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Background: In the field of forensic science, accurately determining occupation of

an individual can greatly assist in resolving cases such as criminal investigations or

disaster victim identifications. However, estimating occupation can be challenging

due to the intricate relationship between occupation and various factors, including

gender, age, living environment, health status, medication use, and lifestyle habits

such as alcohol consumption and smoking. All of these factors can impact the

composition of oral or gut microbial community of an individual.

Methods and results: In this study, we collected saliva and feces samples from

individuals representing di�erent occupational sectors, specifically students and

manual laborers. We then performed metagenomic sequencing on the DNA

extracted from these samples to obtain data that could be analyzed for taxonomic

and functional annotations in five di�erent databases. The correlation between

occupation with microbial information was assisted from the perspective of

α and β diversity, showing that individuals belonging to the two occupations

hold significantly di�erent oral and gut microbial communities, and that this

correlation is basically not a�ected by gender, drinking, and smoking in our

datasets. Finally, random forest (RF) models were built with recursive feature

elimination (RFE) processes. Models with 100% accuracy in both training and

testing sets were constructed based on three species in saliva samples or on

a single pathway annotated by the KEGG database in fecal samples, namely,

“ko04145” or Phagosome.

Conclusion: Although this study may have limited representativeness due to

its small sample size, it provides preliminary evidence of the potential of using

microbiome information for occupational inference.

KEYWORDS

forensic microbiology, occupation estimation, metagenomic sequencing, random forest,

recursive feature elimination
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1 Introduction

In the field of forensic science, it is often essential to assess and

forecast the personal identification details of specific individuals

involved in a case. These details may include age, gender,

height, facial and physical characteristics, medical condition, place

of residence, and ethnicity. The identification of unidentified

persons is an important aspect in daily forensic medicine works,

including criminal investigation and disaster victim investigation.

Unidentified human remains may cause many legal problems

and affect the emotional level of the families of the victims.

Therefore, forensic anthropologists play an important role in

identifying the age, gender, descent, and height of human remains

by creating biological archives (Gulhan et al., 2015). Currently,

by analyzing the genetic information and physical traits, we

can establish a connection between a particular phenotype and

its corresponding genetic markers. This has led to significant

interest in using molecular markers, specifically forensic DNA

phenotypic inference, to identify human body characteristics.

Examples include estimating age through DNA methylation (Xu

et al., 2019; Naue, 2023) or telomeric DNA (Elmadawy et al., 2021),

characterizing facial features using single nucleotide polymorphism

(SNP) (Pospiech et al., 2022), and inferring age based on RNA

(Rodriques et al., 2021; Wang et al., 2022).

However, in numerous real-life forensic cases, it proves

challenging to acquire reliable human DNA data, and it becomes

impossible to identify biological characteristics solely based on

humanDNA information. For example, saliva and fecal samples are

commonly used as forensic materials, and extracting the identity

information of the victim or suspect from these samples can

be crucial for solving the case. However, it can be challenging

to obtain the host DNA information from saliva and fecal

samples. The human gut and mouth contain the largest microbial

communities in the body, and by analyzing the abundant microbial

DNA information, we can extract host information. In recent

years, the introduction of massively parallel sequencing (MPS)

technology has greatly improved the amount of sequencing data

that can be used for forensic analysis (Oliveira and Amorim,

2018). Research has shown that both the human gut and oral

microbiota are stable over the long-term and unique to individuals.

This suggests that they could potentially serve as new markers

for identifying human identities. In recent years, there have been

several investigations that have demonstrated a connection between

the microbial communities in the gut and oral cavity and various

human traits. These traits include gender, body mass index, age,

geographic region, race, and different diseases (Falony et al., 2016;

Wu et al., 2018; Yang et al., 2019; DAngiolella et al., 2020; Aranaz

et al., 2021; Chen et al., 2021; Salzmann et al., 2021; Gacesa

et al., 2022). These human characteristics collectively impact the

development of microbial communities in humans and contribute

to their unique characteristics. Additionally, studies have shown

that specific living habit can have influence on the characteristics.

For instance, Liao et al. (2022) observed that the oral microbial

α diversity of drinkers was significantly higher than that of non-

drinkers; and Jia et al. (2021) found that the α diversity of

oral microbiota in smokers was significantly higher than that

of non-smokers.

The occupation of an identified person is a complex type

of personal characteristic that is connected to various factors

influencing the composition of microbes mentioned earlier.

Making an accurate prediction of their occupation is also important

for resolving certain cases. However, limited research has been

conducted on how occupation affects the microbiota, despite the

fact that various aspects of modern living can impact it. For

example, a study by Hu et al. (2022) found differences in the

composition of gut microbes between college athletes and healthy

control individuals. The two groups showed variations in the

proportion of microorganisms. At the genus level, the college

athletes had higher levels of Faecalibacterium and Bifidobacterium

but lower levels of Bacteroides. Additionally, studies have shown

that different economic incomes can also influence the composition

of intestinal microbiota (He et al., 2018; Widyarman et al., 2021;

Gacesa et al., 2022; Zuniga-Chaves et al., 2023). Meanwhile,

traditional amplicon-based sequencing methods have limitations

in providing comprehensive microbial information, which has led

researchers to focus more on species differences rather than the

impact of microbial functional genes on hosts (Fricker et al.,

2019). Metagenome sequencing, on the other hand, offers a more

advanced approach as it does not rely on the isolation and culture of

microorganisms, allowing for the study of difficult-to-culture and

low-abundance microorganisms. It not only enables the analysis

of species diversity in a sample but also provides insights into

the functional diversity from a gene function perspective. In

summary, there is a need for deeper studies on the intestinal

and oral microbiota of individuals with different occupations, and

metagenomic sequencing method can be helpful in this area.

Therefore, this study collected fecal and saliva samples

from 50 individuals of two different occupations, laborers and

students, for metagenomic research and analysis and studied the

diversity and functional activity of microbial flora and other

macro characteristics of different people from the perspectives of

occupation, gender, smoking, and drinking. Moreover, machine

learning method was used to deeply mine microbial metadata

and build identity information prediction model, to explore the

practical application value of microbiology in forensic medicine.

