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Infectious diseases remain a serious global challenge threatening human health. 
Oral infectious diseases, a major neglected global problem, not only affect people’s 
lifestyles but also have an intimate association with systemic diseases. Antibiotic 
therapy is a common treatment. However, the emergence of new resistance problems 
hindered and enhanced the complication of the treatment. Currently, antimicrobial 
photodynamic therapy (aPDT) has long been the topic of intense interest due to 
the advantage of being minimally invasive, low toxicity, and high selectivity. aPDT 
is also becoming increasingly popular and applied in treating oral diseases such as 
tooth caries, pulpitis, periodontal diseases, peri-implantitis, and oral candidiasis. 
Photothermal therapy (PTT), another phototherapy, also plays an important role in 
resisting resistant bacterial and biofilm infections. In this mini-review, we summarize 
the latest advances in photonics-based treatments of oral infectious diseases. The 
whole review is divided into three main parts. The first part focuses on photonics-
based antibacterial strategies and mechanisms. The second part presents applications 
for photonics-based treatments of oral infectious diseases. The last part discusses 
present problems in current materials and future perspectives.
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Introduction

Oral infectious diseases are often ignored, and they threaten human oral health and systemic 
health. Some oral infectious diseases such as periodontitis become a major public health problem 
because of their high prevalence, dental and maxillofacial deformation and functional impairment, 
high dental care cost, and negative impact on general health (Papapanou et al., 2018). These diseases 
are usually caused by plaque or dysbiosis. Because most oral infectious diseases are deep tissue 
infections and the complexity of anatomical structures, the treatment effect is often unsatisfactory.

Biophotonics is defined as the science of imaging, detecting, and manipulating biological 
materials by generating and using light or photons. It is used successfully in medicine and dentistry 
to help diagnose and treat various diseases (Besegato et  al., 2022). Recently, antibacterial 
photodynamic therapy (aPDT) and photothermal therapy (PTT) and their derived multimodal 
synergistic treatments have received extensive attention. Due to its strong bactericidal effect and no 
bacterial resistance, it is also gradually used in the dental field. The development of some photonics-
based materials will be beneficial for the clinical treatment of oral infectious diseases. This mini-
review will provide a succinct summary of the mechanism and strategies of photonics-based 
treatment and applications in oral infectious diseases.
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Photonics-based treatment strategies 
and antibacterial mechanism

aPDT-based antibacterial strategies and 
mechanism

Antibacterial photodynamic therapy is a promising strategy to 
eradicate pathogenic microbes or biofilm and has the advantages of 
simple operation, wide application, and no drug resistance. aPDT 
involves three components: light, a photosensitizer (PS), and oxygen. 
The light source that excites the corresponding PS, usually from visible 
light to near-infrared spectrum, in which visible light greater than 
430 nm is irradiated outside the tooth, can be used for the extinction of 
Enterococcus faecalis in root canal treatment (Cieplik et  al., 2016). 
However, the excitation light is usually in a fixed wavelength band with 
limited penetration, which limits its application in deep tissue (Lin et al., 
2021). To solve this problem, near-infrared-II light with less energy 
decay and increased tissue depth is recommended (Zhang G. et al., 
2021). Electric-driven aPDT using in situ chemiluminescence instead of 
an external light source to activate PSs is another strategy (Liu et al., 
2018). Another limitation of aPDT application is due to the 
hydrophobicity and aggregation of some PSs. Therefore, a series of 
hydrophilic PSs were developed to improve the above problems (Sun 
et  al., 2019; Gao et  al., 2021). Generally, aPDT has broad-spectral 
antibacterial activity instead of non-selective one, which may kill off 
beneficial bacteria. Accordingly, targetable aPDT (Im et al., 2021) or 
promotion of type I photoreactions (Li et al., 2018) were conducted to 
be a selective antibacterial strategy. The excellent photoantimicrobials 
should have the following characteristics: positive charge, hydrophilicity, 
low molecular weight, High 1O2 quantum yield, photostability, and 
appropriate therapeutic window (Maisch, 2020). Nowadays, a growing 
number of researchers pay more attention to aPDT-based synergistic 
therapies, which include aPDT and antibiotic therapy (Jiang et al., 2020), 
enzyme-aPDT (Li et al., 2021b; Hu et al., 2022), photodynamic ion 
therapy (Li J. et al., 2021), aPDT and low-level laser therapy (LLLT) (He 
et al., 2021), aPDT and Chemotherapy (Zhang et al., 2015; Hamblin, 
2016; Chen H. et al., 2019); aPDT and Chemodynamic Therapy (CDT) 
(Ma et al., 2021), and aPDT gas therapy (Sun J. et al., 2021; Zhu et al., 
2021; Zhou et al., 2022). However, remarkably, synergistic aPDT and 
antibiotic therapy may be a controversial strategy, since low reactive 
oxygen species (ROS) concentrations are beneficial for bacteria and can 
induce resistance in the antibiotic-mediated killing of bacteria (Van 
Acker and Coenye, 2017). Synergistic therapy is generally not only to 
improve sterilization ability but also to propose personalized treatment 
solutions for specific clinical problems, such as generating more oxygen 
to improve aPDT effect or promoting tissue healing or 
immunomodulatory. Most of the synergistic therapies have excellent 
antibacterial effects, especially aPDT and antibiotic therapy (Teic, 4.9 
logs reduction against Staphylococcus aureus (S. aureus; Jiang et  al., 
2020) and aPDT and chemotherapy [C60-fullerene with KI, 4.5 logs 
reduction against A. baumanii and 4.1 logs reduction against 
Methicillin-resistant S. aureus (MRSA); Zhang et al., 2015]. The details 
of the above aPDT-based synergistic therapies are summarized in 
Table 1.

