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Effective population size (Ne) plays a critical role in shaping the relative 
efficiency between natural selection and genetic drift, thereby serving as a 
cornerstone for understanding microbial ecological dynamics. Direct Ne 
estimation relies on neutral genetic diversity within closely related genomes, 
which is, however, often constrained by the culturing difficulties for the vast 
majority of prokaryotic lineages. Metagenome-assembled genomes (MAGs) 
offer a high-throughput alternative for genomic data acquisition, yet their 
accuracy in Ne estimation has not been fully verified. This study examines 
the Thermococcus genus, comprising 66 isolated strains and 29 MAGs, to 
evaluate the reliability of MAGs in Ne estimation. Despite the even distribution 
across the Thermococcus phylogeny and the comparable internal average 
nucleotide identity (ANI) between isolate populations and MAG populations, 
our results reveal consistently lower Ne estimates from MAG populations. This 
trend of underestimation is also observed in various MAG populations across 
three other bacterial genera. The underrepresentation of genetic variation in 
MAGs, including loss of allele frequency data and variable genomic segments, 
likely contributes to the underestimation of Ne. Our findings underscore the 
necessity for caution when employing MAGs for evolutionary studies, which 
often depend on high-quality genome assemblies and nucleotide-level 
diversity.
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1 Introduction

Natural selection and genetic drift serve as two primary mechanisms driving the genetic 
variability in natural populations. Natural selection acts to favor advantageous alleles and 
purge deleterious variants, while genetic drift functions through stochastic processes 
(Kirchberger et al., 2020). The interplay between these forces is largely influenced by the 
effective population size (Ne), a parameter that characterizes the size of an idealized 
population, with nonoverlapping generations that has the same specified genetic properties 
as in the observed population (Charlesworth, 2009; Crow, 2017). Elevated Ne values enhance 
the efficiency of natural selection, whereas reduced Ne amplifies the impact of neutral drift 
(Batut et al., 2014). Initially proposed for eukaryotic populations (Wright, 1931), the concept 
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of Ne has been further nuanced into contemporary Ne and long-term 
Ne, each addressing distinct temporal scales (Hare et  al., 2011). 
Contemporary Ne pertains to the most recent generations and is 
frequently employed in agricultural breeding and wildlife 
conservation (Nadachowska-Brzyska et  al., 2022). In contrast, 
microbial research predominantly focuses on long-term Ne, a 
harmonic mean calculated over a continuous lineage since the most 
recent common ancestor. This long-term Ne (hereafter Ne) has been 
implicated in microbial mutation rates (Lynch et  al., 2016) and 
pangenomic evolution (Andreani et al., 2017; McInerney et al., 2017). 
Additionally, Ne plays a critical role in shaping microbial genome 
sizes. For example, free-living bacteria with small genomes, such as 
high-light adapted II (HLII) Prochlorococcus, are postulated to 
possess an extraordinarily large Ne (e.g., 109–13), thereby facilitating 
their genome reduction process through strong natural selection 
(Giovannoni et al., 2014). However, our recent study challenges this 
hypothetical large Ne and reports a substantially smaller Ne of 
approximately 107, highlighting the significance of genetic drift in 
microbial genome reduction (Chen et al., 2021). Ne directly affects 
the core assumptions made by researchers when understanding 
microbial evolution, so estimating Ne is fundamental for microbial 
evolution research.

