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Background: In the evolving landscape of microbiology and microbiome analysis,

the integration of machine learning is crucial for understanding complexmicrobial

interactions, and predicting and recognizing novel functionalities within extensive

datasets. However, the e�ectiveness of these methods in microbiology faces

challenges due to the complex and heterogeneous nature of microbial data,

further complicated by low signal-to-noise ratios, context-dependency, and a

significant shortage of appropriately labeled datasets. This study introduces the

ProkBERT model family, a collection of large language models, designed for

genomic tasks. It provides a generalizable sequence representation for nucleotide

sequences, learned from unlabeled genome data. This approach helps overcome

the above-mentioned limitations in the field, thereby improving our understanding

of microbial ecosystems and their impact on health and disease.

Methods: ProkBERT models are based on transfer learning and self-supervised

methodologies, enabling them to use the abundant yet complex microbial data

e�ectively. The introduction of the novel Local Context-Aware (LCA) tokenization

technique marks a significant advancement, allowing ProkBERT to overcome

the contextual limitations of traditional transformer models. This methodology

not only retains rich local context but also demonstrates remarkable adaptability

across various bioinformatics tasks.

Results: In practical applications such as promoter prediction and phage

identification, the ProkBERT models show superior performance. For promoter

prediction tasks, the top-performing model achieved a Matthews Correlation

Coe�cient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage

identification, ProkBERT models consistently outperformed established tools like

VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore

the models’ exceptional accuracy and generalizability in both supervised and

unsupervised tasks.

Conclusions: The ProkBERT model family is a compact yet powerful tool in the

field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses

and its adaptability across a spectrum of tasks marks a significant advancement

in machine learning applications in microbiology. The models are available

on GitHub (https://github.com/nbrg-ppcu/prokbert) and HuggingFace (https://

huggingface.co/nerualbioinfo) providing an accessible tool for the community.
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1 Introduction

Numerous tasks in bioinformatics involve classifying or

labeling sequence data such as predicting genes (Lukashin and

Borodovsky, 1998; Delcher et al., 1999; Sommer and Salzberg,

2021), annotating sequence features (Aziz et al., 2008; Seemann,

2014; Tatusova et al., 2016; Meyer et al., 2019), etc. A significant

challenge in this field is deriving efficient vector representations

from these sequences (Zhang et al., 2023). Classification tasks

related to sequences—like classifying assembled contigs intoMAGs

(metagenome-assembled-genomes) or analyzing AMR-associated

genes—are often addressed by initially categorizing the data

into bins or using simple composition-based representations,

such as k-mer frequency distributions. A common method

involves converting sequences into a basic presence-absence vector,

indicating whether a particular genome contains specific sequence

features like mutations, motifs, or other patterns. However, a

drawback of this method is that proximity in this representation

space doesn’t always imply semantic similarity. Another prevalent

representation uses hidden Markov models (Durbin et al., 1998),

where the model parameters encapsulate the essential properties of

the sequences. Yet, integrating such models with machine learning

algorithms like support vector machines or random forests can be

complex. Despite this, hidden Markov models have demonstrated

their effectiveness in classification tasks and provide highest quality

annotations (Zdobnov and Apweiler, 2001; Cantalapiedra et al.,

2021).

Neural network-based representations have distinct

advantages, primarily their compatibility with a wide range

of machine-learning tools, including autoML and statistical

frameworks. Past research has highlighted the effectiveness of

neural network representations for sequences, with a variety of

classification tasks addressed using networks such as CNNs and

RNNs (Min et al., 2017). These networks have been employed

in areas like motif discovery, gene-expression prediction (Kelley

et al., 2018) splicing site recognition (Ji et al., 2021), and promoter

identification, as detailed in several comprehensive reviews (Min

et al., 2017; Sapoval et al., 2022; Zhang et al., 2023). However,

convolutional neural networks face challenges, like the need

for extensive labeled sequence data. They are also task-specific,

limiting their applicability to other scenarios outside their training

focus. A significant bottleneck in integrating neural networks

into bioinformatics has been the scarcity of adequate labeled

data. Recent advancements in machine learning, inspired by

breakthroughs in natural language processing, image analysis

(Han et al., 2022), and protein structure prediction (Alipanahi

et al., 2015; Jumper et al., 2021), have introduced new paradigms.

Transformer-based architectures, especially large language models

(Devlin et al., 2019; Brown et al., 2020a; Raffel et al., 2020), offer

versatile representations—often termed “reusable” or “fundamental

models.” Among the recent training approaches is the fine-tuning

paradigm, which divides the training process into two phases:

pretraining and fine-tuning. Pretraining demands vast amounts of

self-labeled data, while fine-tuning can, in some instances, operate

with minimal, or even no examples.

In bioinformatics, there exists a paradoxical challenge. On one

hand, there’s an abundance of sequence data available, especially in

public repositories like the SRA (sequence read arhive). The volume

of this data is expanding exponentially, and as sequencing and other

data-producing technologies become more affordable, this growth

trend is likely to persist. These data repositories are akin to hidden

treasures. Yet, they remain under-analyzed and underprocessed.

Researchers often focus primarily on specific mutations, neglecting

other valuable aspects of the data. Conversely, while there’s an

abundance of raw sequence data, there’s a scarcity of labeled data.

The accompanying metadata is frequently limited, and given the

high cost of experiments, only a handful of samples, typically

ranging from 3–15, are available within a specific group or stratum.

It’s also worth noting that labeling criteria can differ significantly

across projects.

Recognizing these challenges, there is a compelling need

for innovative methods that can harness the vast repositories

of raw sequence data and navigate the complexity of labeling

inconsistencies. It is in this context that our research contributes

a novel solution. The development and application of our

genomic language model family aims to address the mentioned

issues, providing a robust, adaptable, and efficient tool for

sequence classification.

While the concept of pretrained models isn’t new, several

have emerged recently, such as DNABERT (Ji et al., 2021; Zhou

et al., 2023), Nucleotide Transformer (Dalla-Torre et al., 2023),

and LookingGlass (Hoarfrost et al., 2022). However, a common

limitation among these methods is their primary focus on human

sequences or their restricted context size.

In the pretraining phase, the objective is to derive a general

representation that captures the semantic relationships between

objects, which in this context means obtaining a nuanced

representation of sequence data. Typically, achieving this requires

billions of samples, yet the volume of available sequence data far

surpasses this number. We trained our genomic language models

on an extensive corpus of available sequence data, encompassing

bacteria, archaea, viruses, and fungi. Subsequently, we fine-tuned

our models to tackle specific classification tasks, including the

recognition of promoters and phages.

The ProkBERT family encompasses a series of models tailored

to meet the intricate demands of microbial sequence classification,

analysis, and visualization. The versatility of the ProkBERT models

is manifested through their diverse applications:

1. Zero-shot learning: This approach allows for clustering of

sequences by leveraging the embeddings directly produced by

the model, eliminating the necessity for explicit fine-tuning.

2. Sequence classification: ProkBERT models can be seamlessly

fine-tuned, whether for token-specific or comprehensive

sequence-based classification tasks.

With these capabilities, the ProkBERT family aims to bridge

the current gaps in the field, offering a robust toolset for diverse

bioinformatics challenges.

2 Materials and methods

In this study, we used the transfer-learning paradigm for

sequence classification based on transformer-based architectures.
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The first phase involves pretraining on a large amount of sequence

data, allowing the model to learn general sequence patterns.

Once this foundation is established, we move to the fine-tuning

phase where the model is adapted to specific tasks or datasets.

The following sections provide a step-by-step description of our

methods, from preparing raw sequence data to the specifics

of both pretraining and fine-tuning. Figure 1 illustrates the

training process.

In the development of the ProkBERT family, the initial step

involves pretraining the model on a vast corpus of data. During this

pretraining phase, the model aims to tackle the Masked Language

Modeling task. In this task, specific portions of the sequence are

masked, and the model’s objective is to predict these masked

sections, optimizing the likelihood of the missing parts using cross-

entropy as the loss function. The model typically receives input

in the form of a vectorized representation of the sequence. A

notable constraint of standard transformers is their limited input

size. Though various solutions have been suggested to address this

limitation, the maximum token size is typically restricted up to 4kb,

significantly smaller than the average bacterial genome, but much

larger than an average gene.