2 Materials and methods

2.1 Sample collection

This study included 50 healthy participants who had resided

in the Hebei Province of China for an extended period (≥ 5

years). All participants were divided into three groups according to

their gender and occupation, including 30 students from the same

university (10 women and 20 men) and 20 male migrant laborers

from the same community. The basic information, including age,

BMI, education, and smoking and drinking status, of the study

participants is shown in Table 1. All of the participants confirmed

that they did not use any antibiotics for a period of 2 months prior

to the collection of samples, and that they did not have any tumors

or autoimmune diseases. Each participant signed an informed

consent form before sampling, and the study was approved by the
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TABLE 1 Basic information of the participants.

Female students (N = 10) Male students (N = 20) Male Laborers (N = 20)

Age, mean(s.d.) 27.4 (2.32) 26.4(2.39) 52.6(12)

BMI, n(%)

<18.5 0 (0) 1 (5) 1 (5)

<24 8 (80) 7 (35) 7 (35)

≥24 2 (20) 12 (60) 12 (60)

Education, n(%)

Below high school 0 (0) 0 (0) 16 (80)

High school or above 10 (100) 20 (100) 4 (20)

Smoking status, n(%)

Non-smoking 10 (100) 16 (80) 7 (35)

Smoking 0 (0) 4 (20) 13 (65)

Drinking status, n(%)

Non-drinking 8 (80) 4 (20) 5 (25)

Drinking 2 (20) 16 (80) 15 (75)

Medical Ethics Committee of Hebei Medical University, with the

approval number 2023007.

From each participant, two types of samples were collected: i)

1ml of naturally flowing saliva, which was collected after a period

of more than 2 h of fasting and water deprivation and ii) 2g of

interrupted internal feces. In summary, 100 samples were collected,

which were placed in separated sterile tubes and stored at -80◦C

until DNA extraction. These samples can be divided into six groups,

which were labeled from three dimensions: (i) the gender of the

origin individual (M: male or F: female); (ii) occupation of the

origin individual (St: student or La: laborer); and (iii) the sample

type (F: feces or S: saliva). For instance, saliva samples from female

students were assigned into group “FStS”. For each sample, the

number of them in the corresponding group would be labeled in

their sample names, such as “FSt01S”.

2.2 DNA extracting and metagenomic
sequencing

Total genomic DNA was extracted from the 100 samples using

PowerSoil R© DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,

USA), according to the manufacturer’s instruction. The quality and

quantity of the extracted DNA were examined using Qubit dsDNA

HS Assay Kit on a Qubit 3.0 Fluorometer (Life Technologies,

Carlsbad, USA) and a 1% agarose gel electrophoresis.

Paired-end libraries with insert size of ∼350 bp were prepared

using a VAHTS Universal Plus DNA Library Prep Kit for Illumina

(Vazyme Biotech, Nanjing, China). The library was sequenced on

an Illumina NovaSeq 6000 platform using a 150-bp paired-end

sequencing strategy (Biomarker Technologies Co., Ltd., Beijing,

China). The Illumina raw sequence read data underwent base

calling to generate two paired FASTQ files. Trimmomatic (Bolger

et al., 2014) (version 0.33) was employed to evaluate the quality

of the raw sequence reads. This involved trimming sequencing

adapters, removing reads with a quality score below 20 over a

sliding window of 50 base pairs and discarding reads with a

sequence length of less than 100 base pairs. After the removal of

adapters and low-quality reads, clean data is obtained for analysis.

The clean data were aligned to the human genome (H. sapiens

GRCh38_release95) using bowtie2 (Langmead and Salzberg, 2012)

(version 2.2.4), and any sequences that match with the human

genome, as well as their complementary sequences, were removed.

Then, the remaining metagenomic data were assembled using

MEGAHIT (Li et al., 2015) (version 1.1.2), which makes the use of

succinct de Bruijn graphs. During the assembling process, contigs

with length of less than 300 bp were filtered. Assembly summary

statistics were determined using QUAST (Gurevich et al., 2013)

(version 2.3). The remaining contigs were identified as clean reads

for the subsequent analyses.

2.3 Taxonomic and functional annotation

Open reading frames (ORFs) from each assembled contig

were predicted using MetaGeneMark browser (Zhu et al., 2010)

(http://exon.gatech.edu/meta_gmhmmp.cgi,version 3.26). Then,

the predicted genes were clustered as representative non-redundant

gene catalog using MMseqs2 (Steinegger and Söding, 2017)

(version 12-113e3), and the thresholds of sequence identity

and coverage were set as 95% and 90%, respectively. Protein

sequences of the above-mentioned catalog were aligned to

Non-Redundant Protein Database (Nr Database, NCBI) using

DIAMOND (Buchfink et al., 2015) (version 0.9.29) for taxonomic

annotations, during which the cutoff of expected value (E-value)

was set as 10-5. For the subsequent analyses, taxonomic annotation

on species level was used.

Additionally, multiple types of functional annotation were

carried out by comparing the clean reads with specific databases
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with specific tools. Due to significant differences in environmental

complexity between the two occupations being studied, several

databases related tomicrobial gene expression, pathogenic bacteria,

and antibiotics were primarily selected for functional annotation.

These annotating databases included: i) annotation against the

Kyoto Encyclopedia of Genes and Genome (KEGG) database

(https://www.kegg.jp), performed with DIAMOND (Buchfink

et al., 2015) (version 0.9.29, setting E-value cutoff as 10-5);

ii) annotation against the Comprehensive Antibiotic Research

Database (CARD, https://card.mcmaster.ca/), performed with

the Resistance Gene Identifier tool (McArthur et al., 2013)

(RGI, version 4.2.2) and provided by the database with default

parameters; and iii) BLASTP search against the following three

databases, performed with BLAST+ tool (Camacho et al., 2009)

(version 2.2.31+, setting E-value cutoff as 10-5): set A of the

virulence factor database (VFDB, http://www.mgc.ac.cn/VFs);

Pathogen Host Interactions Database (PHI-base, http://www.phi-

base.org/); and antibacterial biocide and metal resistance genes

(BacMet) database (http://bacmet.biomedicine.gu.se/). Annotated

functional genes were then clustered into several groups according

to database-special rules, such as level 3 KEGG pathways. These

groups are presented in detail in Table 3 and would be collectively

referred to as “functional features” in the following analyses.