In microbial population analyses, Ne can be calculated using the 
formula πs = 2 × Ne × μ, where μ represents the spontaneous mutation 
rate and πs denotes the neutral genetic diversity. However, the direct 
calculation of Ne presents several challenges: (i) the determination of 
mutation rates via mutation accumulation experiments is time-
consuming and restricted to specific microbial lineages amenable to 
grow on solid media; (ii) the estimation of neutral genetic diversity 
hinges on the availability of panmictic populations, which require a 
large number of closely related genomes (Luo et al., 2017). While 
mutation rates have been measured for over 35 bacterial and archaeal 
lineages, comprehensive genomic datasets for panmictic populations 
are extant for only 22 of these lineages (Chen et al., 2021). These 
limitations are likely attributed to the inherent difficulties in culturing 
a majority of prokaryotic lineages (Rinke et al., 2013) and the lack of 
targeted isolation efforts for required panmictic populations, thereby 
hindering the Ne estimation for both existing and future lineages with 
mutation rate available. In the absence of suitable genomic datasets, 
Ne estimation risks becoming potentially inaccurate.

Metagenomic sequencing provides a high-throughput alternative 
for obtaining microbial genomic information from environmental 
samples (Nayfach et al., 2020). This approach has been employed in 
various evolutionary studies and has demonstrated performance 
comparable to that of isolates (Anderson et al., 2017; Ngugi et al., 
2023). Nonetheless, the reliability of metagenome-assembled genomes 
(MAGs) for accurate Ne estimation remains an unresolved issue. To 
address this, we  first focused on the Thermococcus genus, a 
hyperthermophilic archaeon with mutation rate measured recently in 
our previous analysis (Gu et  al., 2021). A large number of public 
isolates and MAG genomes makes this genus an ideal lineage to assess 
the performance of MAGs in Ne estimation. Despite the unbiased 
phylogenetic distribution and comparable internal average nucleotide 
identity (ANI) between isolate populations (solely consists of isolates) 
and MAG populations (solely consists of MAGs), the Ne estimates 
derived from MAGs were significantly smaller than those based on 
isolates. The underestimation of Ne in MAG populations was also 
found in three other microbial lineages. These results emphasize the 

imperative for caution when employing MAGs in evolutionary studies 
that demand high-quality genomic data.

2 Materials and methods

2.1 Construction of phylogenomic tree

A comprehensive dataset of 95 genome assemblies affiliated with 
the Thermococcus genus (taxon ID 2263) was downloaded from the 
NCBI database as of October 2022. This collected dataset included 66 
isolates and 29 metagenome-assembled genomes (MAGs). 
Phylogenomic analysis was conducted based on 53 single-copy genes 
(AR53), which are universally conserved in the Archaea domain and 
have undergone minimal recombination events (Parks et al., 2017). 
The gene sequence extraction, alignment, and trimming were 
performed using the ‘classify_wf ’ function in GTDB-tk v1.7.0 
(Chaumeil et al., 2019) with default parameters. Subsequently, the 
phylogenomic tree was generated using IQ-TREE v2.2.0 (Minh et al., 
2020) with the ‘-m MFP’ option, which employs the ModelFinder 
(Kalyaanamoorthy et al., 2017) to determine the best-fit substitution 
model (LG + R10 in this study). The phylogeny was rooted using the 
last common ancestor (LCA) of T. litoralis and T. sibiricus according 
to the reference Archaea tree in the GTDB database (release207) and 
visualized using iTOL (Letunic and Bork, 2021).