Fine-tuning nucleotide sequences is a technique used to adapt

pre-trained models to specialized tasks or specific datasets. The

first step involves segmenting raw sequences into chunks, usually

ranging from 0.1–1kb in size, to optimize the model’s learning

capability (Pan and Yang, 2009). Using weights from a pre-trained

model, the system benefits from the knowledge obtained from

comprehensive training on extensive datasets (Vaswani et al., 2017;

Devlin et al., 2019). This initialization helps in quicker convergence

and improved performance. After this initialization, the model

undergoes training on the desired dataset, adjusting to its specific

patterns and details. The outcome of this procedure allows the

model to produce labeled sequences or tokens, which can be used

for various annotation or prediction purposes (Brown et al., 2020b).

2.1 Sequence data

2.1.1 Sequence segmentation and tokenization
The first step is processing the sequence data. While there

are many parallels between sequence data processing and natural

language processing, drawing direct analogies can be challenging.

For instance, determining what constitutes a ’sentence’ in the

realm of nucleotide and protein sequences doesn’t have a direct

counterpart in natural language. Additionally, the input size for

neural networks is inherently limited. Figure 2 illustrates the

strategy employed to vectorize the sequences.

Initially, the input sequence is segmented into smaller chunks.

We employed two approaches for this:

1. Contiguous sampling, where contigs are divided into multiple

non-overlapping segments; and

2. Random sampling, which involves fragmenting the input

sequence into various segments at random.

Following segmentation, the next phase is encoding the

sequence into a simpler vector format. The primary question

revolves around defining the fundamental building block for a

token. Various solutions have been suggested, the most widely

strategy is applying one-hot-encoding (Sapoval et al., 2022), but

DNA-BERT (Ji et al., 2021) applies the maximal overlapping k-

mer strategy, meanwhile others relies on nucleotide level mapping

(Dalla-Torre et al., 2023).

This phase is termed tokenization. We introduce a method

termed Local Context-Aware tokenization (LCA), where individual

elements consist of overlapping k-mers. Two principal parameters

dominate this approach: k-mer size and shift. For k = 1, the

tokenization resorts to a basic character-based approach, with a

typical example illustrated in Figure 2. Employing overlapping k-

mers can lead to enhanced classification performance. A greater

shift value allows the model to use a broader context while reducing

computational demands, while having the information-rich local

context as well.

As an example for LCA tokenization, let’s take the

sequence {AAGTCCAGGATCAAGATT} and a k-mer size

of 6, and shift=1 as LCA parameters [see Figure 2C (b)].

In that particular case the tokens will be the following:

{AAGTCC,AGTCCA,GTCCAG,TCCAGG, ...,AAGATT}. The

k-mers are then mapped into numerical ids, which will be

the input for ProkBERT. As another example with k = 6

and shift=2, the tokenized segments will be the following:

{AAGTCC,GTCCAG,CCAGGA, ...,AAGATT}. If the sequence

length is odd, then the last charcter won’t be used. One of the main

advantages of the approach is that with the same number of tokens

it is possible to cover a larger context, therefore it is possible to

considerably reduce the computational and memory requirements,

which is the typical bottleneck of the transformer architecture.

In this study, we propose models with a k-mer size

of 6 (termed ProkBERT-mini), k-mer size of 1 (dubbed

ProkBERT-mini-c), and a variant supporting a larger context

window, named ProkBERT-mini-long, which relies on a k-

mer size of 6 with a shift= 2.

2.1.2 Training data
The dataset was retrieved from the NCBI RefSeq database

(O’Leary et al., 2016; Li et al., 2021) on January 6th, 2023. It

included reference or representative genomes from bacteria,

viruses, archaea, and fungi. After filtering, the sequence database

consisted of 976,878 unique contigs derived from 17,178

assemblies. These assemblies represent 3,882 distinct genera,

amounting to approximately 0.18 petabase pairs. The segment

databases was created by sampling fixed lengths of [256, 512, 1024]

or, in other instances, variable lengths aiming for an approximate

coverage of 1.

Tokenization was performed using various k-

mer sizes and shift parameters. The compiled

database was then stored in the Hierarchical

Data Format (HDF). Collectively, the training

database held roughly 200 billion tokens for each

segmented dataset.

For transparency and further research, all training data is

available at zenodo 10.5281/zenodo.10057832.
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FIGURE 1

A schematic overview of the training process. Starting with raw sequence data, it undergoes preprocessing and vectorization. The model is then

fine-tuned, beginning with weights from a pretrained model, to address the specific classification task. The output showcases classified sequences or

tokens, predicted labels, scores, and a visualization highlighting underlying sequence patterns and explanations.

FIGURE 2

Preprocessing of sequences. The sequences are initially segmented into chunks ranging between 0–1 kb. Two segmentation strategies can be

employed: (A) Contiguous segmentation where the sequence is split into non-overlapping parts; (B) Random segmentation where segments of

varying lengths are randomly sampled from the original contig. The third part (C) outlines the tokenization process of the segments: (a) Splitting

segments into non-overlapping tokens; (b) Creating maximally overlapping k-mers; (c) Generating partially overlapping k-mers by shifting with a

fixed size.

2.2 Pretraining and learning sequence
representations

2.2.1 Transformer model selection and
parameters

In our study, we employed the MegatronBert model (Shoeybi

et al., 2019), a variant of the BERT architecture (Devlin et al.,

2019), optimized for large-scale training. The architecture overview

is presented in Supplementary Figure S1. The key attributes of

our models can be seen in Table 1. The mini and mini-long

models share a common vocabulary of 4,101 k-mers. In contrast,

the mini-c model is distinct, using a smaller set comprising

only 9 items, including special tokens (i.e., [CLS], [SEP]) and

nucleotides (A, C, T, G). All models employ a learnable relative

key-value positional embedding, which maps input vectors into

a 384-dimensional space. The mini and mini-long models

support maximum sequence lengths of 1024 bp and 2048

bp, respectively. Across all models, the intermediate layers of

the encoder use the GELU activation function, expanding the

input dimensions to 3,072 before compressing them back to

384 dimensions. The Masked Language Modeling (MLM) head,

a standard component in each model, decodes from 384 to

4,101 dimensions, adapted to the varying vocabulary sizes. To

ensure efficient parallel computations, we encapsulated the entire

architecture within a DataParallel wrapper, thus optimizing GPU

utilization. For implementation, all models were developed using

the PyTorch version 2.01 framework and the Hugging Face library

version 4.33.2.
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TABLE 1 A comprehensive overview of model parameters across varied

configurations.

Mini Mini-c Mini-long

Parameters 20,6 m 24,9 m 26,6 m

Tokenizer 6-mer, shift=1 1-mer 6-mer, shift=2

Layers 6 6 6

Attention heads 6 6 6

Max. context size (bp) 1027 nt 1022 nt 4096 nt

Training data 206,65 billion 206,65 billion 206,65 billion

2.2.2 Training process
2.2.2.1 Masked Language Modeling objective

modifications

While Masked Language Modeling (MLM) acts as the

primary pre-training objective for BERT models (Bidirectional

Encoder Representations from Transformers) as established

by Devlin et al. (2019), our implementation has slight variations.

In the traditional BERT approach, a certain percentage of

input tokens are randomly masked, and the model predicts

these based on their context. Typically, about 15% of tokens

undergo masking. However, due to our usage of overlapping

k-mers, masking becomes more intricate. If a k-mer of size

k = 6 is masked, we need to ensure at least six tokens

are also masked to prevent trivial restoration from context

and locality.

For an input sequence of tokens x and a binary mask vector

m—where 1 indicates a masked token and 0 indicates an unmasked

token—the model outputs predicted vectors y. As for the noise

application on masked tokens, probabilities p1, p2, and p3 define

different noise strategies. In our model, when a token is masked,

it is substituted with the special [MASK] token with a probability

of p1. Alternatively, with a probability p2, it can be replaced with

a random k-mer from our vocabulary. Lastly, there’s a p3 chance

that the masked k-mer will remain as it is. Conventionally, these

probabilities are set at 0.8, 0.1, and 0.1, respectively.

The MLM objective aims to minimize the negative log

likelihood over all masked positions, as described by the equation:

LMLM(x,m, l) = −
∑

i :mi=1

log yi[li]

Where yi[li] denotes the predicted probability of the true label

li for the masked position i. This objective, coupled with the

noise injection strategy, ensures that the model learns bidirectional

representations, thus becomes capable of understanding and

generating contextually relevant tokens.

