AUTHOR=Nopnakorn Potjanicha , Zhang Yumin , Yang Lin , Peng Fang TITLE=Antarctic Ardley Island terrace — An ideal place to study the marine to terrestrial succession of microbial communities JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.942428 DOI=10.3389/fmicb.2023.942428 ISSN=1664-302X ABSTRACT=
The study of chronosequences is an effective tool to study the effects of environmental changes or disturbances on microbial community structures, diversity, and the functional properties of ecosystems. Here, we conduct a chronosequence study on the Ardley Island coastal terrace of the Fildes Peninsula, Maritime Antarctica. The results revealed that prokaryotic microorganism communities changed orderly among the six successional stages. Some marine microbial groups could still be found in near-coastal soils of the late stage (lowest stratum). Animal pathogenic bacteria and stress-resistant microorganisms occurred at the greatest level with the longest succession period. The main driving factors for the succession of bacteria, archaea, and fungi along Ardley Island terrace were found through Adonis analysis (PERMANOVA). During analysis, soil elements Mg, Si, and Na were related to the bacterial and archaeal community structure discrepancies, while Al, Ti, K, and Cl were related to the fungal community structure discrepancies. On the other hand, other environmental factors also play an important role in the succession of microbial communities, which could be different among each microorganism. The succession of bacterial communities is greatly affected by pH and water content; archaeal communities are greatly affected by