2.2 Delineation of population boundary

The boundary of panmictic populations was delineated using 
PopCOGenT (Arevalo et al., 2019) in the ‘single-cell’ mode to account 
for the incompleteness of MAGs. PopCOGenT functions on the 
principle that recent homologous recombination events can eliminate 
single nucleotide polymorphisms (SNPs), thereby generating identical 
genomic regions between donor and recipient. Consequently, 
genomes subject to frequent gene transfers are expected to manifest 
an enrichment of identical genomic regions as opposed to an 
accumulation of SNPs in genomes devoid of recent gene flow. This 
gene flow prediction relies on pairwise genome comparisons, making 
PopCOGenT a suitable tool for analyzing partial genome sequences. 
As PopCOGenT was designed for closely related genomes at 
approximately species level (Arevalo et al., 2019), the public genomes 
were first grouped into preliminary clusters where members share 
pairwise ANI no less than 90%, a threshold below which genomes 
were less likely to be assigned to the same species (Tsementzi et al., 
2016). We employed dRep v3.4.0 (Olm et al., 2017) with ‘-pa 0.90 -ps 
0.90’ settings to predict preliminary clusters, which were then used for 
population delineation. According the PopCOGenT, genomes 
exhibiting nucleotide diversity below 0.0355% should be classified into 
a single clonal complex due to insufficient mutations to identify 
homologous recombination events (Arevalo et al., 2019). Multiple 
redundant members within a clonal complex may underestimate the 
neutral genetic diversity (πs) and effective population size (Ne) owing 
to their high genomic identity (Chen et al., 2021; Gu et al., 2021). To 
avoid underestimation, a single representative genome was retained 
for each clonal complex. Consequently, only populations comprising 
at least two non-redundant members were kept for the estimation of 
πs and Ne.
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2.3 Estimation of πs and Ne

The procedures below were conducted for each population 
individually. To control for potential biases from varying gene 
prediction algorithms in prior research, protein-coding genes were 
re-annotated from the collected Thermococcus genomes using 
Prodigal v2.6.3 (Hyatt et  al., 2010) with the ‘-p meta’ option. 
Orthologous gene families were subsequently identified across each 
population’s genomes using OrthoFinder v2.2.1 (Emms and Kelly, 
2019) with default parameters. Single-copy orthologous gene 
families were aligned at the amino acid level using MAFFT v.7.464 
(Katoh and Standley, 2013) and imposed onto the corresponding 
nucleotide sequences. To minimize the influence of natural selection, 
πs estimation was performed based on fourfold degenerate sites, 
which are largely neutral and less affected by natural selection, as 
identified by the ‘get4foldSites’.1 The πs calculation was conducted in 
accordance with our previous publication (Chen et al., 2021). Finally, 
the median πs across all single-copy gene families was used to 
compute Ne based on the equation πs = 2 × Ne × μ, where μ represents 
the spontaneous mutation rate of type strain T. eurythermalis A501 
(71.57 × 10−10 base substitutions per cell division per nucleotide site) 
(Gu et al., 2021). The Ne estimation was also carried out based on the 
mean πs across all single-copy orthologous gene families within 
each population.

2.4 Measurement of genomic and 
evolutionary features

The sequencing quality and genomic features of the collected 
Thermococcus genomes were assessed using CheckM v1.1.3 (Parks 
et al., 2015). Taking into account the potential incompleteness and 
misassembly in MAGs, the estimated genome size was calculated as 
the assembled genome size divided by the sum of its completeness 
and contamination (Parks et  al., 2017). Within each population, 
pairwise ANI was calculated using FastANI v1.3 (Jain et al., 2018) 
with default parameters. To quantify the relative rates and effects of 
recombination versus mutation, core genome alignments were first 
executed using Parsnp v1.2 (Treangen et  al., 2014) with default 
parameters for genome assemblies within each Thermococcus 
population. Specifically, MAG populations M-1, M-4, and M-5 were 
excluded from the Parsnp analysis because the their genomes differ 
in assembly size over 30% (Treangen et  al., 2014). Next, 
ClonalFrameML v1.1 (Didelot and Wilson, 2015) was implemented 
to estimate the relative rates and effects of recombination versus 
mutation for each population.

2.5 Comparison of genomic and 
evolutionary features

To determine the most suitable statistical approach for 
downstream analyses, either phylogenetically dependent or 
independent, phylogenetic signals in genomic features and 

1 https://github.com/brunonevado/get4foldSites

evolutionary attributes were assessed between isolate populations 
and MAG populations. This was represented using Pagel’s λ 
calculated using the ‘phylosig’ function in the ‘phytools’ R package 
(Revell, 2012), with values ranging from 0 to 1 to indicating the 
absence or presence of a strong phylogenetic signal, respectively. A 
pronounced phylogenetic signal was observed in GC content, 
necessitating the use of the phylogenetically dependent ‘phylANOVA’ 
function in the ‘phytools’ R package (Revell, 2012) for statistical 
comparison. In contrast, no phylogenetic signal was detected in the 
population classification or other features. Accordingly, the 
phylogenetically independent Mann–Whitney U test was employed 
for comparative analyses for estimated genome size, coding density, 
internal ANI, Ne, and relative rates and effects of recombination 
versus mutation.