Antibacterial properties of aPDT-based materials are derived from 
ROS. ROS including superoxide anion (O2

.−), hydrogen peroxide 
(H2O2), and hydroxyl radical (OH˙) generated via the type I mechanism 
(electron transfer) and singlet oxygen (1O2) generated via the type II 
mechanism (energy transfer). The possible antibacterial mechanisms of 

aPDT may include the following (Liu W. et al., 2020; Fan et al., 2021; 
Huang et  al., 2022): (1) altered outer membrane permeability, (2) 
oxidation of Lipids, (3) protein or DNA damage, (4) interfere with 
bacterial metabolism, and (5) irreversible bacterial destruction. These 
antibacterial mechanisms of aPDT are displayed in Figure 1.

PTT-based antibacterial strategies and 
mechanism

PTT is a non-invasive therapy to combat drug-resistant bacteria and 
plaque biofilm and has the advantages of minimal systemic toxicity, 
broad-spectrum antibacterial activity, and no drug resistance. When 
PTT is applied alone, high-power laser excitation and high-dose 
photothermal agent (PTA) are often required, which may cause tissue 
damage. Notably, a localized thermal management strategy based on the 
thermal-disrupting interface-induced mitigation (TRIM) for accurate 
topical antibacterial therapy was developed (Hu et al., 2020). TRIM film 
contains a critical dimension for surface features, which leads to species-
specific spatial confinement. Bacteria are attached to the microvalleys 
while host cells can only attach to the microtidges. After infrared 
irradiation, the phase change material poly(N-isopropylacrylamide) 
(pNIPAM) polymerized and made the PTA gold nanostars gather near 
the bacteria without host cell damage. pNIPAM is photothermal-
responsive and could transfer from the hydrophilic phase to the 
hydrophobic phase when the temperature is up to a lower critical 
solution temperature. Taking advantage of this property, such material 
could trap bacteria (Yang et al., 2018, 2019). Notably, while PTA exerts 
its bactericidal properties, the local temperature should be controlled to 
avoid the aggravation of local tissue inflammation or secondary damage. 
Therefore, many researchers have proposed the strategy of mild 
temperature PTT. Usually, a mild temperature is no more than 45°C, 
which can act as an antibacterial or promote drug release (Ye et al., 2020; 
Zhang G. et  al., 2021). In addition, there are various antibacterial 
strategies for PTT-based synergistic therapy including synergistic PTT 
and antibiotic therapy (Huang et  al., 2020; Wang et  al., 2020), 
enzyme-PTT (Wang et al., 2021; Xie et al., 2021), photothermal ion 
therapy (Li et al., 2019), synergistic PTT and CDT (Liu Z. et al., 2021), 
sonodynamic therapy (SDT) and PTT (Bi et al., 2022), and PTT gas 
therapy (Liu Y. N. et al., 2020).

