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When faced with an unidentified body, identifying the victim can be challenging, 
particularly if physical characteristics are obscured or masked. In recent years, 
microbiological analysis in forensic science has emerged as a cutting-edge 
technology. It not only exhibits individual specificity, distinguishing different 
human biotraces from various sites of occurrence (e.g., gastrointestinal, oral, skin, 
respiratory, and genitourinary tracts), each hosting distinct bacterial species, but 
also offers insights into the accident’s location and the surrounding environment. 
The integration of machine learning with microbiomics provides a substantial 
improvement in classifying bacterial species compares to traditional sequencing 
techniques. This review discusses the use of machine learning algorithms such 
as RF, SVM, ANN, DNN, regression, and BN for the detection and identification of 
various bacteria, including Bacillus anthracis, Acetobacter aceti, Staphylococcus 
aureus, and Streptococcus, among others. Deep leaning techniques, such as 
Convolutional Neural Networks (CNN) models and derivatives, are also employed 
to predict the victim’s age, gender, lifestyle, and racial characteristics. It is 
anticipated that big data analytics and artificial intelligence will play a pivotal role 
in advancing forensic microbiology in the future.
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1 Introduction

Microorganisms, encompassing fungi, bacteria and viruses, pervade both individuals and 
their surroundings, existing ubiquitously in nature. The exploration of the human microbiome, 
comprising microorganisms residing in, on, and around humans, has revolutionized our 
comprehension of the intricate interactions between these microorganisms and human health 
and disease (Johnson et al., 2016). The interplay of genetics and environment gives rise to a 
distinct microbiome for each individual. The skin microbiome is continuously shed and 
transferred from the host. Utilizing deposited microbes as supplementary evidence can aid in 
either including or excluding individuals in a criminal case (Sherier et al., 2022). Previous 
investigations have utilized microbial DNA markers, such as 16 s ribosomal RNA (rRNA), to 
evaluate the health of human hosts. However, this method is constrained to contaminated 
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samples and hinges on the initial PCR amplification of labeled genes 
(Javan et al., 2016), limiting its applicability. The human microbiome 
presents a promising alternative for utilizing additional DNA sources 
in identifying or excluding individuals linked to erroneous evidence, 
thereby enhancing the efficiency of forensic DNA analysis in criminal 
investigations (Sherier et al., 2021).

Studies on the human microbiome have unveiled substantial 
variations in the composition and abundance of microbial 
communities across different body sites, varying states of host health, 
and among diverse racial groups. Notably, the skin flora is dominated 
by Propionibacterium, Corynebacterium and Staphylococcus, while the 
oral flora is characterized by the prevalence of Lactobacillus and 
Haemophilus spp., and the gut flora is marked by the dominance of 
Clostridium and Mycobacterium spp. (Lei et al., 2022). For instance, 
previous investigations have highlighted significant differences in the 
microbiological composition of the hand microbiome alone, varying 
across countries and regions. In the hand microbiota, 
Propionibacterium and Streptococcus were prominent in Americans, 
but Propionibacterium was largely absent in the microbiota of Koreans 
and Japanese. Canadians, on the other hand, exhibited a hand 
microbiota mainly composed of Bacillus, Streptococcus and 
Propionibacterium (Cho and Eom, 2021).

In recent years, the field of forensic microbiology has gained 
prominence in response to bioterrorist attacks. The primary objective 
of microbiological forensics is to employ diverse methods, including 
microbiology, molecular biology, immunology and analytical 
chemistry, to deduce potential mutant strains of microorganisms 
associated with bioterrorist attacks or natural disease outbreaks. It also 
aims to predict microbial origins, affinities or routes of transmission 
(refer to Figure 1). The changes in microorganisms following the death 
of the host remain poorly understood. In healthy individuals, the 