2.6 Updating the analysis with expanded 
genomic datasets

To determine whether the observed trends in Thermococcus are 
broadly applicable, we  expanded our analyses to three bacterial 
genera: Flavobacterium, Agrobacterium, and Lactococcus. They were 
selected from the 22 microbial lineages with mutation rate and 
panmictic populations available (Chen et  al., 2021). We  excluded 
other lineages due to either a scarcity of MAG populations or the 
costly computational demands for analyzing a large number of 
genomes (over 7,000). The same approaches mentioned above were 
employed for each lineage to delineate their populations, estimate Ne, 
and measure and compare genomic and evolutionary features. The 
only change in this step was the replacement of AR53 with 120 
bacterial single-copy genes (BAC120) (Parks et al., 2017) during the 
construction of phylogenomic trees.

3 Results

3.1 Genome sampling and population 
delineation

A total of 66 isolated strains and 29 metagenome-assembled 
genomes (MAGs) affiliated with the Thermococcus genus were 
collected from the NCBI database (Supplementary Table S1). Of these 
MAGs, 24 exhibited genomic completeness exceeding 50% and 
contamination below 5% as assessed by CheckM, thus meeting the 
criteria for medium or high sequencing quality (Bowers et al., 2017). 
This number was refined to 20 when completeness and contamination 
were evaluated using a customized gene set comprising 289 single-
copy orthologous gene families shared across all genomes of isolates 
(Figure 1 and Supplementary Table S1). The 95 Thermococcus genomes 
were partitioned into 66 distinct populations by PopCOGenT. Among 
these, 45 populations were constituted of only one genome, while the 
remaining 21 populations each comprised two to four genomes 
(Figure 2A). Notably, three populations were identified as harboring 
clonal complexes (see the Materials and Methods section). To mitigate 
the potential bias in Ne estimation induced by these clonal complexes, 
only one representative genome was retained from each complex for 
subsequent analyses. This led to the exclusion of two entire populations 
(I-3 and I-8) consisting solely of clonal complexes. Additionally, one 
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genome (T. sp. GR5) was retained as a representative in population 
I-7, while T. sp. GR4 and T. sp. GR7 were discarded as they form 
complex together with T. sp. GR5. As a result, 19 populations were 
retained for downstream analyses (Figure  2A and 
Supplementary Table S2). Among them, 11 are isolate populations and 
eight are MAG populations.

3.2 Impact of MAGs on Ne estimation

The 19 Thermococcus populations were uniformly distributed 
across the phylogenomic tree (Pagel’s λ = 0; Figure 2A), suggesting an 
anticipated congruence in genomic and evolutionary characteristics 
between isolate populations and MAG populations. The internal 

FIGURE 1

Phylogenetic topology of Thermococcus genomes. The phylogenomic tree was constructed based on 53 conserved single-copy genes in Archaea 
(AR53) using GTDB-tk and IQ-TREE. Nodes supported by bootstrap values exceeding 95% are denoted by solid circles in the phylogenomic tree. The 
genome IDs of isolates and MAGs are colored in red and blue, respectively. Genomic features including completeness, contamination, estimated 
genome size, GC content, and coding density, are shown using heatmaps after the phylogeny. The legend for these heatmaps is located at the upper-
left corner. Populations delineated by PopCOGenT, comprising at least two members, are annotated adjacent to the heatmaps. Isolate populations and 
MAG populations used for Ne estimation are marked with red and blue shades, respectively. Within each clonal complex, members are indicated by 
italicized population IDs. Genomes excluded from Ne estimation are not shaded. Pairwise ANI over 90% are shown on the right of populations.
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FIGURE 2