For the subsequent analyses, undetermined information,

i.e., “unassigned” or “uncultured” species and reads cannot be

functional annotated, was omitted, and the concept “relative

abundance” means the proportion of the absolute abundance of

the corresponding feature in all “determined” features. Based on

the relative abundance data of the six types of annotation, primary

comparison was carried out with the following process: i) The

normality of relative abundance data for the two groups was

respectively tested using the Shapiro-Wilk test; ii) The homogeneity

of variance between two groups of data was tested using Levene’s

test; iii) For species that both of the two groups of data followed

a normal distribution and have homogeneous variance, t-test was

used to compare the means of the two groups. Otherwise, the

Wilcoxon rank sum test was used to compare the median of the

two groups.

2.4 Bioinformatics and statistical analysis

Previous research studies have shown that there are significant

differences in the microbial composition between different body

parts, even within the same individual. Therefore, all of the

subsequent analyses are conducted separately among saliva samples

or fecal samples, without cross-comparisons between the two

sample types. Based on the taxonomic annotation (on species

level) or the five types of functional annotation mentioned

above, the composition information, including the absolute

and relative abundance information, of the detected species or

functional “features” in the samples can be obtained. Based on

such information, multiple assessments of the sequencing data

were conducted.

2.4.1 Alpha diversity analysis
Within each sample, the Shannon index was calculated as an

indicator of α diversity with Equation (1), where m denotes the

total number of features detected in the sample and pi represents

the relative abundance of the ith taxon or functional feature. Then,

for each annotation method and each sample type, five times of t-

test or Wilcoxon rank sum test were conducted to observe whether

there are significant differences in α diversity distribution between

groups: (i) three times between the three sample groups (MLa, MSt,

and FSt); (ii) between male smokers and male non-smokers; and

(iii) between male drinkers and male non-drinkers. The choice of

t-test or Wilcoxon rank sum test is made based on whether the

Shannon indices of each group follow a normal distribution and

have homogeneous variance, which is similar to section 2.3.

Shannon index = −
m

∑

i=1

(

pi log2 pi
)

(1)

2.4.2 Beta diversity analysis
Although the Shannon index can provide valuable insights into

the diversity and evenness of features within individual samples, its

calculation focuses solely on within-sample diversity and overlooks

between-sample differences. Put simply, if there is no significant

difference in the Shannon indices of two groups of samples, it

does not necessarily mean that there are no differences in the

distribution of microbial features between the two samples. To

provide a more precise evaluation of the differences in distribution

of specific features among different groups of samples, β diversity is

calculated between different samples. Hellinger distance (HD) was

calculated as an indicator of β diversity for each sample pair, with

Equation (2), where n denotes the total number of features detected

in the two sample and symbols “ai/bi” the relative abundance of the

ith taxon or functional feature in the two samples, respectively. R

package “vegan” version 2.6-4 (Oksanen et al., 2022) was used in

the calculation.

HD =

√

√

√

√

n
∑

i=1

(√
ai −

√
bi

)2

2
(2)

Three types of principal coordinates analyses (Legendre

and Legendre, 2012) (PCoA) were conducted per sample

type per feature type, to explore the differences in feature

composition among different groups: (i) that based on all the

100 samples divided into 6 groups; (ii) that based on 40

saliva male samples divided into complementary groups from

two dimensions (smokers vs. non-smokers; drinkers vs. non-

drinkers); (iii) that similar to ii) based on 40 fecal male samples.

Additionally, 48 analysis of similarity (ANOSIM) tests were

performed to evaluate whether the difference between groups was

significantly distinguishable from the difference within groups.

This encompassed four distinct categories per sample type (2) per

feature type (6): i) between male students and female students;

ii) between male laborers and male students, iii) between male

drinkers andmale non-drinkers; and iv) betweenmale smokers and

male non-smokers.
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2.4.3 LEfSe analysis based on taxonomic
annotated information

The Linear Discriminant Analysis (LDA) Effect Size (LEfSe)

method (Segata et al., 2011) is utilized to compare saliva or

fecal samples collected from male students with those collected

from male laborers. This approach integrates statistical tests

with linear discriminant analysis to detect species that exhibit

different abundance between the groups and offers both statistical

significance and an estimation of effect size. A species is deemed

differentially abundant between the two groups if the absolute value

of the 10 logarithm of the species’ LDA score exceeds 4.

2.5 Construction of models estimating the
occupation of unknown samples

Twelve Random Forest (RF)-based models were performed

to estimate the occupation of unknown samples for each sample

type and feature type, based on the taxa or functional annotation

information of 80 male samples. This was accomplished using the

R package “randomForest” version 4.7.1 (Liaw and M., 2002). For

the construction of each model, features that were not detected in

at least 10 samples were filtered out, and the count information on

the remaining features was transformed and normalized using a

Bayesian-multiplicative (BM) treatment (Martín-Fernández et al.,

2015) with the R package “zCompositions” version 1.5 (Palarea-

Albaladejo and Martín-Fernández, 2015). In this treatment, the 0

data were replaced by its posterior Bayesian estimate, and the non-

zero counts were proportionally reduced to ensure that the sum of

all feature output values for each sample is 1.

A recursive feature elimination (RFE) process was applied

as follows: i) 100 random forests were generated based on all

taxa or functional features, during which the variable importance

parameter "mean decrease accuracy" was calculated. The taxa or

functional features were then ranked according to the average of

this parameter. ii) The feature with the lowest importance value

was omitted, and another 100 random forests were generated with

the same setting as in step i). iii) Step ii) was repeated until there

was only one feature left, and the “best” model, i.e., the model with

theminimum feature number, achieving the highest accuracy in the

two sample sets, was output. The overall process of the model is

shown in Algorithm 1. The 12 models (2 sample types 6 feature

types) were then compared with each other. The R code (version

4.3.1) for the RFE process is presented in Supplementary File S1

in Data Sheet 2, and the count data for the code is presented

Supplementary File S2 in Data Sheet 3. It should be noted that

samples collected from female students, such as the “FStF” and

“FStS” groups, were omitted in the model construction to exclude

the influence of gender, as shown in the Discussion section.