immune system typically prevents the colonization of internal organs 
and body fluids by microbes. However, after death, as the immune 
system and physical barriers break down, microorganisms proliferate 
throughout the body, starting in the gastrointestinal tract (Spagnolo 
et al., 2019). Consequently, the human post-mortem microbiome has 
been studied and identified as consisting of two components: 
microorganisms found in internal organs and body fluids after death, 
and microorganisms located on the surface of the remains 
postmortem, known as epinecrotic (Benbow et al., 2015). Research 
indicates that bacteria on the external surface of the body hold 
potential as markers for forensic identification. Skin bacteria, being 
highly resistant to environmental changes such as ultraviolet radiation, 
humidity and temperature, could serve as distinctive molecular 
“fingerprints” for humans (Javan et al., 2016). Furthermore, microbial 
decomposition processes play a crucial role in postmortem changes. 
While the succession of microbial communities is generally consistent 
across various soil types, the microbial community in the environment 
influences the decomposition processes of the cadaveric microbial 
community. As decomposing carcasses release a range of substances, 
including fatty tissues, volatile fatty acids, organic acids, organic 
nitrogen and specific anaerobic bacteria, into the soil (Wang et al., 
2022), forensic identification based on microbial communities 
becomes feasible. Nevertheless, microbial communities alone are 
susceptible to external factors that limit their utility in forensic 
identification-a challenge that artificial intelligence (AI) may address 
by constructing effective assessment models.

Presently, machine learning (ML) stands as the primary AI 
technique employed in forensic research. ML, a subset of AI, devises 
algorithms to empower computers with the capability to learn without 
explicit programming (Handelman et  al., 2018), as illustrated in 
Figure  2. Various ML methods, including Random Forest (RF), 

FIGURE 1

Forensic microbiological processes.
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Support Vector Machines (SVM), Linear Regression, Logistic 
Regression (LR), among others, play a crucial role in this context. One 
notable subfield of ML is Deep Learning (DL), which encompasses 
Artificial Neural Networks (ANN), Multi-Layer Perceptron (MLP) 
networks, and Convolutional Neural Networks (CNN). The 
intersection of AI and microbiomics holds promise for a more 
profound understanding of the role played by microbial communities 
in cadavers. While conventional statistical methods are limited to 
determining the broad composition of microbial communities and 
their general successional changes, ML models facilitate quantitative 
analyses and accurate predictions (Yuan et  al., 2023). This review 
integrates various AI models with forensic science to investigate the 
variability of microbial communities among different races and in 
diverse geographic environments (such as seawater, freshwater, soil, 
urban settings). The aim is to discern the individual identification, 
gender, age, and health of a victim or suspect. Moreover, suspect 
characterization can be  conducted based on environmental 
microorganisms in the vicinity of the victim.

2 Application of machine learning in 
microbial forensic identification

Traditional autopsies come with numerous limitations, requiring 
substantial manpower and often leading to differences in expert 
opinions. AI emerges as a pivotal tool in various forensic science 
domains, addressing challenges in providing individual identity, 
scrutinizing body stains or marks, and identifying and collecting 

tissue or fluid samples. AI facilitates the comparison of field data with 
machine-generated data. By inputting an individual’s specific 
biometric pattern into the system, the machine swiftly matches it with 
pre-recorded biometric data to ascertain the individual’s identity 
efficiently (Wankhade et al., 2022).

Sherier et  al. (2021) conducted a study where subjects’ 
non-dominant hands were sampled for skin microbes. They utilized 
the Hidskinplex multiple panels and SVM models to analyze markers 
and predict donor identity. The Hidskinplex is an innovative targeted 
sequencing panel comprising 286 skin core microbial markers, 
encompassing a taxonomy of specific microorganisms highly 
abundant on human skin (Schmedes et  al., 2018). The results 
demonstrated that the classification accuracy of single nucleotide 
polymorphisms (SNPs) using the chosen method reached up to 
94.77%. This conclusion was confirmed by the Schmedes et al. (2018). 
The research indicates that the use of a RF learning model can not only 
identify individuals by combining individual-specific bacteria (such 
as Cutibacterium acnes) with known genealogy data (Gu et al., 2022), 
but also predict different body parts. Schmedes et al. used the RF 
model to predict different body parts with an accuracy of 86%, while 
the Tackmann team’s prediction rate reached 89% (Yang et al., 2019), 
possibly because the Schmedes team only predicted three body parts: 
shirt collar, touched items, and feet, while the Tackmann team 
included a sample size of over 15,000. In 2022, Tackmann et al. (2018) 
collected and examined genetic data from Chinese, Korean, and 
Japanese populations based on publicly available database. They 
utilized the Softmax and RF methods to filter information, ensuring 
the reliability of classification results with an accuracy exceeding 90%, 

FIGURE 2

Artificial intelligence process.
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consistent with previous research findings. In summary, the use of 
various AI models allows for accurate identification of individual 
information and specific body parts. However, future efforts should 
involve a larger sample size for predictive statistical analysis. 
Subsequently, this elaboration delves into four key aspects of gender, 
age, health status and environmental cues—by amalgamting AI with 
microbiome research.

