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Fatty acids salts exert bactericidal and bacteriostatic effects that inhibit bacterial 
growth and survival. However, bacteria can overcome these effects and adapt to their 
environment. Bacterial efflux systems are associated with resistance to different toxic 
compounds. Here, several bacterial efflux systems were examined to determine their 
influence on fatty acid salt resistance in Escherichia coli. Both acrAB and tolC E. coli 
deletion strains were susceptible to fatty acid salts, while plasmids carrying acrAB, 
acrEF, mdtABC, or emrAB conferred drug resistance to the ΔacrAB mutant, which 
indicated complementary roles for these multidrug efflux pumps. Our data exemplify 
the importance of bacterial efflux systems in E. coli resistance to fatty acid salts.
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Introduction

Fatty acid salts exhibit amphipathic properties and antibacterial activities which are mediated 
by (i) increased membrane permeability and leakage, (ii) disrupted electron transport chain and 
oxidative phosphorylation uncoupling, and (iii) inhibited nutrient uptake and membrane enzyme 
activity (Yoon et al., 2018). While bacteria employ several strategies to resist the antibacterial actions 
of fatty acid salts (Miller et al., 1977; Chamberlain et al., 1991; Desbois and Smith, 2010), the 
resistance mechanisms remain unclear, therefore, it is important to comprehend how bacteria evade/
abrogate the bactericidal effects of fatty acid salts.

Bacterial drug resistance is associated with drug efflux pumps which reduce drug accumulation 
in cells (Nikaido, 1996; Zgurskaya and Nikaido, 2000). These pumps are classified into six categories 
based on sequence similarity with other protein families: major facilitator superfamily (MFS), 
resistance-nodulation-cell division (RND), small multidrug resistance (SMR), multidrug and toxic 
compound extrusion (MATE), ATP-binding cassette (ABC), and proteobacterial antimicrobial 
compound efflux families (PACE; Putman et al., 2000; Hassan et al., 2018). The elucidation of bacterial 
genome sequences has greatly facilitated the identification of putative drug resistance genes in Gram-
negative bacteria, including Escherichia coli (Nishino and Yamaguchi, 2001). Of note, the RND family 
has a major role in both intrinsic and acquired multidrug resistance in Gram-negative bacteria 
(Venter et al., 2015). RND efflux pumps require two proteins to function: a membrane fusion protein 
(periplasmic adaptor protein) and an outer membrane protein, e.g., the major drug efflux pump AcrB 
of the RND family requires the membrane fusion protein AcrA and the outer membrane protein TolC 
to function (Nishino et al., 2003; Alav et al., 2021; Zwama and Nishino, 2021).

In some bacteria, multidrug efflux pumps are believed to play vital functions overcoming the 
antibacterial effects of fatty acid salts (Ma et al., 1995; Gunn, 2000; Rosenberg et al., 2003; Prouty 
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et al., 2004; Lennen et al., 2013; Wotzka et al., 2019; Henderson et al., 
2021; Yoneda et al., 2022). In this study, we evaluated multidrug efflux 
pump functions toward fatty acid salt resistance using various E. coli 
strains deficient in or overexpressing genes encoding multidrug efflux 
pumps. Using this strategy, we identified multidrug efflux pumps and 
mechanisms involved in bacterial resistance to fatty acid salts.

Materials and methods

Strains and plasmids used in this study

Study strains and plasmids are shown (Table 1). Escherichia coli 
strains were derived from the MG1655 wild-type (WT) strain (Blattner 
et al., 1997). To construct E. coli gene deletion mutants, gene disruption 
strategies were performed according to Datsenko and Wanner (2000) 
using the primers listed in Table 2. Plasmids carrying acrAB, acrD, 
acrEF, mdtABC, mdtEF, emrAB, macAB, emrE, mdfA, or mdtK were 
constructed as previously described (Nishino et al., 2003).

Measurement of the minimum inhibitory 
concentrations of fatty acid salts

To examine multidrug efflux pumps in E. coli fatty acid salt 
resistance, antibacterial activities were examined on LB plates containing 

sodium hexanoate (C6) at concentrations from 78 to 40,000 μg/ml, 
sodium octanoate (C8) at concentrations from 78 to 40,000 μg/ml, 
sodium decanoate (C10) at concentrations from 0.63 to 40,000 μg/ml, 
and sodium dodecanoate (C12) at concentrations from 0.08 to 5,000 μg/
ml (Sigma-Aldrich, St Louis, MO, United States; Table 3). Plates were 
prepared using the 2-fold agar dilution technique (Nishino and 
Yamaguchi, 2004). To determine minimum inhibitory concentrations 
(MICs), bacteria were cultured overnight at 37°C in LB, diluted in the 
same medium, and tested at a final inoculum of 105 colony forming 
units/spot using McFarland turbidity standards (Eiken Chemical, Tokyo, 
Japan) and a multipoint inoculator (Sakuma Seisakusyo, Tokyo, Japan). 
Plates were incubated at 37°C for 20 h.