3 Results

A total of 6.75×1011 base pairs of clean data were identified

after quality control using Trimmomatic, of which 2.28×1011 base

pairs (33.73%) were matched as human genome. Consequently,

362,588,258 non-host clean readswere assembled usingMEGAHIT

across all 100 samples, with 79,816,837 and 282,771,421 in

Input: Composition and grouping information of

each sample

Output: RF-based models estimation occupation

1 Library package “randomForest” and

“zCompositions”;

2 Divide the 40 individuals into training and test

sets with ratio of 7:3;

3 Input basic data of corresponding feature type

4 foreach sample type do

5 Extract basic data of corresponding feature

type;

6 foreach sample type do

7 Extract basic data for the corresponding

sample type;

8 Filter out features not detected in more

than 10 samples and perform BM treatment

for the remaining;

9 Divide the basic data into training and test

sets;

10 Conduct a model “bestmodel” with all

features using function randomForest() in

the training set;

11 Evaluate the accuracy of “bestmodel” in

training (ACC b1 ) and test (ACC b2 ) sets;

12 Set N = the count of the total number of

the remain features in the corresponding

sample type;

13 while N>0 do

14 for i=1:100 do

15 Conduct a template model the N features

using function randomForest() in the

training set;

16 Evaluate the importance of each feature

in the model by setting

“importance=TRUE”;

17 Evaluate the accuracy of each model in

training (ACC i1 ) and test (ACC i2 ) sets;

18 if ACCi1+ACCi2>ACCb1+ACCb2 then

19 Replace “bestmodel” as the current

model;

20 ACCb1 =ACCi1 ;

21 ACCb1 =ACCi2 ;

22 end

23 end

24 Rank the features with the average of the

mean decrease accuracy in the 100

models;

25 N=N -1;

26 Update the data as the combination of the

top N features, i.e., eliminate the lest

valuable feature;

27 end

28 Output the best model of the corresponding

sample type and feature type;

29 end

30 end

Algorithm 1. Conduction of Random Forest-based models.
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TABLE 2 Top taxa annotated in the two types of samples.

Saliva samples Fecal samples

Level Rank Taxon name Proportion Taxon name Proportion

Kingdom 1 Bacteria 85.47% Bacteria 99.86%

2 Archaea 13.96% Viruses 0.12%

3 Viruses 0.39% Archaea 0.02%

Phylum 1 Bacteroidota 26.63% Bacillota 52.48%

2 Proteobacteria 22.50% Bacteroidota 36.51%

3 Bacillota 20.07% Proteobacteria 9.67%

4 Euryarchaeota 13.90% Actinomycetota 0.56%

5 Fusobacteriota 5.52% Chlamydiota 0.26%

Class 1 Bacteroidia 24.04% Clostridia 37.65%

2 Thermococci 13.84% Bacteroidia 36.27%

3 Betaproteobacteria 12.13% Negativicutes 12.12%

4 Bacilli 10% Gammaproteobacteria 8.45%

5 Gammaproteobacteria 8.42% Betaproteobacteria 0.79%

Order 1 Bacteroidales 23.94% Eubacteriales 37.53%

2 Thermococcales 13.78% Bacteroidales 36.27%

3 Neisseriales 11.13% Selenomonadales 7.79%

4 Lactobacillales 8.36% Enterobacterales 7.41%

5 Fusobacteriotales 5.52% Veillonellales 3.39%

Family 1 Prevotellaceae 19.07% Bacteroidaceae 21.17%

2 Thermococcaceae 13.77% Lachnospiraceae 14.93%

3 Neisseriaceae 11.13% Oscillospiraceae 13.30%

4 Streptococcaceae 7.13% Prevotellaceae 11.99%

5 Pasteurellaceae 4.96% Selenomonadaceae 7.79%

Genus 1 Prevotella 15.11% Prevotella 11.59%

2 Thermococcus 13.50% Phocaeicola 10.90%

3 Neisseria 10.57% Bacteroides 10.26%

4 Streptococcus 7.13% Faecalibacterium 8.63%

5 Veillonella 4.41% Megamonas 7.68%

Species 1 Thermococcus nautili 4.81% P. copri 9.27%

2 Thermococcus henrietii 3.72% Faecalibacterium prausnitzii 7.70%

3 Neisseria flavescens 3.63% Megamonas funiformis 6.07%

4 Prevotella melaninogenica 3.46% E. coli 4.41%

5 Haemophilus parainfluenzae 2.77% [Eubacterium] rectale 4.37%

saliva and fecal samples, respectively. Taxonomic and functional

annotations were performed based on these clean reads.

3.1 Annotation information

3.1.1 Taxonomic annotation information
Taxonomic annotation was carried out at seven levels, namely,

Kingdom, Phylum, Class, Order, Family, Genus, and Species.

Supplementary Table S1 in Data Sheet 1 shows the number of taxa

annotated and classified in each sample at each of these levels

and the total number of annotated taxa in all samples. A total of

∼17,000 species (with 243,325,739 reads, 67.11% in all clean reads)

were annotated in all samples. Meanwhile, an average of ∼2,400

species were annotated for each sample and the phenomenonwhere

the average number of detected taxa per sample was much smaller

than the total number in all samples showed in every taxonomic

level lower than kingdom, meaning that the vast majority of the
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FIGURE 1

Taxonomic distribution in all samples. The abundance distribution of taxa detected and annotated in all saliva (A) and fecal (B) samples, at seven

taxonomic levels, namely, from inside out, Kingdom (K), Phylum (P), Class (C), Order (O), Family (F), Genus (G), and Species (S). The ranks of top taxa

are labeled with numbers after the abbreviations of the level, the names and proportions of which are shown in Table 2.

taxa were detected in limited number of samples. For instance,

Clostridium sp. IBUN62F, an unclassified species in the genus

Clostridium, was detected in only 1 sample (MSt17F) with 902

reads. Top taxa at each level in the two types of samples are

presented in Table 2, and the abundance distribution of these

taxa in the two types of samples is shown in Figure 1. It can be

observed that there is an obvious difference between the top taxa

of the of the two sample types. For instance, the Bacteria kingdom

accounted for over 99.5% of fecal samples, while the Archaea

kingdom occupied ∼15% of reads in saliva samples. On each lavel,

the proportion of the dominant taxa in fecal samples was higher

than the saliva ones.

Comparisons between MSt and MLa samples were carried out

based on the distribution of relative abundance on each species

annotated in the two types of samples with process mentioned in

Section 2.3. There were nine and three species met the criteria for

conducting t-tests for saliva and fecal samples, respectively, all of

which produced adjusted P-value of 0.05. Within the other species,

there was one showed significant difference after Bonferroni

correction (adjusted P-value=0.045) between saliva samples of the

two male groups, namely, Lachnoclostridium edouardi. Meanwhile,

for fecal samples, 20 showed significant differences in relative

abundance between the two groups after the Wilcoxon rank sum

test (see Figure 2).