2.1 Gender identification

In recent years, the application of AI models in gender 
identification has proven to be valuable. A study found that the use of 
deep convolutional neural networks (DCNN) accurately predicted 
gender across diverse chest X-ray datasets from different regions (Li 
et  al., 2022). Gao et  al. (2018) introduced a novel method, 
MKDSIF-FCM (classification of skull datasets based on data mining 
and data analysis), which relies on unsupervised classification 
techniques for gender identification of Han skulls. The algorithm 
demonstrated a notable 98 and 93.02% gender prediction accuracy for 
females and males, respectively, suggesting its potential in forensic 
investigations. AI models not only demonstrate accurate predictive 
value in determining human gender but also yield similar conclusions 
in discerning the sex of dogs. Scarsella et al. (2020) employed a RF 
model to classify the microbial profiles of 340 healthy dogs based on 
gender factors. The results revealed that, compared to intact dogs, 
neutered males and spayed females formed distinct groups. These 
findings indicate a potential bidirectional interaction between 
microbial communities and host endocrine states. In the future, the 
integration of AI models based on microbial profiles holds greater 
promise in gender identification.

2.2 Age identification

Wang et al. (2021) developed a novel DL prediction method based 
on microbiome called MDeep. They applied this method to predict 
the age of 531 Americans by analyzing their gut microbiota. The 
results indicated that the MDeep model exhibited higher accuracy in 
age prediction compared to other learning models, as evidenced by a 
significantly improved overall R-squared value. Moreover, the MDeep 
model consistently demonstrated stability in the prediction (infant vs. 
child, child vs. adult) across sensitivity, specificity, accuracy, and 
precision metrics. Additionally, the model could assess the host’s age 
based on the maturity of the microbial community. Furthermore, 
MDeep proved effective in determining host age based on colony 
maturation. Subramanian et al. (2014) combined a sparse model with 
a 16 s rRNA dataset, resulting in the accurate prediction of the relative 
maturity and age score of the microbiota. Although promising, more 
research on microbiome-based AI for age prediction is still essential 
in the future to further provide a more robust theoretical foundation 
for forensic identification.

2.3 Health status identification

Adamker et al. (2018) employed three ML algorithms—LR, neural 
networks (NN), and SVM—to construct predictive models for 

anticipating Shigella, the most prevalent bacterium in Israel. The ML 
model demonstrated high accuracy in swiftly predicting the specific 
category of Shigella, aiding healthcare professionals in making real-
time decisions about the need for hospitalization. Similarly, Njage 
et al. (2019) utilized the Logit Boost algorithm to predict the severity 
of outcomes following infection with Shiga toxin-producing Escherichia 
coli (E. coli), including symptoms such as diarrhea and hemolytic 
uremic syndrome, achieving an accuracy rate of up to 75%. If these 
models are integrated with whole-genome sequence data in the future, 
it could allow for the estimation of the health status of populations 
affected by the infection.

In addition to using microbiota to assess an individual’s health, it 
can also be employed to determine the cause of death in deceased 
individuals. The practice of scanning the entire body of a decreased 
individual using imaging methods, followed by computer software 
analysis to identify internal trauma and determine the actual cause of 
death, is referred to as virtual autopsy. Sullivan et  al. (2017) have 
proposed the development of virtual biospecimen repositories 
enhanced with ML. The ML tool generates a series of non-invasive 
autopsy images utilizing X-rays, CT scans, or MRIs. Three images are 
then compared with the digital pathology data of corresponding 
biospecimens to comprehend the disease process. This approach aims 
to assess clinical diagnoses and treatments, representing an emerging 
trend in the field. More research on virtual autopsy is still needed in 
the future, but this method is poised to become a new trend.

2.4 Environmental identification

The compositional complexity and diversity of soils make them 
valuable for forensic identification. Soil pH, particularly in different 
geographical locations, plays a crucial role in shaping bacterial 
community (Gürtler et al., 2014). Ahmad et al. (2023) used various 
ML methods to classify soil rich in Coxella bacteria. They were able to 
identify correlations with elements such as clay, organic matter, trace 
elements, and slit, achieving a classification accuracy of up to 84.35%. 
Utilizing ANN assisted by Fourier-transform infrared spectroscopy, a 
ML approach was applied to differentiate Bacillus cereus group 
members in soil and foodborne outbreak samples. The study revealed 
that psychrotolerant B. cereus members in Bacillus anthracis, B. cereus, 
and B. weihenstephanensis dominated in soil samples from Germany, 
Malta and Switzerland (53–70%), with Bacillus thuringiensis in the 
minority (3–12%). In Danish soil samples, B. weihenstephanensis and 
B. mycoides were predominant (94%), with Bacillus anthracis 
accounted for only 6% (Bağcıoğlu et  al., 2019). Consequently, 
examining soil microorganisms in the vicinity of a carcass may offer 
insights into predicting the location of death.