When dealing with overlapping k-mers, simple token masking

becomes insufficient. If a single k-mer token is masked, all

overlapping k-mers related to that token must also be masked. This

is crucial because when a k-mer is not masked and subsequently

restored, it might inadvertently provide contextual information

about its neighbors. Such a situation would enable the trivial

restoration of adjacent masked k-mers. In essence, one unmasked

k-mer could potentially “leak” enough information to unmask

its neighboring tokens. For examples, as presented in Figure 2C

(Overlapping tokeniization), if only the second token “AGTCCA”

is masked, it can be fully restored from its neighboring tokens:

“AAGTCC” and “GTCCAG.”

This overlapping nature of k-mers posed unique challenges.

As a result, we had to dynamically adjust the MLM parameters

and the lengths of sequence segments during the pretraining

phase. Additionally, when multiple contiguous k-mers were

masked together, the probability associated with the MLM had

to be recalibrated. This was necessary to ensure that the actual

proportion of the sequence being masked was consistent with our

intended masking ratio.

2.2.2.2 Training phases and configuration

Initially, we employed parameters that allowed complete

sequence restoration (k-mer of k = 6) by masking only five

continuous tokens (with p1 = 0.9) and manipulating 15% of

the tokens. Once a loss threshold of 1 was attained, the MLM

parameters were adjusted to heighten the masking complexity. We

implemented various masking lengths, such as 2 nucleotides for k-

mer of k = 6 and 2 characters for k = 1. Training data in the first

phase had a fixed length of 128nt segments. The succeeding phase

used variable-length datasets: with a probability of 0.5 a full-length

segments, and with a probability of 0.5 a segment between 30–512

bp was selected into the the batch. The termination criterion for

training was no further improvement or performance decrease, in

both the MLM and promoter tasks. Models underwent training for

roughly one batch each. We opted for batch sizes that spanned

around 0.5–2 million bp sequences. Computations were executed

onHPC-VEGA and Komondor platforms with Nvidia-A100 GPUs,

leveraging slurm, pytorch distributed, and multiple GPU nodes.

2.2.3 Evaluating the pretrained model
We evaluted the masking performance of the models

using the ESKAPE pathogens, namely Enterococcus faecium

(GCF_009734005.1), Staphylococcus aureus (GCF_000013425.1),

Klebsiella pneumoniae (GCF_000240185.1), Acinetobacter

baumannii (GCF_008632635.1), Pseudomonas aeruginosa

PAO1 (GCF_000006765.1), and Escherichia coli str. K-12

(GCF_000005845.2), because of their high clinical importance.

First we investigated how the genomic structure is reflected in the

embeddings, on different sequence features (i.e. CDS, intergenic,

pseudo-genes, etc.). Next we measured how well the models can

perform in masking.

2.2.4 Analysis of encoder outputs
In deep learning, an encoder typically processes input data

(such as a sequence of tokens) and produces a dense vector

representation for each token. These dense vectors, often referred

to as embeddings or encoded vectors, capture the semantic

information of the input tokens.

Given an input sequence S with T tokens, i.e.,

S = {s1, s2, . . . , sT}
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FIGURE 3

LCA Tokenization and corrupted sequence restoration. The figure illustrates how the corruption of a character at sequence level a�ects the initial

vector representations of the seqment with respect to the di�erent tokenization methods. The 7th nucleotide is unknown or masked, and those

k-mers that overlap with that position are masked. As a result, when k = 6 and s = 2 not only the 7th character is hidden, but the 8th as well.

the encoder produces a sequence of vectors:

E = {e1, e2, . . . , eT}

where ei represents the embedded vector for the token si. In case

of multiple inputs or batches, if we have a batch of size B with

each sequence containing T tokens, the encoder’s output would

be a 3D tensor of shape (B,T,D) where D is the dimensionality

of the embeddings.

Once we have the encoded vectors, there are several ways to

aggregate or pool them to get a single representation for the entire

sequence as shown in Supplementary Figure S1. Here are some

common pooling methods:

• Mean Pooling: Average the vectors: emean = 1
T

∑T
i=1 ei.

• Sum Pooling: Sum the vectors: esum =
∑T

i=1 ei.

• Max Pooling: Max value per dimension: emax[j] =
maxTi=1 ei[j].

• Min Pooling: Min value per dimension: emin[j] =
minTi=1 ei[j].

For batches, these pooling operations are applied

independently for each input sequence in the batch. The provided

NCBI annotations were preprocessed and extended. Intergenic

regions were defined as non-annotated genomic features with

respect to the strand. We retained the CDS, intergenic, pseudo-

genes, ncRNA features, while the rare or infrequently used

features (such as riboswitch, binding_site, tmRNA, etc.) were

excluded from the analysis. This was followed by sampling

segments of various lengths from each genomic region. We

sampled a maximum of 2000 sequence features from each

contig, considering the strand, to evaluate strand-specific biases

as well.

Then, we randomly corrupted a segment 10,000 times, i.e., a

character was replaced with “*” and tokens containing “*” were

mapped to the [MASK] token as illustrated on Figure 3.

The sampled segment database is available at Zenodo

10.5281/zenodo.10057832.

2.3 Application I: bacterial promoter
prediction

The first task our models were evaluated on involved

distinguishing between promoter and non-promoter sequences in

bacteria. A sequence is labeled “1” if identified as a promoter and

“0” otherwise. The next section gives an overview of the dataset

structure and details about its constructions.

2.3.1 Dataset overview
The known promoters, referred to as positive samples, are

primarily drawn from the Prokaryotic Promoter Database (PPD,

Su et al., 2021), which contains experimentally validated promoter

sequences from 75 organisms. Figure 4 illustrates the composition

and source of our dataset, segregating prokaryotic promoters from

non-promoters and including an independent test set based on

E.coli sigma70 promoters.

2.3.1.1 Data partitioning and utilization

To ensure comprehensive evaluation, the dataset was split

into three parts, divided randomly into training, validation, and

testing datasets.

1. Training set: Constitutes 80% of the total data and is pivotal for

initial model development and training.
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FIGURE 4

Schematic of the promoter dataset. This figure provides a visual representation of the sequence sources and their distribution within the study. The

dataset comprises known promoter sequences from 75 organisms, retrieved from the Prokaryotic Promoter Database (PPD), alongside

non-promoter sequences obtained from the NCBI RefSeq database (specifically sampled from CDS regions). It also includes non-promoter

sequences constructed via higher and zero-order Markov chains that mirror compositional characteristics of known promoters. Additionally, an

independent test set, focusing on E. coli sigma70 promoters, was employed, curated by Cassiano and Silva-Rocha (2020). A balanced distribution

approach was adopted to even out the number of positive and negative samples, with the dataset being systematically divided into training,

validation, and test subsets. This stratification underpins a thorough evaluation of the model e�cacy.

2. Validation set: Comprises 10% of the data, aiding in fine-tuning

model parameters and preventing overfitting.

3. Test set: Forms the remaining 10% of the data, crucial for

unbiased model performance evaluation.

2.3.1.2 Dataset construction for multispecies train, test

and validation sets

The prokaryotic promoter sequences are typically 81 bp

long, ensuring compatibility with most tools’ input prerequisites,

particularly around the putative TSS region interval [−60,+20].

Our positive dataset encompasses promoter sequences from

various species, predominantly found on both chromosomes

and plasmids. Promoters included in the independent test set,

based on exact match, were excluded from the training data.

Species and contigs were mapped to NCBI assembly and sequence

accessions. To curate comprehensive non-promoter sequences

(negative samples), we employed three strategies:

1. Using non-promoter sequences (CDS–Coding Sequences).

2. Random sequences generated with a 3rd-order Markov chain.

3. Pure random sequences (0-order Markov chain) as proposed by

Cassiano and Silva-Rocha (2020).

The distribution of this composite dataset was 40% CDS,

40% Markov-derived random sequences, and 20% pure random

sequences (0-order Markov chain). One practical application of

promoter detection in coding sequences is to check whether an

unintentional promoter is injected or can be located inside a

modified or designed coding sequence region, causing disruption.