Generally, PTAs transform light energy into heat energy in three 
ways including plasmonic heating, electron–hole generation and 
relaxation, and thermal vibration of molecules (Chen C. J. et al., 2019). 
Antibacterial mechanisms of PTT include (1) increased membrane 
permeability, (2) bacterial protein denaturation, and (3) irreversible 
bacterial destruction. These antibacterial mechanisms of PTT are 
displayed in Figure 2.

aPDT- and PTT-derived multimodal 
synergistic therapies

There were several disadvantages of aPDT or PTT being applied 
alone. Since ROS has a short half-life and narrow diffusion distance, it 
can hardly invade into compact bacterial biofilm (Qi et al., 2022). To 
obtain a good sterilization effect, more dosages of PSs or PTAs and 
greater light intensity are needed, which may cause tissue damage. To 
achieve more function and minimal side effects, aPDT- and PTT-derived 
multimodal synergistic therapies attract attention. Heat can accelerate 
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the release and penetration of drugs, and promote the release of ROS 
and some chemical reactions. Currently, antibacterial strategies for 
aPDT/PTT synergistic therapies include synergistic aPDT/PTT (Liu 
Y. X. et al., 2021; Mo et al., 2022), aPDT/PTT and antibiotic therapy 
(Zeng et al., 2020), aPDT/PTT and gas therapy (Cai et al., 2021; Qi et al., 
2022), aPDT/PTT and ion therapy, and aPDT/PTT/CDT (Zhang 

J. C. et al., 2021). For aPDT/PTT materials, there are huge differences 
between different materials in antibacterial activity. The materials with 
the same composition but different exposed facets could show different 
antibacterial properties. In Mo’s work, two Cu7S4 nanosheets with (304) 
and (224) exposed facets were designed for antibacterial strategy. The 
antibacterial effects of Escherichia coli and Bacillus subtilis were 72.2% 

TABLE 1 Therapeutic methods in coordination with aPDT.

Synergistic 
therapies

Definition Example Dose of 
materials

Light 
parameters

Bacteria Killing 
efficiency

Reference

Antibiotic therapy

01

Treatment with 

antibiotics

PMB 0.32 μg mL−1 Visible light, 

50 mW cm−2, 40 min

kanar E. coli 3.9 orders of 

magnitude

  Jiang et al. (2020)

32 μg mL−1 Visible light, 

40 mW cm−2, 40 min

S. aureus 3.9 orders of 

magnitude

SMT 32 μg mL−1 Visible light, 

50 mW cm−2, 40 min

kanar E. coli 3.2 orders of 

magnitude

Norf 5 ng mL−1 Visible light, 

50 mW cm−2, 40 min

kanar E. coli 3.3 orders of 

magnitude

Teic 0.32 μg mL−1 Visible light, 

40 mW cm−2, 40 min

S. aureus 4.9 orders of 

magnitude

Nanozyme

02

Nanomaterials 

with enzyme 

mimicking 

activities

CoIITBPP(bpy) 1 mg mL−1 660 nm laser, 1 W cm−2, 

10 min

E. coli 95%   Hu et al. (2022)

P. aeruginosa

B. amyloliquefaciens

S. aureus

Ion therapy

03

Treatment of 

disruption of 

bacterial 

metabolism by 

metal ions

Cu2+, Fe3+ Cu2+: 2.25%,

Fe3+: 2.91%

660 nm laser, 

0.5 W cm−2 for 10 min

P. gingivalis 99.87 ± 0.09%,   Li J. et al. (2021)

F. nucleatum 99.57 ± 0.21%,

S. aureus 99.03 ± 0.24%

LLLT or PBM

04

Using irradiation 

with light of low 

power intensity 

so that the effects 

are a response to 

the light and not 

due to heat.

