was the common
bacterium associated with both NCPB and
depressive symptoms

More interestingly, in our studies, among these flora community
compositions converts, Faecalibaculum, which belongs to
Erysipelotrichaceae, was the common bacterium associated with
both NCPB and depressive symptoms at the genus level. It was
not only higher in the high-state NCPB group but also in the
depressive symptom group (Figure 6). It has been proven that
Faecalibaculum rodentium transplanted from chronic social defeat
stress (CSDS)-susceptible mice might induce the anhedonia-like
behavior in the antibiotic cocktail (ABX)-treated WT and Ephx2KO
mice, which did not show depressive behaviors in the exposure of
CSDS. Ingestion of Faecalibaculum for 14 days induced anhedonia-
like and depression behaviors of ABX-treated Ephx2KO mice,
accompanied by the increased expression of proinflammatory
factors, such as interleukin-6 in the blood and reduction of synaptic
proteins expression in the prefrontal cortex (Wang et al., 2021).
The combination of probiotics and prebiotics contains Lactobacillus
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with Faecalibaculum, Blautia, or Bifidobacterium spp. was proven to
normalize the gut microbiome diversity and improve depressive-like
behavior of the chronic stress-induced depression and anxiety in
mice model (Westfall et al., 2021). Furthermore, growing evidence
indicates that Faecalibaculum enriched “Western diet” or high-fat
diet (HFD) fed mice, especially positively correlated with serum
proinflammatory cytokines such as TNF-α, IL-6, and LBP in HFD-
fed mice, and closely related to the metabolism disorders involved in
energy production or adiposity (Skonieczna-Żydecka et al., 2018; Ma
et al., 2019; Wei et al., 2020). Faecalibaculum was considered a gut
antigen causing the abnormal function of the microbiota–gut–brain
axis (Oleskin and Shenderov, 2016; Dalile et al., 2019). A high
sugar diet and innate lymphoid cell 3 (ILC3) promoted that the
outgrowth of F. rodentium could displace Th17-inducing microbiota
and posing risk for metabolic syndrome in mice (Kawano et al.,
2022). Activity ileal ILC3 might regulate the ileal Treg/T helper 17
cells ratio and impact the production of hippocampal and prefrontal
cortex chemotactic in the stress-induced behavioral deficits mice
model, which could be relieved by the combination of probiotics and
prebiotics and promoted behavioral resilience to the chronic and
recurrent stress by normalizing gut microbiota populations (Westfall
et al., 2021). These studies have revealed a connection between
stress-induced depression and anxiety-like behavioral impairments
depending on the microbiota–gut–brain axis and immune regulation
system, and most of them were based on animal research rather than
clinical studies.

Shared metabolic pathways associated
with NCPB and depressive symptoms
were mainly involved with SCFAs

We continuously analyzed the functional profiling of microbiota
communities predicted based on OTUs. It is revealed that 11
functional pathways were significantly different and mainly focused
on compound metabolisms, such as carbohydrate, amino acid
metabolism and lipid, membrane transport, cell growth, and death
pathways (Figure 7A). It has been proven that the production
of several metabolic responses impacts a variety of life functions,
including neurological functions (Kennedy et al., 2017; Martin et al.,
2020).

The pathways, including the phenylalanine, tyrosine and
tryptophan biosynthesis, butanoate metabolism, propanoate
metabolism, glyoxylate and dicarboxylate metabolism, were
significantly altered between the high-status and low-status NCPB
in our studies. And they were reported to be involved into the
cognitive dysfunction in rodents and patients with depression. In
which five pathways, such as butanoate metabolism, glyoxylate, and
dicarboxylate metabolism, propanoate metabolism, phenylalanine,
tyrosine, and tryptophan biosynthesis, valine, leucine, and isoleucine
degradation, were invovled with environment responses such as
two-component system, and the neurotrophy relevantly pathways
such as folate biosynthesis and biosynthesis of amino acids. The
production of these pathways, especially the SCFAs, such as
butanoate, phenylalanine, tyrosine, and tryptophan, has been proven
to modulate multiple biological processes including neurological
function. Produced by the most endogenous microbiota, SCFAs
readily pass through the mucosa layer and cell membranes and exert
toxic effects on mammal cells at high concentrations, particularly

affecting the functions of the nervous system by serving as nutrients,
metabolites, or regulators involved in the operation of various kinds
of nervous cells (Valles-Colomer et al., 2017).