3.1.2 Functional annotation information
Five types of functional annotation methods were applied, and

the number of annotated functional genes and the proportion of

corresponding reads in the total reads are presented in Table 3.

Similar to the taxonomic annotation results, t-tests or Wilcoxon

rank sum tests were carried out based on the relative abundance of

functional features betweenMSt andMLa samples, per sample type

per database, and significant difference was found in 14 features

after Bonferroni correction (adjusted P-value<0.05, see Table 3).

3.2 Diversity analysis between di�erent
groups

3.2.1 Alpha diversity analysis
Based on the relative abundance information achieved in the

above section, Shannon index was calculated per sample per

annotation method, as shown in Figure 3A. Additionally, the male

samples were divided into opposite groups based on whether they

smoke or drink alcohol, as shown in Figure 3B. As mentioned in

Section 2.4.1, 30 times of t-tests or Wilcoxon rank-sum tests were

performed, and the results are shown in Table 4. Regardless of the

annotation method used, the Shannon index distribution of MSt

samples did not differ significantly from that of FSt samples of the

same type. Meanwhile, significant differences were found between

MSt samples with MLa samples based on taxonomic annotation

information, which roughly suggested the possible potential of

taxonomic information in the distinguishing of students from

labouers. Other comparisons did not reveal significant differences,

apart from the contrast between smokers and non-smokers, based

on species annotation information in saliva samples.

3.2.2 Beta diversity analysis
PCoA and ANOSIM were carried out based on Hellinger

distance (HD) calculated after each of the six annotation

methods. The results achieved based on taxonomic annotation

are presented as examples in Figure 4, showing that the fecal

samples can be distinguished from saliva samples, while samples

of the same type can hardly be separated, considering or not
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FIGURE 2

Twenty species exhibiting significant di�erences in relative abundance between MStF (blue) and MLaF (Orange) samples. The boxplots on the left

represent the relative abundance of these species in each sample, from which 400 (20×20) di�erences between the two types of samples were

calculated for each species. The right section displays the medians of these di�erences, along with their 95% confidence intervals. The adjusted

P-values, resulting from the Wilcoxon rank sum tests conducted between the two groups, are presented in the parentheses on the y-axis.

TABLE 3 Functional annotation information.

Annotated Significant features

Database Feature name Type N∗ Proportion∗∗ Method∗∗∗ Feature name P-value†

KEGG KEGG pathway level

3

Saliva 166 58.27% w ko03420 0.0333

w ko03430 0.0115

t ko00240 0.0296

Fecal 161 70.12% w ko03013 0.0011

w ko04141 0.0344

CARD Antibiotic resistance

type

Saliva 27 2.58% -‡ - -

Fecal 27 4.58% - - -

VFDB Virulence Factors Saliva 291 3.90% w VF0126 0.0049

w VF0191 0.0354

w VF0277 0.0311

Fecal 327 5.18% - - -

PHI-base PHI-ID Saliva 2188 10.16% w PHI:128/PHI:6818 0.0048

w PHI:6370 0.0054

Fecal 2145 13.60% w PHI:6612 0.0024

w PHI:7677 0.0336

w PHI:7679 0.0393

BacMet BacMet gene name Saliva 474 4.00% w cdeA 0.0075

Fecal 520 3.41% - - -

∗the number of annotated features; ∗∗the proportion of the annotated reads in the total detected clean reads, i.e., 79,816,837 in saliva samples and 282,771,421 in fecal ones; ∗∗∗the method used

in the comparison: w, Wilcoxon rank-sum test; t, t-test; †The P-values are adjusted through Bonferroni correction; ‡Symbol “-” indicates that no significant difference was found in all features

annotated.

considering lifestyle habits including drinking and smoking.

Similar results can be observed through PCoA based on

information achieved by the other five types of annotation

methods, as shown in Supplementary Figure S1 in Data Sheet 1 and

Image 1. For each annotation method, eight times of ANOSIM

were performed, and the details of each analysis, as well as the

results, are shown in Table 5. It can be observed that for all

annotation methods, if comparing students of different genders,
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FIGURE 3

Shannon indices calculated based on di�erent annotation methods. (A) Distribution of Shannon indices in di�erent sample groups; (B) The

distribution of Shannon indices in male samples, grouped by lifestyle habits and sample types, denoted by letters with subscripts. In the subscript, “S”

represents saliva samples and “F” represents fecal samples, while the letters in normal font represent the specific habits: “S” for smokers, “NS” for

non-smokers, “D” for drinkers, and “ND” for non-drinkers.

the inter-group differences were not significantly higher than the

corresponding inner-group differences (P-value>0.05), indicating

that the compositions of microbiota between male and female

students are similar to each other. Similar results were observed

when comparing male drinkers with non-drinkers or comparing

male smokers with non-smokers. On the other hand, the situation

was exactly the opposite when comparing samples collected from

male students with those frommale laborers, where the inter-group

differences significantly exceeded the corresponding inner-group

ones. This indicates a certain degree of difference in microbial

composition between individuals engaged in these two types of

work, which also suggests the feasibility of further screening high-

quality taxa or features to accurately distinguish between the two

groups of individuals.

3.3 LEfSe analyses based on species
annotation

LEfSe analyses were performed based on the relative abundance

data of saliva or fecal samples between MLa and MSt groups.

As shown in Figure 5, 21 and 9 taxa are differentially abundant

between the two groups in saliva and fecal samples, respectively,

using the evaluation criteria shown in Section 2.4.3.

3.4 Construction of models distinguishing
students with laborers based on species
and functional annotation

All models were constructed and verified with the same

division of training and test sets, which are presented in

Supplementary Table S2 in Data Sheet 1.

3.4.1 Models based on taxonomic annotation at
species level

For saliva samples, 615 species were detected in at least

30 samples and used in the model construction. After 100

times of RF process using all the species (i.e., the first round

of while loop in line 13-27 of Algorithm 1), a model was

constructed with 100% accuracy in both training and test sets.

RFE process was then carried out, resulting in a model based

on three species with the same 100% accuracy. Species used
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TABLE 4 Functional annotation information.

