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Editorial on the Research Topic

The significance of mitogenomics in mycology, volume II

Mitochondria are essential organelles in most eukaryotic organisms, including obligate
aerobic fungi. The mitochondria house essential metabolic pathways and components
required for oxidative phosphorylation. Their genomes or “mitogenomes” have limited
coding capacity and most genes required for the biogenesis, maintenance, and metabolic
activity of mitochondria are encoded within the nuclear genome (Calderone et al., 2015;
Zardoya, 2020). Fungal mitogenomes are present in multiple copies and are represented
as circular molecules although they may exist as linear concatemers (Valach et al., 2011;
Chen and Clark-Walker, 2018) that are compacted intomitochondrial nucleoids (Miyakawa,
2017). In fungi, mitogenomes range from 12.055 to >500 kb (James et al., 2013; Liu et al.,
2020); size variation can be due to gene content differences, intron mobility, size variation in
intergenic spacers, and in some instances the proliferation of repeats (Liu et al., 2020).

Fungal mitogenomes encode for components needed for translation (small and large
ribosomal subunit RNAs, a set of tRNAs) and protein components involved in the oxidative
phosphorylation pathway. This includes protein components of Complex I (subunits of
NADH dehydrogenase: nad1 to nad6 and nad4L), components of Complex III (cob) and
Complex IV (cox1, cox2, and cox3), and some members of Complex V (ATP synthase:
atp6, atp8, and usually atp9). Some fungal lineages lost the typical Complex I genes (e.g.,
members of the Taphrinomycota and Sacharomycetales, Schikora-Tamarit et al., 2021;
Wolters et al.) and some fungal mitogenomes lost some of the ATP synthase subunit
genes (Déquard-Chablat et al., 2011; Zubaer et al., 2018; Mukhopadhyay et al.). Fungal
mitogenomes frequently encode a ribosomal protein (rps3; Freel et al., 2015) and sometimes
the RNA (rnpB gene) component for RNaseP (Lang, 2018). Mitogenomes can include
orphan genes (genes with unknown function and no homologs) and plasmid derived
components (Himmelstrand et al.), and there are records of mitogenomes that encode
N-acetyltransferases and amino-transferases (Wai et al., 2019).

Across the Mycota, mitogenomes are variable due to recombination events promoted
by repeats and by the presence and activities of mobile elements, such group I and group II
introns and intron-encoded proteins (IEPs) (e.g., Aguileta et al., 2014; Repar andWarnecke,
2017; Wu and Hao, 2019; Fonseca et al., 2021). Intron encoded proteins for group I introns
tend to be homing endonucleases and for group II introns reverse transcriptase-like proteins;
these IEPs catalyze intron mobility to cognate intron-less alleles (Belfort et al., 2002). The
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IEPs can also be involved in aiding the removal of the self-
splicing intron RNAs from precursor transcripts by stabilizing
intron RNA folds that are a splicing competent (Prince et al., 2022).
Mitochondrial introns are gained and lost, and their impact on gene
function and phenotypes are still a subject of debate (Goddard and
Burt, 1999; Chatre and Ricchetti, 2014; Rudan et al., 2018).

Mitogenome sequences may provide a source of molecular
markers for fungal identification, and core protein coding
gene sequences can be applied toward resolving evolutionary
relationships (Kanzi et al., 2016; Kulik et al., 2020; Kouvelis et al.,
2023; Castrillo et al.; Mukhopadhyay et al.). The studies presented
in this collection of articles show that members of the same species
show very little sequence variation, and differences are usually
due to introns (Himmelstrand et al.). Within a fungal lineage,
mitogenome size variation can be quite remarkable but it can
be accounted for by intron content (Mukhopadhyay et al.). This
may not apply to all fungi, as in members of the Basidiomycota
mitogenome, size variation is due to introns, intergenic spacers,
and intergenic open reading frames (Himmelstrand et al.). The
large number of fungal genomes being generated by various
research groups provides a resource from which mitochondrial
genomes can be extracted for comparative analysis. This allowed
Wolters et al. to study mitogenome diversity across the subphylum
Saccharomycotina. By analyzing 353 mitogenomes, the authors
noted that intron numbers can be quite variable, and introns
are poorly conserved among species and lineages within this
subphylum. The authors also noted examples of horizontal
transfer of introns. Mitochondrial gene expression is assumed
to be regulated at the post-transcriptional level. One aspect of
fungal mitochondrial gene expression that is different from most
metazoans is the removal of introns from the transcripts that
encode products that are essential for translation (rRNAs) and for
respiration and energy production (Lipinski et al., 2010; Dujon,
2020). The removal of introns is facilitated by IEPs and various
nuclear encoded protein factors (Mukhopadhyay and Hausner,
2021; Prince et al., 2022). Mitochondrial ribogenesis, processing
of mitogenome derived transcripts, RNA degradation/turnover,
and mRNA translation require many nuclear encoded factors
(De Silva et al., 2017; Golik, 2023). The reliance on nuclear
elements for mitochondrial gene expression links organellar
function with nuclear cues in response to environmental and
developmental factors.

Wolters et al. observed that among the various orders within
Saccharomycotina, the protein coding genes for Complex I were
lost independently in several lineages. The authors propose
that variations in the mitochondrially encoded protein genes
could be driven by evolutionary pressures at the nuclear level.
Mukhopadhyay et al. observed that among members of the
Ophiostomatales mitogenomes, there are some biases with regard
to intron insertion sites and genes that are more likely to be
intron-rich, but that there are no conserved introns (except for
mL2450 that encodes for RPS3). If introns are beneficial (Belfort,
2017; Rudan et al., 2018) for fine-tuning mitochondrial gene
regulation, this is not based on specific introns, instead the
mitogenome intron complement is composed of various introns

(located at different sites) that are “functionally” redundant. The
reliance on nuclear factors for organellar intron splicing impacts
mitonuclear compatibilities (or incompatibilities) and potentially
imposes reproductive barriers; therefore, they could be promoting
speciation events (Dujon, 2020). There are still many questions
that need to be addressed with regard to mitonuclear interactions
and the associated “cross talk” that impacts mitogenome sequence
diversity and gene expression (Wu et al., 2022). Codon usage
or biases for fungal mitochondrial genes have not been explored
so far. Li et al. demonstrate that there are indeed synonymous
codon preferences, and among the examined Amanita species,
these appear to be under selection. These findings add one more
criterion that can influence mitochondrial protein coding sequence
diversity as codon usage may have implications for environmental
adaptation of mitochondrial genes related to energy metabolism.

This Research Topic in its second volume presents exciting
new findings with regard to fungal mitogenomes and mtDNA gene
expression and their utility in resolving taxonomic issues, providing
insights into the impact of nuclear mitochondrial interactions,
which may in part shape mitochondrial gene evolution.
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