Impact of MAGs on Ne estimation. Isolate populations and MAG populations are colored in red and blue, respectively. (A) The Ne estimation for 19 
Thermococcus populations, excluding populations I-3 and I-8 due to their composition solely of clonal complexes. The phylogenetic tree is pruned 
from that is shown in Figure 1, with genome IDs from one representative genome annotated. Population IDs and the number of genomes with each 
population are indicated. The ‘100% - ANI%’ depicting genetic diversity within each population and Ne estimates are shown using heatmaps after the 
phylogeny. The legend for these heatmaps is located below the phylogeny. (B) Comparison of whole genomic divergence (100% - ANI%) and Ne 
between isolate populations and MAG populations as shown in violin plots. Statistic comparisons are conducted using Mann–Whitney U test due to 
the lack of phylogenetic signals (Pagel’s λ  =  0). Non-significant p values (p  >  0.05) are marked as n.s… Ne estimations based on the median and mean πs 
across all single-copy orthologous gene families are presented in the middle and right panels, respectively. (C) The relationship between Ne and whole 
genomic divergence (100% - ANI%) in both isolate populations and MAG populations.
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average nucleotide identity (ANI) within each population ranges from 
95.6 to 99.3% (Supplementary Tables S2,S3), conforming to the 
operational criteria for defining a prokaryotic species at a 95% ANI 
threshold (Jain et al., 2018). Given that ANI serves as an indicator of 
genomic divergence across both fourfold degenerate sites and other 
genomic regions, it is posited to exhibit a positive correlation with 
neutral diversity and Ne under certain conditions (Schloissnig et al., 
2013). No significant difference was observed in the whole genomic 
divergence, which was represented by 100% - ANI%, between isolate 
populations and MAG populations (Figure 2B), thereby facilitating 
the comparability of Ne estimation across these population categories.

Variability in microbial mutation rates can occur in different 
species even within the same genus. For instance, mutation rates in 
Vibrio cholerae, V. fischeri, and V. shilonii have been estimated to range 
from 1.07 × 10−10 to 2.29 × 10−10 base substitutions per cell division per 
site (Dillon et al., 2017; Strauss et al., 2017). However, in the absence 
of mutation rate data for other Thermococcus lineages, we utilized a 
spontaneous mutation rate of 71.57 × 10−10 base substitutions per cell 
division per site from T. eurythermalis A501 as a representative value 
for all Thermococcus populations (Gu et  al., 2021). Initial Ne 
estimations were derived using the median value of neutral genetic 
diversity (πs) across all single-copy orthologous gene families within 
each population. In this case, two populations, I-10 and M-7, exhibited 
zero Ne due to the absence of neutral genetic diversity in over half of 
their gene families. The remaining ten isolate populations displayed 
estimated Ne values ranging from 1.55 × 106 to 4.68 × 106 (Figure 2), 
consistent with our prior estimates (4.22 × 106) based on seven 
T. eurythermalis genomes with an internal ANI of 95.4% (Chen et al., 
2021; Gu et al., 2021). Surprisingly, the estimated Ne values for the 
remaining seven MAG populations varied from 0.42 × 106 to 1.34 × 106, 
significantly lower than those of isolate populations (Mann–Whitney 
U test, p = 0.003). This pattern persisted when Ne was calculated using 
mean πs values (Figure 2B). Moreover, a positive correlation between 
Ne and whole genomic divergence (100% - ANI%) was observed in 
isolate populations (R2 = 0.48, p = 0.01; Figure  2C) as expected 
(Schloissnig et  al., 2013). However, this correlation was absent in 
MAG populations (R2 = 0.08, p = 0.5), raising questions about the 
reliability of incorporating MAGs in Ne estimations.