Annotation Sample MLa FSt MLa Male smoker Male drinker

Method Type∗ MSt MSt FSt Male non-smoker Male non-drinker

Taxonomic Saliva 0.0001(w)∗∗ 1(t) 0.0010(w) 0.0480(w) 0.0594(w)

Fecal 0.0038(t) 0.3238(t) 5.0210 × 10(−5) 0.2825(t) 0.5238(t)

KEGG Saliva 1(w) 0.2234(w) 0.0933(w) 0.0751(w) 0.6103(w)

Fecal 1(w) 1(w) 1(w) 0.3855(w) 0.9240(w)

CARD Saliva 1(w) 1(t) 0.9845(w) 0.4161(w) 0.4248(w)

Fecal 0.0613(w) 1(w) 0.2019(w) 0.1503(t) 0.4668(t)

VFDB Saliva 0.4960(w) 1(w) 0.0828(w) 0.3423(w) 0.4828(w)

Fecal 1(t) 1(t) 0.9739(w) 0.7049(w) 0.8736(w)

PHI-base Saliva 1(w) 1(w) 0.0647(w) 0.7868(w) 0.3709(w)

Fecal 1(w) 1(w) 1(w) 0.1647(w) 0.8486(w)

BacMet Saliva 1(w) 1(w) 0.7453(w) 0.4319(w) 0.8238(w)

Fecal 0.3242(w) 0.8595(w) 0.2019(w) 0.7049(w) 0.6557(w)

∗For each annotation method and each sample type, five types of comparison were performed, the two groups are presented in the table header; ∗∗Adjusted P-values for each comparison are

listed with the comparing method labeled in the following parentheses: w, Wilcoxon rank-sum test; t, t-test; Comparisons with P-value<0.05 are labeled red.

FIGURE 4

Principal Coordinate Analysis (PCoA) based on taxonomic annotation. (A) PCoA results based on Hellinger distance calculated within all samples,

each point represents a sample, and the group is denoted by its color. (B) PCoA results based on Hellinger distance calculated within male saliva

samples, each point represents a sample, and the living habits are indicated by its shape (smoking) and color (drinking). (C) Results similar to (B)

within male fecal samples.

in the model are presented in Supplementary Table S3-1 in

Data Sheet 1, and the model is provided as “File_S3_1.Rdata” in

Data Sheet 4.

For fecal samples, on the other hand, 1350 species were

detected in 30 or more samples, which is much higher than the

saliva samples. However, after the first round of while loop in

Algorithm 1, the accuracy of the best model using all the 1,350

species in test set was 83.33%. After RFE process, the best model was

achieved when the number of applied species decreased to 5, the

accuracy of which in both training and test sets was 100%. Species

used in the model are presented in Supplementary Table S3-1 in

Data Sheet 1, and the model is provided as “File_S3_2.Rdata” in

Data Sheet 4.

3.4.2 Models based on functional annotation
Similar construction process was applied based on data

achieved by functional annotation using 5 databases as mentioned

above, resulting in 10 RF models, and the details of such 10

models are presented in Table 6, and features selected in eachmodel

are presented in Supplementary Table S3 in Data Sheet 1. Pathway

annotation data achieved from the KEGG database using fecal
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TABLE 5 Results of ANOSIM.

Comparison

Individual range Groups compared Sample type Method R P-value∗ Method R P-value

within students Males vs. Females Saliva samples Taxonomic -0.0451 0.666 VFDB -0.0258 0.554

KEGG 0.1030 0.146 PHI-base -0.0262 0.575

CARD -0.0197 0.542 BacMet -0.0329 0.580

Fecal samples Taxonomic -0.0016 0.440 VFDB -0.0465 0.640

KEGG -0.0053 0.472 PHI-base -0.0526 0.695

CARD -0.0471 0.711 BacMet -0.0525 0.725

within males Laborers vs. students Saliva samples Taxonomic 0.1323 0.003 VFDB 0.0774 0.002

KEGG 0.0850 <0.001 PHI-base 0.0879 0.004

CARD 0.0658 0.005 BacMet 0.1008 <0.001

Fecal samples Taxonomic 0.0810 0.032 VFDB 0.1256 0.002

KEGG 0.0918 0.011 PHI-base 0.1323 0.002

CARD 0.0734 0.031 BacMet 0.1336 0.004

Drinkers vs. non-drinkers Saliva samples Taxonomic -0.1291 0.900 VFDB -0.1795 0.958

KEGG -0.1565 0.903 PHI-base -0.1839 0.948

CARD -0.1625 0.923 BacMet -0.1733 0.936

Fecal samples Taxonomic -0.0496 0.686 VFDB -0.0459 0.641

KEGG -0.0768 0.752 PHI-base -0.0590 0.710

CARD -0.0719 0.772 BacMet -0.0348 0.567

Smokers vs. non-smokers Saliva samples Taxonomic 0.0512 0.097 VFDB 0.0047 0.378

KEGG 0.0130 0.296 PHI-base 0.0164 0.268

CARD 0.0061 0.361 BacMet 0.0194 0.245

Fecal samples Taxonomic 0.0008 0.440 VFDB 0.0671 0.057

KEGG 0.0818 0.037 PHI-base 0.0812 0.053

CARD 0.0497 0.115 BacMet 0.0726 0.060

∗The P-value in ANOSIM is obtained by comparing the observed test statistic (R) with R distribution generated by random permutations of the original data. The number of permutations is set

as 999 in our research, meaning that the precision of P-value is 0.001, and the symbol “<0.001” means that none of the 999 permutations achieved R greater than the observed one. Comparisons

with a P-value<0.05 are indicated in red bold font.

samples can provide the best accuracy in training and test sets with

the least number of features. In such a model, a single pathway is

included, i.e., “ko04145” or Phagosome, the cellular process that

involves engulfing and degrading foreign particles, such as bacteria

and viruses.

4 Discussion

In this investigation, we utilized metagenomic sequencing

data to compare and evaluate the variation in the composition

of saliva and fecal microbiota among different groups based on

multiple perspectives, including gender, occupation, and smoking

or drinking habits. Our findings indicate that there is no significant

difference in the oral and gut microorganisms among student

groups considering the two genders, regardless of the type of

annotation (taxonomic or functional) or the analysis methods used

(α diversity, PCoA, or ANOSIM). However, we observed that

smoking and drinking habits can lead to distinguishable variations

in the distribution of oral and gutmicrobiota, which can be detected

using some of the methods employed in this study. Additionally,

we found that within the male samples, the two occupations we

focused on, students and laborers, can be differentiated based on

information about their oral or gut microbiota, using each of the

aforementioned methods. To further analyze this distinction, we

used recursive feature elimination processes with random forest

classifiers and successfully developed 12 models that accurately

distinguish individuals with the two occupations, the best accuracy

of which was 100% in both training and test sets. Our findings

provides a preliminary support of the potential application value of

microbial information in occupation or living habit discrimination

and estimation.