A clear association has been found between lower levels of
SCFAs and decreased representation of obligate anaerobes such
as the Faecalibaculum, Lachnospiraceae, and Ruminococcaceae in
human fecal microbiota (D’Amato et al., 2020). The fecal microbiota
transplant contained those microbiotas including Faecalibaculum
and Lachnospiraceae from aged donor mice into young adult
recipients altered the abundance of bacteria associated with
SCFAs production and impacted the cognitive function (D’Amato
et al., 2020). Several studies have revealed the potential ability
of Erysipelotrichaceae, Bifidobacterium, Faecalibaculum, Bacteroides,
and Romboutsia to produce SCFAs in mice (Smith et al., 2013; Dalile
et al., 2019). A correlation between SCFA levels and the abundance
of Faecalibaculum, Romboutsia, Bacteroides, and Turicibacter were
found in rats. Faecalibaculum was the most strongly positively
correlated with the levels of SCFA levels, which are well known as the
endogenous ligands of PPARγ, and crucially together with increasing
PPARγ expression, promoting the PPARγ/MAPK/NF-κB signaling
pathway connected with the metabolism and immune system (Zhang
et al., 2022).

In addition, SCFAs, especially butyrate production, provide
energy substrates for colonocytes, mitigate inflammation, and
regulate satiety for their host. Their deficiency or redundancy not
only leads to metabolic diseases but is also involved in depression
and other mood disorders (Oleskin and Shenderov, 2016). Michels
et al. (2017) and Skonieczna-Żydecka et al. (2018) demonstrated
that emotional problems in Belgian children and Polish depressive
women. were associated with a significantly higher concentration
of butyrate, isobutyrate, valerate, and isovalerate. Hence, the results
of fecal microbial structure and function alteration indicated a
significant fecal microbial imbalance in Chinese young male adults
with high levels of NCPB with depressive symptoms. It may be a hint
that explains the mechanism of higher levels of NCPB involved with
severe depressive symptoms.

Conclusion

This is the first study on the connection between microbiota and
NCPB, exploring the co-exist microbiota of NCPB and depressive
symptoms by sequencing and analyzing the fecal microbiota of
735 Chinese young adults who have to take a balanced diet for
1 month and restricted of snacks. The NCPB status of these young
adults was positively correlated with the degree of depressive
symptoms as well as anxiety symptoms and sleep quality (p < 0.01).
We, fortunately, found several target bacteria taxa, including
Dorea, Christensenellaceae, Christensenellaceae_R_7_group,
Ruminococcaceae_NK4A214_group, Eggerthellaceae, Family-XIII,
Family_XIII_AD3011_group, Faecalibaculum, and Oscillibacter that
were significantly enriched in the high-status NCPB group than in
the low-status group. These bacteria taxa were mainly involved in
pathways including SCFA metabolism. Furthermore, Faecalibaculum,
which was proven involved with the depressive-like phenotypes in
laboratory animals, was also found significantly increased in the
depressive symptom group compared with the control group.
Five pathways, such as butanoate metabolism, glyoxylate, and
dicarboxylate metabolism, turned out to be significant altered in
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both the high-status NCPB group and the depressive symptoms
group. The results hint at the common bacteria taxa and pathways
involved with either NCPB or depressive symptoms and provided
some clues for the crosstalk of NCPB and depressive symptoms via
the microbiota–brain–gut axis.

Limitations

There was an exploratory study that needs to be replicated across
larger samples and compared with a healthy control group.
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