To cover this use-case, we incorporated the coding regions into our

training and evaluation dataset. The CDS sequences were extracted

from the genomic sequences of contigs, based on annotations from

NCBI. The 81 bp long CDS region samples were selected based

on the NCBI-provided annotations for the available contigs with

respect to the underlying species. The promoter regions often

contain AT-rich sequences, i.e., TATA box. To capture and model

the AT-rich regions, we applied 3rd and 0 order Markov chains to

generate sequence examples that reflect the compositional property

of known promoters.

A 3rd-order Markov chain predicts the next nucleotide in a

sequence based on the states of the previous three nucleotides.

Formally, the probability of observing a nucleotide xi given the

nucleotides at positions xi−3, xi−2, and xi−1 is:

P(xi|xi−3, xi−2, xi−1)

For DNA sequences, this yields 44 = 256 possible nucleotide

combinations. Such higher-order modeling can more effectively

capture intricate sequence patterns and dependencies than lower-

order models (Durbin et al., 1998). However, estimating transition

probabilities requires extensive data due to the increased number of

states (Koski and Noble, 2001). We determined these probabilities

using promoter sequences, to which we added the reverse

complement of each promoter. Subsequently, random promoter

sequences were generated using these models.

We have a second, independent test for assessing model

performance and referred to Cassiano and Silva-Rocha (2020)’s

dataset comprising E. coli sigma70 sequences. The positive,

well-recognized samples came from Regulon DB (Santos-

Zavaleta et al., 2019). Cassiano and Silva-Rocha (2020) evaluated

various tools using an experimentally validated E. coli K-12

promoter set dependent on sigma70, sourced from Regulon

DB 10.5 (Santos-Zavaleta et al., 2019). Given the extensive

documentation of sigma70-dependent promoters in bacteria,

only these were considered. They used a positive dataset of 865

high-evidence sequences from Regulon DB and a negative set

of 1,000 sequences mimicking the nucleotide distribution of the

natural sequences. We ensured no overlap existed within the

promoter datasets.

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1331233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ligeti et al. 10.3389/fmicb.2023.1331233

The promoter dataset is available as a Zenodo and Hugging

Face dataset.

2.3.2 Training for promoter prediction
We employed a fine-tuning paradigm to evaluate our model.

Our proposed binary classification model extends the Megatron

BERT architecture (Shoeybi et al., 2019), tailored specifically

for binary classification tasks. Let X represent the sequence of

input embeddings, with fBERT(X) denoting the transformation by

Megatron BERT. Given an input sequence of length T, this model

transforms X into a sequence output S with dimensions T ×
hidden_size, where S = fBERT(X). Unlike the conventional BERT

model, which classifies sequences based on the special [CLS]

token representing the “sentence,” our approach emphasizes

integrating representations of all tokens using a weighting scheme

as shown in Supplementary Figure S1.

To obtain a fixed-size representation from the variable-length

sequence S, we devised a weighting mechanism. The sequence

S undergoes a transformation through a linear layer to yield a

sequence of weightsW:

W = softmax(W1S
T + b1)

Here, W1 is a matrix sized hidden_size × 1 and b1 is a bias

term. The softmax operation ensures W forms a valid probability

distribution over sequence positions. The model then computes a

weighted sum of the sequence representations:

P =
T∑

i=1

wisi

Where wi and si represent the weight and the sequence

representation at the ith position, respectively. Subsequently,

P is processed by a dropout layer with a probability of

hidden_dropout_prob to produce P′. This results in the final

classification logits L.

Datasets, comprising training, validation, and testing subsets,

were appropriately tokenized and adapted for ProkBERT

processing. For optimization, the AdamW variant was chosen with

parameters α ∈ {0.0001, 0.0004, 0.0008}, β1 = 0.95, β2 = 0.98,

and ǫ = 5 × 10−5. A linear learning rate scheduler with warmup

was utilized. The model underwent training for two epochs,

with a batch size of 128 per GPU (NVIDIA A100-40GB GPUs)

using the pytorch data distributed framework (nvcc). Additional

configurations included a weight decay of 0.01.

2.4 Application II: phage sequence analysis

Bacteriophages have a significant role in the microbiome,

influencing host dynamics and serving as essential agents for

horizontal gene transfer (De la Cruz and Davies, 2000). Through

this mechanism, they aid in the transfer of antibiotic resistance and

virulence genes, promoting evolutionary processes. Understanding

the diversity of phages is crucial for tackling challenges like

climate change and diseases (Jansson and Wu, 2023). These phages

exhibit distinct patterns in both healthy and diseased microbiomes

(Yang et al., 2023). The correlation between the human virome and

various health conditions, such as cancer, inflammatory bowel

diseases, and diabetes, has been documented (Zhao et al., 2017;

Han et al., 2018; Nakatsu et al., 2018; Fernandes et al., 2019;

Liang et al., 2020; Zuo et al., 2022). However, deeper research is

needed to discern causality and their impact on microbial and host

biological processes.

Despite the abundance of phages (Bai et al., 2022a), accurately

quantifying and characterizing them remains a challenge. One

primary limitation is the restricted number of viral sequences

in databases like NCBI RefSeq. Additionally, the categorization

of viral taxonomy is still a topic of discussion (Walker et al.,

2022). Though there have been recent efforts to expand databases

(Zhang et al., 2022; Camargo et al., 2023), the overall understanding

of viral diversity is still not complete (Yan et al., 2023). We

have assembled a unique phage sequence database using recently

published genomic data.

Another challenge is the life cycle of phages; temperate phages

might integrate their genomes into bacterial chromosomes and

are often annotated as bacterial genomes, leading to potential

misidentification. Current databases also show biases toward

certain genera (Schackart III et al., 2023), which can skew

benchmarking and the evaluation of different methods. To address

this, we used a balanced benchmarking approach, ensuring each

viral group corresponds to their predicted host genus, minimizing

bias. We also compared viral genomes to their respective hosts,

a more demanding classification task, such as distinguishing a

Salmonella phage from its host genome compared to marine

cyanobacteria. For our study, we selected a specific number of

phages for testing, ensuring there is no overlap between training

and testing sets at the species level.

2.4.1 Phage dataset description
To train and assess our prediction models, we assembled a

comprehensive phage sequence database from diverse sources. As

of 9th July, 2023, we procured viral sequences and annotations

from the RefSeq database (O’Leary et al., 2016; Li et al., 2021).

By isolating entries labeled “phage,” we obtained 6,075 contigs.

Our database was further enriched with the inclusion of Ren et al.

(2020), a dataset validated through the TemPhD method (Zhang

et al., 2022), adding another 192,326 phage contigs extracted from

148,229 assemblies.

To address sequence redundancy present in both the RefSeq

and TemPhD databases, we applied the CD-HIT algorithm (Li and

Godzik, 2006; Fu et al., 2012) (using CD-HIT-EST with a default

word size of 5).While several clustering thresholds (0.99, 0.95, 0.90)

were experimented with and found to produce similar outcomes,

we settled on a threshold of 0.99. This process resulted in a refined

set of 40,512 distinct phage sequences, with an average length of

approximately 43,356 base pairs, culminating in a total of 3.5 billion

base pairs. Notably, these sequences target a wide spectrum of 660

bacterial genera. Subsequent to sequence curation, phage sequences

were mapped to their respective bacterial hosts to formulate

a balanced training dataset, ensuring equitable representation

between phages and their hosts. This step is imperative, given

the distinct distributions observed between bacterial sequences

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1331233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ligeti et al. 10.3389/fmicb.2023.1331233

and their phage counterparts. In numerous instances, due to

ambiguities in species-level identification or gaps in taxonomic

data, host mapping was executed at broader taxonomic strata,

predominantly at the genus level.

In our examination of bacteriophage-host associations at

the genus level, several bacterial genera stood out, showcasing

pronounced phage interactions. Salmonella, a main cause of

food-related sicknesses (Popoff et al., 2004), stands out with an

impressive association of 24,182 phages, spanning a cumulative

length of over a billion base pairs (1,026,930,954 bp) and an average

phage length of 42,467 bp. Following closely, the common gut

bacterium, Escherichia (Tenaillon et al., 2012), is linked with 8,820

phages, accumulating a total length of 408,866,394 bp. The genus

Klebsiella, notorious for its role in various infections (Paczosa

and Mecsas, 2016), associates with 4,904 phages. Genera such

as Listeria (Vázquez-Boland et al., 2011), Staphylococcus (Lowy,

1998), and Pseudomonas (Driscoll et al., 2007), each with distinct

clinical significance, exhibit rich phage interactions. Notably,

Mycobacterium (Cole et al., 1998), consisting of pathogens like

the tuberculosis-causing bacterium, shows associations with 2,156

phages. Many of these bacterial genera are benign and even

beneficial under normal conditions, they also include species that

can cause severe diseases in humans, especially when there’s an

imbalance in the body’s natural flora or when antibiotic resistance

develops. Monitoring phage interactions with these bacteria offers

potential pathways for therapeutic interventions and a deeper

understanding of microbial ecology in human health.