As mentioned in the Introduction section, compared with

traditional amplicon-based microbial sequencing methods, the

metagenomic sequencing method applied in this study can reflect

the distribution of microorganisms, hosts, and environmental

factors in specific samples from a more comprehensive and

macroscopic perspective. For instance, the Archaea kingdom
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FIGURE 5

Results from LEfSe analyses comparing the MLa and MSt groups. (A, B) Depict the taxonomic branching diagram in saliva (A) and fecal (B) samples,

with taxa having an absolute value log10LDA score greater than 4 labeled. Taxa are colored blue if they are more abundant in MLa samples or orange

if they are more abundant in MSt samples. (C, D) Show the log10LDA score of di�erentially abundant taxa in saliva (C) and fecal (D) samples.

TABLE 6 RF models constructed based on taxonomic and functional annotation.

Annotation All feature in > 30 samples Best model Output information

Method Type N ACCb1 ACCb2 N ACCb1 ACCb2 Species Model∗

Taxonomic Saliva 615 100% 100% 3 100% 100% Supplementary Table S3-1 _1

Fecal 1,350 100% 83.33% 5 100% 100% Supplementary Table S3-1 _2

KEGG Saliva 120 100% 91.67% 19 100% 100% Supplementary Table S3-1 _3

Fecal 129 100% 91.67% 1 100% 100% Supplementary Table S3-1 _4

CARD Saliva 23 100% 83.33% 18 100% 91.67% Supplementary Table S3-1 _5

Fecal 25 100% 83.33% 8 100% 91.67% Supplementary Table S3-1 _6

VFDB Saliva 179 100% 91.67% 17 100% 91.67% Supplementary Table S3-2 _7

Fecal 195 100% 75% 7 100% 91.67% Supplementary Table S3-2 _8

PHI-base Saliva 943 100% 91.67% 11 100% 91.67% Supplementary Table S3-2 _9

Fecal 1,139 100% 83.33% 3 100% 83.33% Supplementary Table S3-2 _10

BacMet Saliva 255 100% 91.67% 7 100% 91.67% Supplementary Table S3-2 _11

Fecal 337 100% 75% 6 100% 83.33% Supplementary Table S3-2 _12

∗Best models are provided as 12 .Rdata files named as “File_S3_X.Rdata” in Data Sheet 4.

occupied ∼15% in all annotated reads of the saliva samples

and the two species Thermococcus nautili and Thermococcus

henrietii of genus Thermococcus ranked the top two species in

those samples, which cannot be revealed by traditional 16S rRNA

sequencing without extra design of primers (Chaudhari et al., 2020;

de Andrade et al., 2020). Within the Bacteria kingdom, the top
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taxa are nearly identical to previous studies (Chaudhari et al.,

2020; de Andrade et al., 2020; Ma et al., 2021). Throughout the

study, instead of analyzing themicrobial information directly based

on the reads data, we considered the microbiome information as

compositional and employed multiple methods considering the

relative abundance information of the annotated sequences. These

methods include the Shannon index, Hellinger distance, the LEfSe

analysis, and the BM treatment during the model construction

process. This approach is taken due to the nature of sequencing

instruments, which can deliver reads only up to the capacity of

the instrument. Therefore, the sequencing results represent a fixed-

size, random sample of the relative abundance of the molecules

in the underlying ecosystem, and the number of reads obtained is

irrelevant, as discussed in Gloor et al. (2017).

A variety of factors shaped the personal specificity and stability

of oral and fecal microbiota community in adults (Martino

et al., 2022), including gender, age, genetic background, living

environment, health status, medicine contraction, and living habits

such as drinking and smoking. When constructing occupation

distinguishing models, the influence of gender is excluded by

eliminating female student samples due to the absence of samples

collected from female labouers. Although there was no significant

difference found between the MSt and FSt samples within the

same sample type, regardless of the annotation method or diversity

type (α or β) compared, it is not sufficient to conclude that

the correlation between occupation and microbial information

is unaffected by gender. It has been proven by multiple studies

showing that the microbial composition differed between the

two genders (Richardson et al., 2019; Nearing et al., 2020).

Most students come from the same department and live in the

same campus for a long time, resulting in similar eating habits

and living rhythm. Studies have shown that the transmission

of the oral microbiome occurred largely horizontally and is

enhanced by the duration of cohabitation. There was a significant

amount of strain sharing among individuals living together,

with median strain sharing rates of 12% and 32% for the

gut and oral microbiomes, respectively. And the time since

cohabitation is positively correlated with strain sharing in the oral

microbial community (Valles-Colomer et al., 2023). Meanwhile,

the differences between smokers/drinkers and non-smokers/non-

drinkers were omitted, based on the fact that significant difference

between different genders/habits was not found in almost all related

tests (see Figure 3, Table 5). However, it is found in multiple

studies (Capurso and Lahner, 2017; Lin et al., 2020; Jia et al.,

2021; Liao et al., 2022; Yu et al., 2024) that all these factors can

affect the structure of oral and gut microbiota. For instance, Yu

et al. (2024) analyzed saliva microbial information of 43 Korean

participants through 16S rRNA sequencing, finding that specific

microorganisms would distribute differently between individuals

with different smoking or drinking habits. The difference between

our results may be caused by the relatively small sample size in our

study and the difference between sequencing methods and health

conditions of the samples.

The results of ANOSIM showed that there were significant

differences between male students and male laborers in saliva

and fecal samples, no matter which annotation method is used.