Ti/GelMAc/

MPDA@Ce6

2 mg mL−1 660 nm laser, 1 W cm−2, 

10 min (aPDT)

100 mW cm−2,10 min 

(PBM)

E. coli 88.55%   He et al. (2021)

S. aureus 85.60%

Chemotherapy

05

Treatment with 

chemotherapy 

drugs or 

inorganic salts

ZPMAVP 400 μg mL−1 660 nm laser, 

100 mW cm−2, 5 min

S. aureus almost 50%   Chen et al. (2019)

E. coli almost 100%

MRSA almost 100%

C60-fullerene 

with Iodide

C60-fullerene 

(20 μM) with KI 

(10 mM)

UVA light, 

100 mW cm−2, 20 min

A. baumanii 4.5 logs   Zhang et al. 

(2015)  ; Hamblin 

(2016)
MRSA 4.1 logs

C. albicans over 1 log

CDT

06

Using the Fenton 

reaction or 

Fenton-like 

reaction to 

generate. OH

CaO2/GQDs@

ZIF-67

128 μg mL−1 LED, 5 W, 40 cm above 

bacteria

E. coli 99.91%   Ma et al. (2021)

S. aureus 99.99%

Gas therapy

07

Using gaseous 

signal molecules

UCNP@PCN@

LA-PVDF

1 mg mL−1 808 nm light, 1 W cm−2, 

5 min

P. aeruginosa 99.64%   Sun J. et al. (2021)

S. aureus 99.63%

A. baumanii, Acinetobacter baumannii; B. amyloliquefaciens, Bacillus amyloliquefaciens; C. albicans, Candida albicans; CDT, Chemodynamic therapy; Ce6, Chlorin e6; CoIITBPP(bpy), complexing 
porphyrin, Co2+, and 4,4′-bipyridine; E. coli, Escherichia coli; F. nucleatum, Fusobacterium nucleatum; kanar E. coli, Escherichia coli with kanamycin resistance; GelMAc, methacrylated gelatin; GQDs, 
graphene quantum dots; KI: potassium iodide; LED, light-emitting diode; LLLT, Low-level laser therapy; LA, L-arginine; MPDA, mesoporous polydopamine nanoparticles; MRSA, Methicillin-
resistant S. aureus; Norf, norfloxacn; P. aeruginosa, Pseudomonas aeruginosa; PBM, photobiomodulation; PCN, porphyrinic MOFs; P. gingivalis, Porphyromonas gingivalis; PMB, polymyxin B; PVDF, 
polyvinylidene fluoride; S. aureus, Staphylococcus aureus; SMT, sulfamethizole; Teic, teicoplanin; UCNPs, upconversion nanoparticles; UVA, ultraviolet A; ZIF, zeolitic imidazolate framework; 
ZPMAVP, ZIF-8-PAA-MB@AgNPs@Van-PEG
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A B

FIGURE 1

(A) PDT mechanism including type I mechanism (electron transfer) and type II mechanism (energy transfer); (B) Antibacterial mechanism of aPDT including 
(1) altered outer membrane permeability, (2) oxidation of lipids, (3) protein or DNA damage, (4) interfere with bacterial metabolism, and (5) irreversible 
bacterial destruction.

A B

FIGURE 2

(A) Photothermal conversion mechanism including (1) plasmonic heating, (2) electron–hole generation and relaxation, and (3) thermal vibration of 
molecules. (B) Antibacterial mechanisms of PTT include (1) increased membrane permeability, (2) bacterial protein denaturation, and (3) irreversible 
bacterial destruction.
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and 40.7%, respectively, in the former one, while were nearly 100 and 
96.8%, respectively, in the latter one. The latter one could produce richer 
ROS and have more efficient photothermal conversion and stronger 
adsorption due to different structures (Mo et al., 2022). In the above-
mentioned research, it is worth noting that aPDT/PTT/CDT and aPDT/
PTT/gas therapy can achieve over 99% sterilization efficiency. It was 
reported that CuFeO4/graphene oxide coatings with aPDT/PTT/CDT 
functions showed very high antibacterial effciency of 99.94 ± 1.20%  
against S. aureus and 99.57 ± 0.86%  against E. coli, respectively (Zhang 
J. C. et al., 2021). In addition, gas therapy (such as CO and NO) can 
further enhance sterilization by dissipating biofilm. The aPDT/PTT/NO 
gas group can lead to an additional reduction of about 1.5 log against 
Porphyromonas gingivalis (P. gingivalis) biofilm and over 2 log against 
Fusobacterium nucleatum (F. nucleatum) biofilm, compared with the 
aPDT/PTT group (Qi et  al., 2022). Interestingly, Cai et  al. (2021) 
revealed similar results that all tested bacteria including E. coli, S. aureus, 
and MRSA could be additionally reduced over 2 log in the aPDT/PTT/
CO gas group than aPDT/PTT group.