To assess the consistency of the aforementioned Thermococcus 
findings across other prokaryotic lineages, the same analyses were 
conducted for three bacterial genera: Flavobacterium, Agrobacterium, 
and Lactococcus. A total of 985, 546, and 625 genome assemblies were 
downloaded from the NCBI GenBank for each lineage 
(Supplementary Table S4). Applying the same criteria, we categorized 
Flavobacterium genomes into 40 isolate populations and 15 MAG 
populations, Agrobacterium genomes into 23 isolate populations and 
five MAG populations, and Lactococcus genomes into 13 isolate 
populations and 10 MAG populations (Supplementary Table S5). The 
number of genomes within these populations ranges from two to 136, 
with a median of two genomes (Supplementary Table S5).

Consistent with Thermococcus, both isolate populations and MAG 
populations in Agrobacterium and Lactococcus lineages are evenly 
distributed across the phylogenomic tree (Pagel’s λ = 0 for 
Agrobacterium and Lactococcus; Supplementary Figure S1), while a 
weak phylogenetic signal in the population distribution was found in 
Flavobacterium lineage (Pagel’s λ = 0.4). Furthermore, the whole 
genomic divergence (100%  - ANI%) did not exhibit significant 
differences between isolate populations and MAG populations in each 

lineage. The mean value of Ne estimates derived from MAG 
populations are slightly lower than those from isolate populations 
across all three lineages, although this difference does not reach 
statistical significance (Figure  3). Of particular interest, there is a 
positive correlation between the whole genomic divergence (100%-
ANI%) and Ne estimates in isolate populations in all four investigated 
genera (Figure 2C, 3), which could be used to determine an expected 
Ne value given a genomic divergence level. However, both 
Flavobacterium and Agrobacterium exhibit two MAG populations 
each, displaying Ne estimates that significantly deviated from such 
regression line (Figures 3A,B). This finding suggests that these four 
MAG populations may tend to underestimate Ne compared to their 
corresponding isolate populations at similar levels of genetic 
divergence, underscoring the limitations of MAGs in accurately 
estimating Ne.

3.3 Comparison of other genomic and 
evolutionary features between isolate and 
MAG populations

As mentioned earlier, isolate populations and MAG populations 
were expected to exhibit comparable genomic attributes due to their 
even distribution across the phylogenomic trees (Figure  2A and 
Supplementary Figure S1). To further assess the utility of MAGs in 
ecological studies, we conducted a comparative analysis of estimated 
genome size, GC content, and coding density between these two 
population categories. The estimated genome size was significantly 
smaller in MAG populations affiliated with Thermococcus and 
Flavobacterium lineages (Supplementary Figure S2). Additionally, a 
significantly lower coding density was observed in Flavobacterium and 
Agrobacterium lineages (Supplementary Figure S2). These results 
highlighted a systematic bias in genomic features in MAGs, a concern 
that that may have broader implications for metagenomic studies 
(Meziti et al., 2021).

MAGs have been previously demonstrated to provide robust 
estimates of microbial recombination rates and effects, akin to those 
derived from isolates in a recent investigation targeting Prochlorococcus 
and freshwater clade LD12 (Ngugi et  al., 2023). Our study 
corroborated this observation, revealing that the relative frequency 
(ρ/θ) and effect (r/m) of recombination to mutation in each of the four 
lineages were largely congruent between MAG populations and isolate 
populations (Supplementary Figure S2). Nevertheless, it should 
be noted that the generalizability of this pattern to other microbial 
lineages remains an open question. Given the inherent risk of chimeric 
assembly in MAGs (Taş et  al., 2021), exercising caution is 
recommended when employing MAGs for evolutionary estimations.