Measurement of the bacterial growth in the 
presence of sodium dodecanoate (C12)

Single E. coli colonies were inoculated into 2 ml of LB. Bacteria were 
cultured overnight at 37°C, diluted in the same medium, and tested at a 
final inoculum concentration of 105 colony forming units/μl in 200 μl of 
LB broth containing sodium dodecanoate (C12; 1,000 μg/ml) using 
McFarland turbidity standards (Eiken Chemical, Tokyo, Japan). Then, 
liquid cultures were incubated and shaken at 37°C in NUNC Edge 
96-well plates (Thermo Scientific, MA, United States). Bacterial growth 
was measured by OD600nm readings using the Infinite M200 PRO plate 
reader (Tecan, Männedorf, Switzerland).

Results and discussion

In order to investigate the involvement of multidrug efflux pumps 
in the fatty acid salt susceptibility of E. coli, MIC measurements were 
carried out as described in the section materials and methods. Strains 
lacking acrAB (coding for the bacterial efflux system) or tolC (outer 
membrane channel gene) were more susceptible to fatty acid salts when 
compared with the WT strain (Table 3). These observations showed that 
the antibacterial activity of fatty acid salts increased with carbon atom 
numbers in salts, i.e., MIC values for ΔtolC in E. coli decreased as carbon 
atoms increased (Table 3). Both ΔtolC and ΔacrABΔtolC mutants were 
more sensitive to sodium octanoate (C8), sodium decanoate (C10), and 
sodium dodecanoate (C12) than the ΔacrAB mutant, suggesting TolC 
was needed for fatty acid salt resistance as it functioned not only with 
AcrAB but also with other multidrug efflux pumps in a protein complex 
in E. coli (Zgurskaya et al., 2011; Lennen et al., 2013).

Furthermore, plasmids carrying drug efflux pump genes belonging 
to RND (acrAB, acrD, acrEF, mdtABC, and mdtEF), MFS (emrAB and 
mdfA), ABC (macAB), SMR (emrE), and MATE (mdtK) families were 
transformed into the ΔacrAB E. coli strain, and susceptibility to fatty 
acid salts measured (Table 3). When acrAB, acrEF, mdtABC, or emrAB 
were overexpressed in the ΔacrAB strain, a 4–8-fold increase in 
resistance to sodium dodecanoate (C12) was observed. The 
complementation of acrAB on the plasmid in the ΔacrAB strain did not 
completely reconstitute the resistance of the wild-type strain. This is 
often the case with some antimicrobial compounds, since the expression 
of acrAB in the wild-type strain is quite high (Nishino et al., 2003). In 
particular, emrAB expression conferred the highest resistance level 
(Table 3) and the fastest growth rate (Figure 1). Thus, multiple efflux 
pumps had complementary roles with AcrAB in generating fatty acid 
salt resistance in E. coli.

TABLE 1 Escherichia coli strains used in this study.

Escherichia 
coli strains

Characteristics
Source or 
reference

MG1655 Escherichia coli wild-type Blattner et al. (1997)

NKE3002 ΔemrAB::KmR This study

NKE3003 ΔemrAB::KmR/vector (pHSG398) This study

NKE3004 ΔemrAB::KmR /pemrAB This study

NKE3005 ΔemrAB::KmRΔtolC This study

NKE3006 ΔemrAB::KmRΔtolC/vector (pHSG398) This study

NKE3007 ΔemrAB::KmRΔtolC/pemrAB This study

NKE348 ΔacrAB Nishino et al. (2003)

NKE95 ΔtolC::CmR This study

NKE128 ΔacrABΔtolC This study

NKE348 ΔacrAB Nishino et al. (2003)

NKE473 ΔacrAB/vector (pHSG399) Nishino et al. (2003)

NKE386 ΔacrAB/pacrAB Nishino et al. (2003)

NKE388 ΔacrAB/pacrD Nishino et al. (2003)

NKE390 ΔacrAB/pacrEF Nishino et al. (2003)

NKE391 ΔacrAB/pmdtABC Nishino et al. (2003)

NKE474 ΔacrAB/pmdtEF Nishino et al. (2003)

NKE393 ΔacrAB/pemrAB Nishino et al. (2003)

NKE395 ΔacrAB/pmacAB Nishino et al. (2003)

NKE397 ΔacrAB/pemrE Nishino et al. (2003)

NKE396 ΔacrAB/pmdfA Nishino et al. (2003)