Low-level laser therapy or 
photobiomodulation and mechanism

Low-Level Laser Therapy or PBM is a term used to describe a 
medical procedure that uses low-power lasers (0.5 W), sometimes 
known as “cold lasers,” so that the effects are a result of the light rather 
than heat. When mitochondria are stimulated by a light source, PBM 
reacts photochemically with target cells (Dompe et  al., 2020). The 
cytochrome c oxidase enzyme, which is found in the unit IV respiratory 
chain of the mitochondria, absorbs the application of red light 
(600–810 nm). As inhibitory nitric oxide is separated from the enzyme 
by photons, electron transport, mitochondrial membrane potential, 
and ATP synthesis are all increased. On the other hand, near-infrared 
light (810–1,064 nm) application stimulates light-sensitive ion channels 
and raises Ca2+ levels; Then, the Ca2+ interacts with ROS and cAMP. All 
these processes promote cell motility, proliferation, and differentiation 
(de Freitas and Hamblin, 2016; Dompe et al., 2020).

Although most studies concentrate on the intracellular effects of 
visible and near-infrared light on mitochondrial cytochrome c oxidase, 
recent research has shown that transforming growth factor (TGF)-b1 
and its downstream targets, Human Beta-Defensin-2 (HBD-2), have 
direct antimicrobial effects and indirectly control inflammation and 
encourage tissue regeneration in the peri-implant or periodontal 
tissues. Laser-mediated HBD-2 expression involves the Smad and 
non-Smad components of the TGF-b1 signaling pathway (Tang 
et al., 2017).

Photonics-based treatment of oral 
infectious diseases

Oral infectious diseases such as caries, pulpitis, periodontal diseases, 
peri-implantitis, and oral candidiasis are caused by plaque biofilm or 
dysbacteriosis. Therefore, effective antimicrobials are key to treating 
these diseases. However, the infection site of oral infectious diseases is 
deep and the anatomical structure is often complicated, which makes it 
difficult to completely remove bacterial plaque and the recurrence of 
infection. aPDT or PTT as a non-invasive treatment plays an important 
role in oral infectious diseases.

Dental caries

Antimicrobial photodynamic therapy can effectively inhibit the 
growth of a variety of microorganisms associated with cariogenic 
biofilms, including Streptococcus, Streptococcus mutans (S. mutans), 
Lactobacillus, and yeast (Garcia et al., 2021). A nanoplatform composed 
of assembling toluidine blue O (TBO) and superparamagnetic iron 
oxide nanoparticles (MagTBO) was designed to achieve enhanced 
antimicrobial activity (Balhaddad et al., 2021). Under a magnetic field, 
2.5% MagTBO microemulsions showed a 6-log reduction of S. mutans 
monospecies biofilm and a 4.5- to 5.5-log reduction of multispecies 
biofilms. In addition, an amphiphilic and pH-responsive PS 
(Polyethylene glycol-b-poly(2-(diisopropylamino)ethyl methacrylate)) 
(MPEG-b-P(PDA) loaded with Ce6 (MPP-Ce6) was developed for 
inhibiting multispecies cariogenic biofilms (Liu et al., 2022). MPP-Ce6 
had over 99% inhibition against S. mutans, Streptococcus sobrinus, and 
Streptococcus sanguinis. Although numerous laboratory studies have 
demonstrated the relative effectiveness of aPDT in reducing the number 
of cariogenic bacteria in biofilms in vitro, preclinical (orthotopic 
models) and clinical studies have shown that bacterial reduction in 
aPDT is not significant, especially in dentin carious lesions (Reis 
et al., 2019).