Microorganisms are also utilized for environmental identification 
in marine and freshwater settings. Ahmed et al. (2018) employed the 
SourceTracker program (an ML tool based on high-throughput 
sequencing data for microbial community tracking), studied the decay 
of sewage-associated bacterial communities in water. They found an 
increase in the abundance of cells from Flavobacteriaceae and 
Spirochaetaceae families in seawater. Similarly, in another study using 
the same program to detect bacteria in the middle and lower reaches 
of rivers in Russia, it was observed that during winter and summer, 
there was a significant increase in the abundance of E. coli and 
Enterococci; rod-shaped bacteria proliferated in sediments and other 
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environmental habitats, showing host specificity. Moreover, 
Flavobacterium, Sphingobacterium, and Serratia were identified as the 
most common bacteria in freshwater ecosystems, with the first two 
being abundant in debris particles and algal plants. β-Serratia emerged 
as the predominant bacterium in organic aggregates and in streams 
with a high debris load (Dubinsky et al., 2016).

Furthermore, the use of microorganisms enables the 
identification of living environments. In the daily environments with 
which humans interact, approximately 360,000 micro-organisms are 
released per hour, presenting a valuable resource for forensic 
analysis. Furthermore, the human microbiome encompasses rare 
microbial taxa, forming a unique microbial spectrum. Lax et  al. 
(2014) employed a Bayesian model to conduct a six-week monitoring 
of microbial community changes in seven American households. 
They discovered that the greatest differences in microbial species 
occurred in floor environments, while microbial populations on 
doorknobs were the most similar. Additionally, associations were 
identified in the distribution of microorganisms across various 
surfaces in homes. In addition, the discovery of 4,728 novel bacterial 
species over a span of three years in global urban public 
transportation systems has expanded the diversity of known urban 
microbiomes. This findings enhances the analysis of microbial 
interactions between humans and urban environments (Wu et al., 
2022). Huang et  al. (2020) employed LR and L2 normalization 
method to infer city affiliation in microbial samples, achieving an 
accuracy of up to 80%. Given the significant impact of urban 
microbial communities on human life, there is an ongoing need for 
future research focusing on the intricate interrelationships between 
human microbes and urban microbes.

3 Discussion

The progress of microbiology has been significantly propelled by 
the rapid advancements in high-throughput sequencing, 
bioinformatics, and AI technologies. From bacteria culture 
techniques in the 1990s to amplicon sequencing and metagenomics 
methods in recent years, and to AI models in the past two years, these 
advancements have greatly promoted the development of 
microbiology. AI can establish identity recognition, with machines 
inputting bodily parameters such as facial features, fingerprints, and 
retinal information. Machines record these parameters to establish 
individual identities. The recognition of individuals through 
biological data is referred to as biostatistics. The synergy of 
microbiomics and AI offers distinct advantages in terms of temporal 
stability, geographical variation in characteristics, and automatic 
prediction, contributing to the field of forensic identification. 
However, alongside their potential benefits, they also present 
numerous challenges. Uniform standards for evaluation and 

collection of data have not been universally established, and there is 
a need for large quantities of biometric data, despite challenges in 
infrastructure and resources availability. The diversity in AI methods 
poses challenges in terms of standardization and interoperability, and 
issues such as cross-contamination between samples and host DNA 
contamination need to be  addressed. Looking forward, with the 
expansion of and the accumulation of data from microbial images, 
ML and even DL technologies are expected to wield even greater 
influence. The integration of AI and microbiomics holds promise in 
enhancing investigative opinions and conclusions with higher 
accuracy and timeliness, furnishing additional clues and a solid basis 
for criminal cases investigators. Continued advancements in both 
fields and the resolution of current challenges will likely contribute 
to the further refinement and application of these technologies in 
forensic science. In the future, machine learning models can facilitate 
the integration of various species of microorganisms, applying them 
practically through processes such as detection, data transmission, 
and analysis.
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