4 Discussion

Metagenomic sequencing provides an important resource in 
ecological research, shedding light on both microbial diversity and 
metabolic capabilities (Sunagawa et al., 2015). Despite its utility, the 
suitability of MAGs for evolutionary analyses, which frequently 
depend on high-quality genome assemblies and nucleotide-level 
diversity, remains an open question. In this study, we assessed the 
performance of MAGs in estimating Ne, which is an important 
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parameter in population genetics determining the relative contribution 
of natural selection and genetic drift. Our analysis of the Thermococcus 
revealed a significant underestimation of Ne in MAG populations 
compared to their isolate counterparts. Similar trends were observed 
in the Flavobacterium and Agrobacterium lineages. These two genera 
each possess two MAG populations showing significantly lower Ne 
values than isolate populations showing comparable genomic 
divergence, which would normally indicate similar levels of neutral 
diversity (Ne). These findings indicate that MAGs are not able to 
ensure an accurate estimation of Ne, underscoring the need for caution 
in their use for evolutionary research.

The biased Ne estimation may be a result of the inherent limitations 
of MAGs. These include the loss of allele frequency information 

during the metagenomic assembly process and the inability to retrieve 
highly variable genomic fragments during the binning process. On 
one hand, MAGs typically represent the most abundant allelic variants 
in the wild population (Crits-Christoph et al., 2020), so they often fail 
to capture rare variants from the environments. This omission likely 
results in an insufficient representation of population diversity, 
contributing to the underestimation of Ne. On the other hand, MAGs 
are often characterized by the absence of genomic fragments subjected 
to frequent gene flows, such as prophages, plasmids, and other mobile 
elements (Meziti et  al., 2021). These fragments usually exhibit 
accelerated evolutionary rate and larger genetic variation (Rodríguez-
Beltrán et al., 2021), and their absence in MAGs may further skew Ne 
estimates downward. This is also evidenced by the smaller genome 

FIGURE 3

(A–C) Impact of MAGs on Ne estimation using three additional bacterial genera. The results mirror those in Figure 2, adapting it to Flavobacterium, 
Agrobacterium, and Lactococcus genera. The corresponding phylogenetic trees are shown in Supplementary Figure S1.
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sizes estimated in MAGs, based on a set of conserved core genes 
(Parks et al., 2015).

The challenges highlighted in above may be partially overcome by 
the advancements in metagenomic methodologies. First, metagenomic 
read recruitment is a promising approach to capture more genetic 
diversity in wild populations. Indeed, the existing computational tools 
based on metagenomic recruitment have been successfully applied to 
investigate microbial recombination (Lin and Kussell, 2019) and 
nucleotide diversity (Olm et al., 2021) from environmental samples, 
thereby providing valuable insights especially in extreme habitats 
where microbial isolates are challenging to obtain (Peng et al., 2023). 
Nevertheless, the related tools for Ne estimation remain to be further 
developed, with several challenges remains. One major issue is 
accurately defining population boundaries and determining 
appropriate read mapping similarity (Nowinski et al., 2023), which 
can vary across genes within the same population, especially in 
complex environmental communities (Bahram et al., 2018). Another 
limitation is the dependency on high-quality reference genomes, 
necessitating improved culturing techniques and a broader collection 
of isolate genomes (Xian et al., 2020). Second, the completeness and 
quality of MAGs could be improved by hybrid metagenomic assembly 
that incorporating long-read and short-read data (Bertrand et al., 
2019). Such high-quality MAGs could also serve as reference genomes 
for recruitment-based methods. In addition to isolates and MAGs, 
single amplified genomes (SAGs) offer an alternative, though more 
costly, genomic resource for Ne estimation, generally yielding reliable 
results akin to isolated genomes (Chen et al., 2021). In summary, 
MAGs are not able to estimate Ne accurately based on the existing 
tools, while isolates and SAGs are more reliable for this purpose. 
Nevertheless, the potential for refining methodologies to improve Ne 
estimation using metagenomic data warrants further exploration.
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