PTT-based researches on dental caries are rare. Recently, removable 
photothermal antibacterial “warm paste” nanoagents became striking 
(Xu X. et  al., 2022). In brief, polydopamine (PDA), Ag, and glycol 
chitosan (GCs) were sequentially modified on the surface of Fe3O4 to 
form FePAgPG nanoparticles (NPs). In a cariogenic acid environment, 
due to the pH-responsive effect, FePAgPG NPs targeted cariogenic 
bacteria. The FePAgPG NPs inhibited over 95% of biofilm formed by 
Streptococcus mutants via the Ag-assisted PTT strategy. Multimodal 
synergistic treatments could achieve the best antibacterial effect. A 
pH-responsive nanoplatform had a triple function with synergetic 
pharmacological therapy and aPDT/PTT for enhanced biofilm 
eradication and caries prevention (Yu et al., 2022). The combination of 
ciprofloxacin and IR780 showed an amazing killing rate of 99.8% and 
considerably high biofilm dispersion of about 70–80%. Moreover, under 
an acidic oral biofilm microenvironment, the nanoplatform suffered 
from degradation, anchored bacteria, and released drugs on demand.

Pulp infection

Incomplete cleaning of infected dental pulp causes failure of 
endodontic treatment and refractory apical periodontitis. In terms of 
bacterial control, aPDT has proven to be a positive option as an adjunct 
to conventional root canal techniques (Lopes et al., 2022). Indocyanine 
Green (ICG) was regarded as the best PS for endodontic infection 
compared with TBO and methylene blue (MB). The enterococcal 
surface protein (esp) gene was related to colonization and bacterial 
resistance in endodontic infections. The expression of esp was 
significantly downregulated to approximately ~5.2-fold by ICG 
(Chiniforush et al., 2018). Nano-MOF Fe-101 loading ICG (Fe-101-ICG) 
could downregulate the expression of esp to 6.2-fold (Golmohamadpour 
et  al., 2018). Notably, ICG is not only a PS but also a PTA. Some 
researchers ignored the additional bactericidal effect of the photothermal 
effect of ICG. Besides, some Zn-based PSs were developed to combat 
Enterococcus faecalis (E. faecalis) (Diogo et  al., 2017; Schuenck-
Rodrigues et  al., 2020). The MIC of nanoemulsion containing zinc 
phthalocyanines (ZnPc-NE) against E. faecalis was only 1.09 μg ml−1. 
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Under a 60 or 90 s irradiation, Zn(II)chlorin e6 methyl ester (Zn(II)
e6Me) could eliminate around 60% of the biofilm’s biomass. Sodium 
hypochlorite (NaClO) remains the most commonly used irrigant for 
root canal treatment worldwide. However, a higher concentration of 
NaClO with high antibacterial activity could cause severe complications. 
To address this issue, a visible light-guided root canal cleaning system 
consisting of a mixture of neutralized 0.5% NaClO solution and TiO2-x 
NPs was developed. The system produced various ROS including ·OH, 
·Cl, and ·ClO, and after treatment with this system for 5 min, the killing 
rate of planktonic E. faecalis was 99.3% and that of biofilm was 100% 
(Liu et al., 2022). In another study, PTT utilizations with 1% NaClO 
solution showed superior performance in tooth root canal therapy 
(Duan et al., 2022). A novel D-A semiconducting conjugated polymer 
(PBDT-DIID) was designed, showing 70.6% photothermal conversion 
efficiency. The 1% NaClO solution with 25 μg ml−1 and 50 μg ml−1 could 
kill 99.7 and 99.6% of the bacteria, respectively. Meanwhile, the 
temperature elevation outside the root canal was controlled within 10°C, 
protecting periodontal membrane cells from damage.