Additionally, balanced databases were created, stratified by

the host genus level, to mitigate the effect of underrepresented

or overrepresented phages, such as Salmonella. The reverse-

complement sequences were included. The final dataset

encompasses a total of 660 unique bacterial genera. Undersampling

was performed with a threshold of 20,027,298 bp for 25 genera,

while the others were upsampled with a maximum coverage of 5x,

obtaining random samples of shorter fragments from the contigs.

Random segmentation and sampling were carried out as previously

described. The bacterial assemblies were randomly selected from

the NCBI database, prioritizing higher-quality assemblies. Many of

them were not included in the pretraining dataset. Subsequently,

we constructed a database with various sequence lengths: 256, 512,

1024, and 2048 bps. The train-test-validation split was executed in

a 0.8, 0.1, and 0.1 proportion at the phage sequence level.

For comparison with alternative methods and tools, we had to

subsample our test set (N = 10, 000) to conduct the evaluation

within a reasonable timeframe.

2.4.2 Model training for phage sequence analysis
The task was formulated as binary classification, similarly to

the promoters. Phage sequence classification was approached in a

manner analogous to the promoter training. Given the extensive

size of the dataset, preprocessing was conducted beforehand,

segmenting sequences into various lengths: 256, 512, 1,024, and

2,048 bps. For both mini and mini-c models, the training

process was partitioned into three distinct phases. An initial grid

search was executed to optimize learning rates, and base models

were trained for an hour. The parameter yielding the highest

Matthews Correlation Coefficient (MCC) was selected. The model

was then trained using segment lengths of 256 bps for half an

epoch, followed by 512 bps for another half epoch, and concluding

with two epochs for 1024 bps segments. The training regimen

for the mini-long model was similar, albeit commencing with

512 bps segments, then transitioning to 1024 bps, and finally to

2048 bps segments. Model optimization employed the settings

delineated previously.

2.5 Applied metrics

MCC (Matthews Correlation Coefficient): Used for binary

classifications and defined as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP is true positives, TN is true negatives, FP is false positives,

and FN is false negatives. The coefficient ranges from −1 (total

disagreement) to 1 (perfect agreement).

F1 Score: The harmonic mean of precision and recall, given by:

F1 = 2×
Precision× Recall

Precision+ Recall

with

Precision =
TP

TP + FP

and

Recall (Sensitivity) =
TP

TP + FN

Accuracy: Represents the proportion of correctly predicted

instances to the total, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity (Recall): The proportion of actual positives

correctly identified:

Sensitivity =
TP

TP + FN

Specificity: The proportion of actual negatives

correctly identified:

Specificity =
TN

TN + FP

ROC-AUC (Receiver Operating Characteristic - Area Under

Curve): Evaluates the model’s discriminative ability between

positive and negative classes. It’s the area under the ROC curve,

which plots Sensitivity against 1−Specificity for various thresholds.

The silhouette score is a measure used to calculate the

goodness of a clustering algorithm. It indicates how close each

sample in one cluster is to the samples in the neighboring clusters,

with values ranging from –1 to 1, where a high value indicates that

the sample is well matched to its own cluster and poorly matched

to neighboring clusters (Rousseeuw, 1987).
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Equation for the silhouette score s(i) for a single sample:

s(i) =
b(i)− a(i)

max{a(i), b(i)}

Where:

• a(i) is the average distance from the i-th sample to the other

samples in the same cluster.

• b(i) is the smallest average distance from the i-th sample to

samples in a different cluster, minimized over clusters.

3 Results and discussion

3.1 ProkBERT’s learned representations
capture genomic structure and phylogeny

We assessed the zero-shot capabilities of our models by

examining their proficiency in predicting genomic features

based solely on embedding vectors, in a manner akin to

Nucleotide Transformers and related methodologies. Figure 5

presents the UMAP projection of these embedded vector

representations. Employing the UMAP technique, we reduced the

dimensionality of genomic segments and derived embeddings.

These were then evaluated using silhouette scores across the

three models: ProkBERT-mini, ProkBERT-mini-c, and

ProkBERT-mini-long.

Our primary objective was to discern if the representations of

sequence segments from ESKAPE pathogens could be distinctly

categorized. Indeed, Figure 5 exhibits clear delineation among

known genomic features, including CDS (coding sequences),

intergenic regions, ncRNA, and pseudogenes. It’s important to

note that these models were not explicitly trained to differentiate

these sequence features; the representations were solely derived

through pretraining. For the critical genomic comparison

between “intergenic” and “CDS” regions, the silhouette scores

obtained were 0.4925, 0.5766, and 0.3352 across the respective

models, emphasizing a consistent and clear distinction between

these features. Regarding non-coding RNA representations, the

silhouette scores for “ncRNA” vs. “CDS” were 0.1537, 0.2935,

and 0.2192, while for “ncRNA” vs. “intergenic,” they were 0.1648,

0.1302, and 0.3109, further affirming the assertion that ncRNAs

cluster distinctly. Pseudogenes, as anticipated, exhibited some

overlap with ’CDS’, notably in the ProkBERT-mini model with

a score of −0.0358. Yet, when compared with ’ncRNA’, a distinct

separation was observed, as evidenced by scores of 0.1630, 0.2365,

and 0.1636.

This analysis aligns with biological knowledge, where

pseudogenes are expected to be more similar to CDS, while

ncRNAs, which have different functions and characteristics, form

distinct clusters from CDS and intergenic regions. All three models

appear to produce similar clustering results for the given pairs of

genomic features.

The embeddings prominently display the genomic intricacies

of ESKAPE pathogens. Notably, Klebsiella pneumoniae and

Escherichia coli, both members of the Enterobacteriaceae family,

exhibit close proximity in the embedding space, echoing potential

genomic kinship or shared evolutionary paths. This observation is

further corroborated by the low silhouette scores across the models.

In contrast, species like Pseudomonas aeruginosa manifest as more

distinct clusters, emphasizing their genetic disparities. Intriguing

overlaps, such as those between differently labeled Acinetobacter

baumannii entities, highlight potential challenges in the data or

shared genomic features. Combined, the UMAP visualizations

and silhouette scores provide a profound insight into species-

specific genomic embeddings, revealing both shared and distinct

genomic signatures.

3.2 ProkBERT can e�ciently recover
corrupted sequences

In evaluating the models’ capabilities in the masking task,

we used random masking across various genomic segments,

such as CDS, ncRNA, intergenic, and pseudogenes, detailed

in Table 2. We measured performance with metrics like ROC-

AUC and average reference rank. However, a direct model

comparison presents challenges. Notably, ProkBERT-mini-c

boasts a significantly smaller vocabulary size (9) in comparison

to ProkBERT-mini and ProkBERT-mini-long (4101) This

allows ProkBERT-mini-c to achieve higher rankings, like top3,

with relative ease as it encompasses nearly the entire vocabulary

(there are 4 nucleotides). Also, the local context’s representation in

ProkBERT-mini-long is less dense, making the restoration of

the masked nucleotides harder in contrast to the others.

For sequences spanning 1,024 nucleotides, ProkBERT-mini

exhibited a commendable AUC of 0.9998, accompanied by top 1

and top 3 prediction accuracies of 51.69% and 92.27%, respectively.

Concurrently, ProkBERT-mini-c achieved an AUC of 0.9586,

with top 1 and top 3 accuracies at 51.28% and 92.22%. However,

ProkBERT-mini-long reported slightly subdued figures, with

an AUC of 0.9992 and top 1 and top 3 accuracies of 27.68% and

55.89%. This underscores the efficacy of the ProkBERT model

family in handling genomic tasks. A salient observation from our

analysis is that a model’s prediction proficiency is intrinsically tied

to the contextual size.