This provides theoretical support for the subsequent construction

of classification models. Occupation is related to multiple of the

aforementioned factors, affecting microbiota community, and the

variations in occupations can be attributed to the discrepancies in

the internal and external environments of microbial communities

that are influenced by these factors. For example, the best model

based on functional annotation method (KEGG database with

fecal samples) included only one feature, which is related to the

innate immune system. A closer look was taken to the relative

abundance of the pathway in the total reads annotated in the KEGG

database, as presented in Figure 6. The concentration of the relative

abundance of this pathway in the samples from students was found

to be limited to a narrow range. However, in the case of laborers, the

relative abundance was distributed differently. Specifically, it was

significantly higher compared with the students in the majority of

samples (16 out of 20) but very low or even undetectable in the

other four samples. This suggests that the laborers may be exposed

to a more complex environment. Similarly, the three species

involved in the taxonomic-saliva model, [Eubacterium] brachy,

Acinetobacter baumannii, and [Eubacterium] infirmum, are usually

related to oral diseases such as periodontitis or other health issues if

detected in saliva (HOLDEMAN et al., 1980; CHEESEMAN et al.,

1996; Peleg et al., 2008); the difference between their distribution

in samples of the two occupations may also suggest the difference

in environmental complexity between two occupational individuals

and the resulting differences in health status.

In the construction of distinguishing models, we incorporated

a preliminary step of eliminating features that were not observed in

more than 25% of the tested samples. This step was implemented

before the RF processes, with the aim of identifying more robust

and universally applicable features for differentiating or predicting

occupations.Nevertheless, this action may have rendered specific

potentially valuable features ineffective in advance. For instance,

20 species showed significant difference between MStF and MLaF

samples after the Wilcoxon test, as shown in Figure 2, within

which the species Streptomyces sparsogeneswas detected in 17 MStF

samples but not identified in any fecal samples from laborers,

while 14 other species (Flaviramulus basaltis, Pseudidiomarina

aestuarii, Alteriqipengyuania lutimaris, Shimia sediminis, Gordonia

sedimidis, Microbacterium arborescens, Desertihabitans brevis,

Thermosipho globiformans, Cymbidium mosaic virus, Mammalian

orthorubulavirus 5, Chilli veinal mottle virus, Fusarium oxysporum,

Aleyrodidae environmental sample, Arthropoda environmental

sample, and Pseudomonas sp. 2 2015) were not present in anyMStF

samples and were detected in at least 15 MLsF samples. However,

all of these species occupied only∼0.0025% in the total abundance

of fecal samples.

When applying taxonomic annotated information, bothmodels

based on saliva and fecal samples can offer 100% discriminative

power, while the saliva model is formed by less features. However,

the situation is reversed when constructing functional-annotation-

based models. The reason for this may be that oral microbiota has

been found to be more closely affected by the impact of external

factors such as dietary, compared with gut microbiota (Valles-

Colomer et al., 2023). Thus, the microbial information in saliva can

be a better reflection of the environmental microbial community,

resulting in a more diverse taxonomic distribution, as shown in

Figure 1, and a better probability of showing difference between the
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FIGURE 6

Relative abundance of pathway ko04145 in MStF and MLaF samples.

two occupations is based on the taxonomic information as shown in

Figure 3. After the selective effect of the digestive tract environment

of the host onmicroorganisms, we observed a higher concentration

of microbiota in the fecal samples. The dominant taxa were more

abundant, while the species that showed significant differences

between the two groups were less prevalent, as mentioned earlier.

As a result, the overall difference of taxa composition betweenMStF

and MLaF samples was less than that between MStS and MLaS

samples. Functional factors, such as various reactions activated by

the host due to microbial entry, as well as the way the responds of

microbiota to the environment, have a significant impact on the

composition of the gut microbiome. This means that there is a

greater likelihood of observing functional annotated genes in fecal

samples, finding distinct features.

When working with microbial data that have an extremely high

number of features compared with the number of samples, we

often encounter challenges related to overfitting (i.e., the problem

when a model learns the training data too well and fails to

generalize well to unseen data) and the “curse of dimensionality”

(i.e., the phenomenon where the sample complexity of a learning

algorithm increases exponentially with the number of features

in the dataset). This emphasizes the importance of employing

feature elimination as a solution. Recursive feature elimination

(RFE) is a popular method for reducing the dimension of datasets

while retaining relevant features. It recursively removes the least

important features until a desired feature subset size is reached.

RFE algorithm iteratively selects a subset of features and then

measures their importance using a monomer classifier. The least

important features are recursively removed from the dataset until

a desired feature subset size is reached. By recursively removing

the least important features, RFE can significantly reduce the

dimensionality of the dataset while retaining relevant information

for the target variable. This can improve the performance and

computational efficiency of machine learning algorithms, reduce

overfitting, and improve generalization accuracy. Random forest

(RF) is selected as the monomer classifier used in the RFE process

when conducting the models. RF algorithm combines the ideas

of bootstrap aggregating (bagging) and random feature selection,

which is recognized as one of the best performing classifiers in

the field of microarray analysis and other high-dimensional data

(Li et al., 2021). The advantages of analyzing microbial data based

on random forest have gradually emerged in forensic applications,

including the estimation of postmortem interval (PMI) (Liu et al.,

2020) and the time since deposition (TsD) (Smith et al., 2021).

This study aimed to investigate the potential use of

microorganisms in identifying occupations in forensic science,

which can be enhanced in several ways. First, the sample size

was relatively small and focused on a single occupational group.

To improve the validity of our findings, future research should

encompass a larger sample size and individuals from various

occupational groups within the same area, and even within the

same family. Having a larger dataset would also be beneficial

for studying the patterns of microbiota transmission between

individuals on a larger scale (Brito et al., 2019; Valles-Colomer

et al., 2023). Additionally, we utilized a limited number of

annotation methods in this primary study. Applying the model

construction approach introduced in section 2.5 to the data

obtained from other annotation methods may be beneficial, such

as read-based taxa annotation methods like Kraken2 (Wood

et al., 2019), as well as various functional databases, including

gene ontology (GO) database (Ashburner et al., 2000), eggNOG

database (Powell et al., 2014), Pfam database (Mistry et al., 2021),

SwissProt database (Bairoch, 1996), Carbohydrate-active enzymes

(CAZy) database (Cantarel et al., 2009), or Cytochrome P450

Engineering (CYPs) database (Fischer et al., 2007). Furthermore,

fresh saliva and fecal samples were collected and tested. However,

in complex forensic settings, saliva often appears as stains and

feces can exist in different forms, making it challenging to obtain
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fresh test materials. Therefore, future research should consider

extracting and testing samples from simulated actual cases to

further evaluate the applicability of oral and gut microbiota in

forensic investigations.
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