Periodontitis

Among all oral infectious diseases, researchers have studied the 
most about photodynamic materials for the treatment of periodontal 
disease. Different kinds of materials are designed according to the 
characteristics of the disease. Generally, the lesions formed in the 
periodontal pocket are irregular and periodontitis tends to occur in deep 
tissue. NPs with amphiphilic silane containing Chlorin e6 (Fe3O4-
silane@Ce6/C6) were designed to kill periodontitis-related pathogens. 
The ratio metric fluorescence of Ce6/C6 could monitor the aPDT effect 
of Ce6 and Fe3O4 and realize the magnetically targeting function. Near-
infrared (NIR) light has a strong penetration ability in tissue. Taking 
advantage of this feature, nanomaterials based on upconversion 
nanoparticles (UCNPs) were developed to combat periodontitis-related 
pathogens such as P. gingivalis, Prevotella intermedia, and F. nucleatum. 
NaYF4-Mn30%@Ce6@silane reached the maximum CFU reduction by 
more than 2 log (Zhang et  al., 2019). Another work realized the 
conversion from NIR light to ultraviolet light and triggered the 
luminescence catalytic material titanium dioxide (TiO2), to realize the 
deep aPDT. UCNPs@TiO2 could reduce the three single-species biofilm 
CFU by about 4 orders of magnitude. Deep tissues are often in a hypoxic 
state, and most of the pathogenic bacteria of periodontitis are anaerobic 
bacteria. The process of PSs producing 1O2 via the type II mechanism 
needs consuming oxygen. Therefore, an oxygen self-sufficient 
nanoplatform (Fe3O4@Ce6-MnO2) was designed to solve the above 
problems (Sun X. et  al., 2021). MnO2 nanolayer could react with 
hydrogen peroxide in the environment to generate O2 to enhance the 
efficacy of aPDT. In addition, since not all aPDT could achieve the ideal 
treatment effect, aPDT-based synergistic therapies were considered as 
strategies. Tinidazole-loaded TAT-Ce6 conjugate showed remarkable 
synergistic anti-periodontitis effects of aPDT and antibiotic therapy (Li 
et  al., 2021a). Rapid killing of periodontal pathogens can also 
be achieved through the synergistic effect of aPDT and released ions. 
This 2D MOF CuTCPP-Fe2O3 nanosheet could also alleviate 
inflammation and promote angiogenesis (Li J. et al., 2021). However, too 
much ROS could cause serious oxidative stress and may aggravate tissue 
damage. The temporal sequence of ROS generation and scavenging is 
used to realize the antibacterial and anti-inflammatory functions. In the 
first stage, PSs produce ROS to kill bacteria. After that, the ROS 

scavenger removed excess ROS which is beneficial to reduce 
inflammation and tissue repair. Materials reported with the above 
functions are CeO2@Ce6 with 4 log CFU reduction and cyanobacteria 
loading Ce6 and Cu5.4O (CeCyan-Cu5.4O) with about 100% killing of the 
anaerobic bacteria biofilm (Sun Y. et al., 2021; Wang et al., 2022).

Hydrogels are the most popular polymers applied as delivery 
scaffolds for tissue generation and function as carriers for PTA loading. 
Au NPs such as Au nanorods (AuNRs), Au nanobipyramids (Au NBPs), 
and gold nanocages (GNC), as common PTAs, have high photothermal 
conversion efficiency. Chitosan hydrogels embedded with AuNRs 
showed significant anti-biofilm activity (Bermudez-Jimenez et al., 2020). 
With an increase of 10°C, there was a 5–8 log reduction against 
Streptococcus oralis (S oralis) and E faecalis biofilms. In another study, 
minocycline-loaded Au NBPs@SiO2 was incorporated into hydrogels 
and the synergetic antibiotic and photothermal treatment could kill 90 
and 66.7% of P. gingivalis on the 3rd and 5th days (Lin et al., 2020). 
Zhang et al. (2020) designed a nano-antibiotic platform (TC-PCM@
GNC-PND), which is composed of GNC, phase-change materials 
(PCM), poly(N-isopropylacrylamide-co-diethylaminoethyl 
methacrylate) (PND), and tetracycline (TC). Two thermos-sensitive 
interactions of PCM and PND could precisely control the release of the 
encapsulated drugs. Meanwhile, the platform could act as injectable 
hydrogel in situ, promoting the retention of antimicrobial agents in local 
infectious sites. In addition, chlorhexidine-incorporated hydrogels 
composed of curdlan and PDA were fabricated for periodontal treatment 
(Tong et al., 2020). The bactericidal effect comes from the synergistic 
effect of photothermal action and antibacterial agent. The best 
antibacterial rate is as high as 99.9%.