In our next assessment some performance nuances became

evident across various genomic regions. The prokbert-mini

model consistently stood out, especially within the Coding

Sequence (CDS) and Intergenic domains. For these regions, it

achieved an unmatched ROC-AUC of 0.9998. Specifically, within

the CDS region, the model attained a Top1 accuracy of 50.33%,

a Top3 accuracy of 91.87%, and an average reference rank of

0.811. In the Intergenic sections, these figures were 48.97%, 91.12%,

and 0.843, respectively. The prokbert-mini-c model also

exhibited commendable performance.Within the CDS regions, this

model reached a Top1 accuracy of 50.65%, a Top3 accuracy of

91.91%, and an average reference rank of 0.802. For the Intergenic

regions, the metrics were 48.84%, 91.39%, and 0.839 respectively.

Despite the achievements of the aforementionedmodels, challenges

persisted across all models in the non-coding RNA (ncRNA)

domains. Even the top-performing prokbert-mini saw its

Top1 accuracy drop to 32.46%, with an average reference rank

increasing to 1.202. Contrastingly, the prokbert-mini-long,

despite its detailed design, exhibited reduced accuracies, with
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FIGURE 5

UMAP embeddings of genomic segment representations. The figure presents the two-dimensional UMAP projections of embedded vector

representations for various genomic features, derived from the ProkBERT-mini, ProkBERT-mini-c, and ProkBERT-mini-longmodels. The

distinct clusters highlight the models’ ability to di�erentiate between features such as CDS (coding sequences), intergenic regions, ncRNA, and

pseudogenes, even without explicit training for feature di�erentiation. (B) The segments are colored according to species, indicating that cluster

structure reflects the phylogenic similarities. (A) Sequence embeddings of the di�erent regions. (B) Sequence embeddings of the di�erent species of

ESKAPE pathogens.

TABLE 2 Masking performance of the ProkBERT family.

Model L Avg. Ref. Rank Avg. Top1 Avg. Top3 Avg. AUC

ProkBERT-mini 128 0.9315 0.4497 0.8960 0.9998

ProkBERT-mini-c 128 0.9429 0.4391 0.8965 0.9504

ProkBERT-mini-long 128 3.9432 0.2164 0.4781 0.9991

ProkBERT-mini 256 0.8433 0.4848 0.9130 0.9998

ProkBERT-mini-c 256 0.8262 0.4928 0.9151 0.9565

ProkBERT-mini-long 256 3.5072 0.2470 0.5258 0.9992

ProkBERT-mini 512 0.8098 0.5056 0.9179 0.9998

ProkBERT-mini-c 512 0.7983 0.5116 0.9203 0.9580

ProkBERT-mini-long 512 3.3026 0.2669 0.5435 0.9992

ProkBERT-mini 1024 0.7825 0.5169 0.9227 0.9998

ProkBERT-mini-c 1024 0.7868 0.5128 0.9222 0.9586

ProkBERT-mini-long 1024 3.2082 0.2768 0.5589 0.9992

Bold numbers indicate the best results per category.
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TABLE 3 Evaluation of promoter prediction tools on E-coli sigma70 dataset (Transposed).

Tool Accuracy MCC Sensitivity Specificity

ProkBERT-mini 0.87 0.74 0.90 0.85

ProkBERT-mini-c 0.87 0.73 0.88 0.85

ProkBERT-mini-long 0.87 0.74 0.89 0.85

CNNProm 0.72 0.50 0.95 0.51

iPro70-FMWin 0.76 0.53 0.84 0.69

70ProPred 0.74 0.51 0.90 0.60

iPromoter-2L 0.64 0.37 0.94 0.37

Multiply 0.50 0.05 0.81 0.23

bTSSfinder 0.46 -0.07 0.48 0.45

BPROM 0.56 0.10 0.20 0.87

IBPP 0.50 -0.03 0.26 0.71

Promotech 0.71 0.43 0.49 0.90

Sigma70Pred 0.66 0.42 0.95 0.41

iPromoter-BnCNN 0.55 0.27 0.99 0.18

MULTiPly 0.54 0.19 0.92 0.22

Bold numbers indicate the best results per category.

Top1 and Top3 accuracies of 25.18% and 52.66% across all labels,

hinting at potential inefficiencies or overfitting. Collectively, these

findings underscore the importance of tailored model architectures

for genomic sequences and highlight the complexities of various

genomic regions, laying a foundation for future targeted deep

learning strategies in genomics.

3.3 ProkBERT performs accurately and
robustly in promoter sequence recognition

Identifying promoters, which are crucial in initiating the

transcription process, is fundamental to understanding gene

regulation in bacteria. Our initial fine-tuning task focused on

the identification of these genomic regions, primarily through

a binary classification approach that distinguishes sequences as

either promoters or non-promoters. Although this method is

widely used, various alternative strategies have been explored.

A significant limitation of current techniques, as highlighted by

Chevez-Guardado and Peña-Castillo (2021), is their reliance on

training with a limited range of species, mainly E. coli, but also

including Bacillus subtilis and a few other key species.

As illustrated in Figure 1, our training began with a pretrained

model followed by training using cross-entropy loss minimization.

We evaluated the training outcomes on two datasets: a test set

curated by Cassiano and Silva-Rocha (2020), and another one

comprising mixed species. The models’ performance on the first

dataset can be seen in Table 3.

Cassiano and Silva-Rocha (2020) had previously gauged

the efficacy of several well-established tools, including BPROM

(Salamov and Solovyevand, 2011), bTSSfinder (Shahmuradov

et al., 2017), BacPP (de Avila e Silva et al., 2011), CNNProm

(Umarov and Solovyev, 2017), IBBP (Wang et al., 2018), Virtual

Footprint, iPro70-FMWin (Rahman et al., 2019), 70ProPred (He

et al., 2018), iPromoter-2L (Liu et al., 2018), and MULTiPly

(Zhang et al., 2019). Additionally, we incorporated newer tools

like Promotech (Chevez-Guardado and Peña-Castillo, 2021) and

iPromoter-BnCNN (Amin et al., 2020). These tools encompass

a broad spectrum of techniques. For instance, BPROM and

bTSSfinder exploit conserved and promoter element motifs. BacPP

and CNNProm use neural networks for promoter predictions in E.

coli and other bacteria based on transformed nucleotide sequences.

IBBP adopts a unique image-based approach combined with

logistic regression and various sequence-based features. Tools like

70ProPred, iPro70-FMWin, MULTiPly, and iPromoter-2L leverage

SVM, logistic regression, and random forest methodologies,

drawing upon extracted sequence features such as physicochemical

properties and k-mer compositions.

The results are presented in Table 3. The ProkBERT family

models exhibit remarkably consistent performance across the

metrics assessed.With respect to accuracy, all three tools achieve an

impressive score of 0.87, marking them among the top performers

in promoter prediction. This suggests that, regardless of the specific

version, the underlying methodology used in the mini series is

robust and effective.

When evaluating the balance between true and false

predictions using MCC both ProkBERT-mini and

ProkBERT-mini-long slightly edge out ProkBERT-mini-c

with an MCC of 0.74 compared to 0.73 for mini-c. Although the

difference is marginal, it might indicate subtle refinements in the

mini-long approach. In terms of sensitivity, which focuses on

the ability to correctly identify promoters, ProkBERT-mini leads

with a score of 0.90, closely followed by ProkBERT-mini-long

at 0.89 and ProkBERT-mini-c at 0.88. This hierarchy, albeit

with small differences, highlights the minute improvements
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achieved in the mini and mini-long versions. Lastly, for

specificity, all three versions achieve an identical score of 0.85. This

uniformity underscores the consistency in their ability to correctly

identify non-promoters. In summary, while the performance across

the mini versions is largely comparable, ProkBERT-mini and

ProkBERT-mini-long display marginal advantages in certain

metrics, hinting at potential refinements in these versions.

The Promotech tool demonstrates a mixed performance

across the metrics. With an accuracy of 0.71, it correctly

predicts the presence or absence of promoters 71% of the time.

While this accuracy is lower than the top-performing tools like

ProkBERT-mini and its variants, it is significantly better than

the lower-performing tools such as Multiply and bTSSfinder.

Sensitivity for Promotech is 0.49, suggesting that it correctly

identifies nearly half of the actual promoters. However, its most

remarkable performance metric is its specificity, with a score of

0.90. This means Promotech is adept at identifying non-promoters,

correctly classifying them 90% of the time.