NKE399 ΔacrAB/pmdtK Nishino et al. (2003)
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Our finding that AcrAB belonging to the RND family is major 
efflux pump to contribute the resistance to fatty acid salts is 
consistent with previous reports (Rosenberg et al., 2003; Lennen 
et al., 2013). In a previous report provided by Rosenberg et al., they 
showed the mechanism of acrAB induction by decanoate is 
mediated with Rob (XylS/AraC family regulator). In future, the 
detailed mechanism of fatty acid salts resistance we found should 
be further investigated. Additionally, we could demonstrate that the 
efflux pump EmrAB, a class of MFS, was specifically involved in 
fatty acid salt sensitivity in E. coli. Of note, considering the previous 
findings, EmrAB is one of pumps to complement with AcrAB 
across Gram-negative bacteria, including E. coli and Salmonella 
enterica (Lennen et al., 2013; Yoneda et al., 2022). In S. enterica, 
EmrAB could increase fatty acid salt resistance without TolC, 

therefore, it was suggested that other genes were involved in the 
resistance regulated by EmrAB (Yoneda et al., 2022). We showed 
that the deletion of emrAB increased susceptibility to fatty acid 
salts, and the complementation of emrAB on the plasmid in the 
ΔemrAB strain reconstituted the resistance of the wild-type strain 
in E. coli (Table 3). However, the susceptibility of ΔemrABΔtolC, 
ΔemrABΔtolC/vector, and ΔemrABΔtolC/pemrAB strains did not 
change from that of ΔtolC strain, indicating that, unlike in 
S. enterica, EmrAB requires TolC for fatty acid salt efflux in E. coli 
(Table 3). EmrA and EmrB are 89.7 and 95.7% identical in their 
amino acid sequences between E. coli and S. enterica (Nishino 
et al., 2006). However, the difference in the structure of EmrAB 
between two species is unknown and it is difficult to predict the 
difference related to interaction with TolC from their amino acid 
sequences because not only changes in specific amino acids, but 
also the overall structure of EmrAB is involved in TolC interaction. 
On the other hand, it has been shown that the substrates for EmrAB 
are different between E. coli and S. enterica (Lomovskaya and 
Lewis, 1992; Nishino and Yamaguchi, 2001; Nishino et al., 2006), 
therefore, there may be  difference in the structure of EmrAB 
between two species. It is also possible that there are other 
unknown outer membrane proteins in S. enterica that could be used 
by EmrAB.

Infecting bacteria into the host cells must be  resistant to 
antimicrobial compounds. Fatty acid salts are host-derived antimicrobial 
molecules (Henderson et al., 2021). Therefore, each efflux pump has the 
function to efflux fatty acid salts to protect E. coli from accumulating 
these compounds.

In conclusion, we provide valuable insights on how multidrug efflux 
pumps confer fatty acid salt resistance in E. coli.

TABLE 2 Primers used in this study.

Primer Sequence (5′–3′)

emrA-P1 TCGGCTCAGCCGATGAGTTAAGAAGATCGTGGAGAACAATGTGTAGGCTGGAGCTGCTTC

emrB-P2 ATTGAAAAAAGCCAGTTCAAATGAACTGGCTTAGTTGTACCATATGAATATCCTCCTTAG

tolC-P1 ACTGGTGCCGGGCTATCAGGCGCATAACCATCAGCAATAGGTGTAGGCTGGAGCTGCTTC

tolC-P2 TTACAGTTTGATCGCGCTAAATACTGCTTCACCACAAGGACATATGAATATCCTCCTTAG

TABLE 3 Escherichia coli strain susceptibility to sodium hexanoate (C6), 
sodium octanoate (C8), sodium decanoate (C10), and sodium dodecanoate 
(C12) using minimum inhibitory concentrations (MIC).

MIC (μg/ml)

C6 C8 C10 C12

Wild-type 20,000 10,000 10,000 >5,000

ΔemrAB 10,000 5,000 5,000 5,000

ΔemrAB/vector 10,000 5,000 5,000 5,000

ΔemrAB/pemrAB 10,000 10,000 10,000 >5,000

ΔemrABΔtolC 5,000 625 39 10

ΔemrABΔtolC/vector 5,000 625 39 10

ΔemrABΔtolC/pemrAB 5,000 625 39 10

ΔtolC 5,000 625 39 10

ΔacrABΔtolC 5,000 625 39 10

ΔacrAB 5,000 5,000 1,250 625

ΔacrAB/vector 5,000 5,000 1,250 625

ΔacrAB/pacrAB 5,000 5,000 2,500 2,500

ΔacrAB/pacrD 5,000 5,000 1,250 1,250

ΔacrAB/pacrEF 5,000 5,000 1,250 2,500

ΔacrAB/pmdtABC 10,000 10,000 2,500 2,500

ΔacrAB/pmdtEF 5,000 5,000 1,250 1,250

ΔacrAB/pemrAB 5,000 5,000 2,500 5,000

ΔacrAB/pmacAB 5,000 5,000 1,250 1,250

ΔacrAB/pemrE 10,000 5,000 1,250 1,250

ΔacrAB/pmdfA 5,000 5,000 1,250 1,250

ΔacrAB/pmdtK 5,000 5,000 1,250 1,250

MICs were determined from at least three repeated measurements. Values in bold greater than 
those of the parental strains harboring the vector.

FIGURE 1

Effects of multidrug efflux pumps on the growth of Escherichia coli in 
the presence of 1,000 μg/ml of sodium dodecanoate (C12). The growth 
of the acrAB mutants with plasmids carrying multidrug efflux pump 
genes. One of the three experiments that have the similar results is 
shown.
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