While considering the antibacterial treatment of periodontitis, 
attention should also be paid to inflammatory regulation. A baicalein-
loaded mesoporous Prussian blue (MPB-BA), which has antioxidant, 
anti-inflammatory, and antibacterial effects, was designed for bacteria-
induced periodontitis treatment (Tian et  al., 2022). No CFU could 
be  found on blood agar plates of the MPB-BA group, suggesting 
excellent antibacterial activity. Macrophages could be switched to M2 
phenotype and MPB-BA-regulated inflammation via the inhibition of 
the Nrf2/NF-κB pathway. The multimodal synergistic treatment of 
aPDT/PTT combined with other treatments can further improve the 
bactericidal and anti-biofilm effects and can obtain multiple therapeutic 
effects at the same time. Self-assembled NPs (sPDMA@ICG) with 
aPDT/PTT and ion therapy were applied for the alveolar bone resorption 
inhibition and inflammatory alleviation of periodontitis (Shi et  al., 
2021). The star-shaped brush poly(2-(dimethylamino)ethyl 
methacrylate) (sPDMA) with a positive charge could make whole NPs 
tightly absorbed on the surface of P. gingivalis. NPs containing 10 μg ml−1 
ICG almost inhibited the bacterial and biofilm growth due to aPDT/
PTT effects. Another research is on aPDT/PTT and nitric oxide (NO) 
gas synergistic therapy platforms for biofilm eradication and 
inflammation regulation against periodontal diseases (Qi et al., 2022). 
AuNRs and ICG acted as heat-source, controlling the generation of 
NO. Meanwhile, ICG could produce ROS under NIR irradiation. The 
nanoplatform showed excellent antibiofilm functions with an about 
4-log reduction in CFU of multi-species biofilm. In addition, expressions 
of adhesin molecule genes and virulence factor genes of P. gingivalis 
significantly downregulated after treatment.

In addition, LLLT or PBM is a therapy that utilizes low-level laser 
irradiation on cells or tissues to regenerate tissue, reduce inflammation, 
and reduce pain (He et al., 2021). One study showed that both aPDT and 
LLLT treatments improved the clinical parameters of periodontal 
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disease and there were no significant differences between the two 
treatments (Freire et al., 2020).

Other oral infectious diseases

Both aPDT and PTT were proven to be effective treatments for peri-
implantitis (Wang et al., 2019; Xu B. et al., 2022), oral candidiasis (or 
Candida albicans; Dos Santos et al., 2019; Vila-Nova et al., 2022), oral 
lichen planus (Al-Maweri et  al., 2018), jawbone infections (or 
methicillin-resistant S. aureus) (Araujo et al., 2018; Nie et al., 2022), and 
alveolar repair (Ervolino et  al., 2019). However, research on these 
diseases mainly focused on killing pathogens in vitro or evaluating the 
evaluation of commercially available PSs for clinical treatment. The 
development of therapeutic materials for these diseases is required in 
the future.

Present problems in current materials 
and future perspectives

Although research and development of aPDT and PTT materials 
have entered a climax in recent years, there are still some problems 
that have to be mentioned. For example, as far as PSs or PTAs are 
concerned, the concentration, light intensity, and irradiation time 
used are also different due to different materials. Notably, high-dose 
NIR light could activate Transcription Factor-4 (ATF-4)-mediated 
endoplasmic reticulum stress and autophagy, inducing NIR light 
phototoxicity (Khan et  al., 2015). There is currently no unified 
standard or safety threshold for these parameters. Still, most 
experiments remain in vitro experiments, and there is still a long way 
to go before product transformation. Compared with the development 
of photonics-based materials in other medical disciplines, the 

development in the field of stomatology is still in its infancy. The oral 
microenvironment is extremely complex, such as different pH, 
temperature tolerance of different parts, fluidity of saliva, and gingival 
crevicular fluid. Therefore, combined with the characteristics of oral 
infectious diseases, personalized photonics-based oral materials and 
oral materials integrated with diagnosis and treatment will be the 
development trend and the focus of future research. It is expected that 
more products can be  transformed into clinical practice for the 
benefit of human beings.
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