Among the methods assessed, CNNProm, Sigma70Pred,

iPromoter-BnCNN, and iPromoter-2L exhibit notably high

sensitivity scores, signifying their pronounced ability to correctly

identify promoters. Specifically, iPromoter-BnCNN leads with

an exceptional sensitivity of 0.99, closely trailed by Sigma70Pred

at 0.95, CNNProm at 0.95, and iPromoter-2L at 0.94. Such high

sensitivity scores indicate these models’ potential in minimizing

false negatives, which is crucial in applications where missing an

actual promoter can have significant implications. However, it’s

vital to interpret these results with caution. The high sensitivity

scores, especially of iPromoter-BnCNN and Sigma70Pred, come at

the expense of specificity. For instance, iPromoter-BnCNN has a

notably low specificity of 0.18, implying a substantial rate of false

positives. Similarly, Sigma70Pred has a specificity of 0.41. This

suggests that while these models are adept at identifying promoters,

they often misclassify non-promoters as promoters. An essential

factor to consider in this evaluation is the training data. Given that

these models were trained on E. coli data, their performance might

be biased when evaluated on the same or closely related datasets.

This lack of independence between training and testing data can

lead to overly optimistic performance metrics, as the models might

merely be recalling patterns they’ve already seen, rather than

generalizing to novel, unseen data.

Next, we evaluated our models’ performance on a test set

encompassing a broad mix of promoters, extending beyond just E.

coli. The results are shown in Figure 6.1

The trio of tools in the ProkBERT family – mini, mini-c,

and mini-long – consistently exhibited strong performance

across the metrics analyzed. In terms of accuracy, all three

achieved scores between 0.79 and 0.81, solidifying their position

among leading promoter prediction tools. This uniformity

in results points to a reliable methodology underlying the

ProkBERT family. Using the Matthews Correlation Coefficient

(MCC) as a measure of prediction balance, ProkBERT-mini

1 The selection of competitors for the second test set took into account the

larger size of the dataset, which posed practical challenges for established

methods optimized for smaller sequences, resulting in processing issues and

longer evaluation times.

and ProkBERT-mini-long both slightly outperformed

ProkBERT-mini-c with MCC values of 0.63 and 0.62

respectively, against the 0.57 of mini-c. Considering sensitivity,

ProkBERT-mini achieved the highest score of 0.81, with

ProkBERT-mini-long and ProkBERT-mini-c trailing at

0.79 and 0.75, respectively. This order reiterates the nuanced

enhancements in the models. With regard to specificity,

ProkBERT-mini-long stood out with a score of 0.83, whereas

ProkBERT-mini and ProkBERT-mini-c both scored 0.82,

reflecting their adeptness at accurate non-promoter classification.

Of the tools assessed, both Sigma70Pred and iPromoter-

BnCNN show moderate performance in sensitivity, with

iPromoter-BnCNN taking the lead at 0.66 and Sigma70Pred

following at 0.52. Promotech displayed a varied metric

performance. With an accuracy rate of 61%, it identifies promoters

correctly in a majority of instances. Its sensitivity value of

0.29 signifies its capability to detect roughly one-third of true

promoters. Yet, its high specificity of 0.93 reveals its proficiency at

negating non-promoters.

Promoter prediction is an intricate task that requires a

balance between sensitivity and specificity. The consistently strong

performance of the ProkBERT family highlights their reliability

in this domain. Yet, the selection of a tool should be made

after weighing the potential implications of both false positives

and negatives.

3.4 ProkBERT swiftly and accurately
identifies phage sequences, even in
challenging settings

Various tools have addressed phage sequence identification,

each employing distinct strategies. These methods can be

categorized into: (i) homology or marker-based tools like

VirSorter2 (Guo et al., 2021) and VIBRANT (Kieft et al., 2020), (ii)

alignment-free methods, for instance, DeepVirFinder (Ren et al.,

2020) and INHERIT (Bai et al., 2022b). The first category leans

on existing annotations, databases, and sequences. In contrast,

alignment-free methods are less influenced by existing knowledge,

offering broader applicability and greater reliability with imperfect

sequence data (Wu et al., 2023). We assessed our classification

accuracy against INHERIT, VirSorter2, and DeepVirFinder (Ren

et al., 2020). Notably, INHERIT employs a DNABert architecture

for classification, akin to ours, drawing inspiration from DNABert

(Ji et al., 2021).

In genomic studies, discerning phage-related segments

becomes increasingly challenging as the segment length diminishes

(Guo et al., 2021). This study rigorously evaluates six distinct phage

classification methodologies over a range of sequence lengths,

leveraging the accuracy and MCC as primary performance metrics.

For the shortest fragments (256bp), VirSorter was unable

to process the test set. Among the evaluated methods, the

ProkBERT models—mini, mini-c, mini-long—

consistently emerged as top performers across varying lengths,

as depicted in Figure 7. Specifically, ProkBERT-mini excels

with shorter sequences, achieving the highest accuracy for 256

bp fragments. This high accuracy does not come at the cost
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FIGURE 6

Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their

performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity. The tools evaluated include ProkBERT-mini,
ProkBERT-mini-c, ProkBERT-mini-long, Promotech, Sigma70Pred, iPromoter-BnCNN, and MULTiPly.

FIGURE 7

ProkBERT identifies phage sequences accurately and rapidly. (A) Method comparison over varying sequence lengths based on two essential

performance metrics: accuracy and MCC. (B) Scatter plots illustrating the relationship between evaluation time (on a logarithmic scale) and the

mentioned performance metrics. The size of each point signifies the sequence length. Evaluation time encompasses model loading, sequence

preprocessing, and inference phases. (A) Comparison of methods across di�erent sequence lengths. (B) Comparison of evaluation time and

performance metrics.

Frontiers inMicrobiology 14 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1331233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ligeti et al. 10.3389/fmicb.2023.1331233

of increased false positives or negatives, as evidenced by its

comparable MCC values. In contrast, DeepVirFinder, ranking fifth,

indicates potential optimization areas for such short sequences.

While ProkBERT-mini consistently ranks highest for lengths

up to 1,024 bps, ProkBERT-mini-c closely follows, signifying

its stability and reliability. Notably, the maximum sequence

length that ProkBERT-mini and ProkBERT-mini-c

can process is limited to 1024bps, introducing the specialized

ProkBERT-mini-long for extended sequences. This model

showcases its prowess with 2kb sequences, achieving an accuracy

of 92.90% and anMCC of 0.859. Virsorter2, despite initial struggles

with shorter sequences, exhibits significant improvements

for longer fragments. However, both DeepVirFinder and

INHERIT show limited enhancements with increased sequence

lengths, suggesting these methods might not capitalize on the

additional information longer sequences provide as effectively

as their counterparts. In conclusion, ProkBERT-mini and

ProkBERT-mini-long clearly stand out as top-performing

models across various sequence lengths. While other methods may

have their merits, they simply don’t match the consistency and

robustness offered by the ProkBERT models.

In phage classification, sensitivity signifies the proportion of

actual phage sequences that are correctly identified. Conversely,

specificity represents the proportion of non-phage sequences

accurately discerned. A method exhibiting high sensitivity

effectively identifies most phage sequences, while high specificity

indicates minimal misclassification of non-phage sequences as

phage-related. Supplementary Figure S2 presents the comparative

results of the models in terms of specificity and sensitivity.

Interestingly, longer sequences tend to decrease the specificity

for VirSorter2. This trend suggests that VirSorter2 might

misclassify non-phage sequences more frequently as the sequence

length increases. A concurrent analysis of sensitivity and

specificity reveals nuances in method performance. For example,

ProkBERT-mini consistently achieves top ranks in sensitivity

but displays variable results in specificity. On the other hand,

Virsorter2, despite its strong specificity, especially with extended

sequences, requires enhancements in its sensitivity. Notably,

several methods, including DeepVirFinder, ProkBERT-mini,

ProkBERT-mini-long, and ProkBERT-mini-c,

consistently maintain high specificity. Their narrow interquartile

ranges around upper values underscore their consistent,

reliable performance.

Next, we scrutinized the relationship between evaluation time

and prediction performance. It’s important to note that the

evaluation time encompasses not just the prediction interval but

also includes sequence preprocessing and model loading durations.

The ProkBERT family shines in terms of both swiftness and

efficacy. These methods, regardless of sequence length, consistently

register evaluation durations under 10 seconds, making them

invaluable for applications necessitating real-time predictions.

Specifically, for 2kb sequences, ProkBERT-mini-long records

a commendable accuracy of nearly 92.9%. Its Matthews Correlation

Coefficient (MCC), a reliable metric of prediction prowess, stands

at approximately 0.859 for the same sequence length. In contrast,

both VirSorter2 and DeepVirFinder manifest protracted evaluation

phases, with the latency amplifying as sequences lengthen.

Remarkably, VirSorter2 demands an evaluation span surpassing

1,000 seconds for 2kb sequences. While assessing accuracy,

DeepVirFinder exhibits suboptimal performance, especially with

succinct sequences like 256 bp, where it achieves a mere 75%.

However, it’s essential to acknowledge that VirSorter2 extends

beyond mere classification; it offers comprehensive annotations, a

process inherently time-intensive.

In essence, the ProkBERT family represents a synergy

of rapidity and reliability. Concurrently, other contenders

like VirSorter2, DeepVirFinder, and INHERIT unveil distinct

advantages, coupled with potential avenues for refinement.

4 Conclusion

In bioinformatics, there has always been a keen interest

in developing tools that can offer precise and context-sensitive

interpretations of sequences. Meeting this demand, we introduced

the ProkBERTmodel family. These innovative models benefit from

transfer learning (Pan and Yang, 2009), a method showing promise

in a variety of applications. A standout feature of ProkBERT is

its ability to harness vast amounts of unlabeled sequence data

through self-supervised learning (He et al., 2020). This approach

equips ProkBERT to handle challenges like limited labeled data, a

problem that has often hindered traditional models such as CNNs,

RNNs, and LSTMs (Cho et al., 2014; LeCun et al., 2015). Another

strength of ProkBERT is its adaptability; it performs well in

different scenarios, from those with sparse data to classic supervised

learning tasks (Snell et al., 2017). When we compare ProkBERT to

older models that largely depend on expansive datasets, it’s clear

that ProkBERT ushers in a more adaptable approach for sequence

analysis in prokaryotic microbiome studies.

Our results affirm the robust generalization capabilities of

the ProkBERT family. The learned representations are not only

consistent but also harmonize well with established biological

understanding. Specifically, the embeddings effectively delineate

genomic features such as coding sequences (CDS), intergenic

regions, and non-coding RNAs (ncRNA). Beyond capturing

genomic attributes, the embeddings also encapsulate phylogenetic

relationships. A case in point is the close proximity in the

embedding space between Klebsiella pneumoniae and Escherichia

coli, both belonging to the Enterobacteriaceae family.

We validated the versatility of the ProkBERT model

family by applying it to two challenging problems: promoter

sequence prediction and phage identification. Promoters play

an instrumental role in transcriptomic regulation. Leveraging

the transfer-learning paradigm, ProkBERT adeptly addressed

the promoter prediction challenge, even when fine-tuned on

multi-species datasets. This adaptability addresses a significant

gap, as many conventional bioinformatics tools tend to be species-

specific, often overlooking microbial diversity. In comprehensive

benchmarks against prominent tools, including Multiply,

Promotech, and i-Promoter2L, ProkBERT consistently outclassed

both traditional machine learning and deep learning counterparts.

For instance, in E. coli promoter recognition, it achieved an

accuracy of 0.87 and an MCC of 0.74, and even in a mixed-species

context, the accuracy was 0.81 with an MCC of 0.62. Additionally,
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our findings underscore the robustness of the training, with

the ProkBERT-mini variant demonstrating resilience against

variations in optimization parameters, such as learning rate.

Our evaluations demonstrate the prowess of ProkBERT

in classifying phage sequences. Remarkably, it achieves high

sensitivity and specificity even in challenging cases where available

sequence information is limited. However, this exercise also

highlights an inherent limitation of ProkBERT, and more broadly

of transformer models: the restricted context window size. While

transformer architectures are adept at capturing long-range

interactions (Lin et al., 2022), they typically have a limited view

of only a few kilobases. In comparative benchmarks with varying

sequence lengths, ProkBERT consistently surpassed established

tools like VirSorter2 and DeepVirFinder. For instance, it attained

an accuracy of 92.90% and anMCC of 0.859 in multiple benchmark

studies. Intriguingly, ProkBERT even outperformed a DNA-BERT-

based model, which employs a BERT architecture and vectorization

strategy similar to ours.

Discussing model variants, both ProkBERT-mini and

ProkBERT-mini-c have a maximum context size of 1kb,

while ProkBERT-mini-long extends this to 2kb. Notably,

ProkBERT-mini-long manages to use longer sequence

information without compromising on prediction performance

or demanding additional computational resources, thanks to the

LCA tokenization strategy. Our results indicate that the local

context information offered by ProkBERT-mini-long and

ProkBERT-mini enhances robustness, giving them an edge over

ProkBERT-mini-c.

ProkBERT’s superiority is not limited to prediction

accuracy; it also excels in terms of inference speed. Variants

such as ProkBERT-mini, ProkBERT-mini-long,

and ProkBERT-mini-c consistently deliver outstanding

performance, both in terms of evaluation speed and accuracy.

Regardless of the sequence length, these models typically complete

evaluations in under 10 seconds, making them exceptionally suited

for real-time applications (Vaswani et al., 2017).

The vector representations generated by ProkBERT can be

seamlessly integrated with traditional machine learning tools,

paving the way for innovative hybrid methodologies. Being an

encoder architecture, ProkBERT’s ability to produce embeddings

for nucleotide sequences enables the direct incorporation of

sequence information into more complex classifiers. This fusion

of traditional and deep learning methods represents a promising

frontier in bioinformatics. Furthermore, insights from natural

language processing research suggest that the most informative

representations may not always emerge from the final layer of a

model (Rae et al., 2021). This underscores the need for future

studies to delve deeper into the optimal layers for sequence

representation extraction in bioinformatics models.

ProkBERT distinguishes itself by being both compact and

powerful, embodying a blend of efficiency and accessibility. One

prevailing challenge with contemporary large language models

like GPT (Radford et al., 2019), BERT (Devlin et al., 2019),

and T5 (Raffel et al., 2019) is their enormity. Models with

hundreds of millions or even billions of parameters not only

demand substantial computational resources but also complicate

training and hyperparameter optimization processes. In stark

contrast, ProkBERT is designed with a lean parameter count

of approximately 20 million. This design choice ensures that it

can comfortably fit within the memory constraints of modest

GPUs. As a result, even researchers without access to high-

performance computing setups or top-tier GPUs can utilize

ProkBERT. Platforms like Google Colab, which offer free but

limited GPU computation, become viable environments for

training and evaluation tasks with ProkBERT.

As we present the findings of our study, it’s important

to recognize certain limitations and identify areas for future

enhancement. These include: (i) creation of larger models: The

effectiveness of our current models can be further improved by

scaling up. Larger models are likely to capture more complex

patterns, which is particularly beneficial for handling diverse and

extensive datasets. (ii) Increasing context size: Expanding the

context size in our models could lead to a better understanding

of longer sequence dependencies. This enhancement is crucial for

the accurate interpretation of biological sequences. (iii) Building

new datasets: The development of new, comprehensive datasets

is an ongoing necessity. These datasets should not only be

larger in size but also more diverse, ensuring the robustness and

wide applicability of our models. (iv) Diversity in sequencing

applications: Despite our progress, the question of diversity in

sequence applications remains. This includes broadening the range

of sequences our models can recognize and applying them to

a variety of biological phenomena. (v) Further applications and

descriptions: Future research should also aim to add and describe

additional applications. This would involve applying our models

to new sequence analysis tasks, expanding the scope and utility

of our work. Each of these points represents a critical area for

improvement and further research. Addressing these limitations

will enable us to develop more comprehensive and versatile tools

in the field of bioinformatics.

In essence, our findings highlight ProkBERT’s capability

to learn detailed and adaptable vector representations for

sequences. These representations hold promise not only

for current analytical challenges but also for emergent and

unforeseen sequence classification tasks in the future. Amidst

the challenges of understanding microbial communities,

ProkBERT stands as a transformative tool, elucidating the

complex interplay of genes and organisms in the microbiome with

remarkable precision.
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