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Background: Whole-genome sequencing (WGS) has contributed significantly 
to advancements in machine learning methods for predicting antimicrobial 
resistance (AMR). However, the comparisons of different methods for AMR 
prediction without requiring prior knowledge of resistance remains to 
be conducted.

Methods: We aimed to predict the minimum inhibitory concentrations (MICs) of 
13 antimicrobial agents against Acinetobacter baumannii using three machine 
learning algorithms (random forest, support vector machine, and XGBoost) 
combined with k-mer features extracted from WGS data.

Results: A cohort of 339 isolates was used for model construction. The average 
essential agreement and category agreement of the best models exceeded 
90.90% (95%CI, 89.03–92.77%) and 95.29% (95%CI, 94.91–95.67%), respectively; 
the exceptions being levofloxacin, minocycline and imipenem. The very major 
error rates ranged from 0.0 to 5.71%. We  applied feature selection pipelines 
to extract the top-ranked 11-mers to optimise training time and computing 
resources. This approach slightly improved the prediction performance and 
enabled us to obtain prediction results within 10  min. Notably, when employing 
these top-ranked 11-mers in an independent test dataset (120 isolates), 
we achieved an average accuracy of 0.96.

Conclusion: Our study is the first to demonstrate that AMR prediction for A. 
baumannii using machine learning methods based on k-mer features has 
competitive performance over traditional workflows; hence, sequence-based 
AMR prediction and its application could be  further promoted. The k-mer-
based workflow developed in this study demonstrated high recall/sensitivity and 
specificity, making it a dependable tool for MIC prediction in clinical settings.
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1 Introduction

Multidrug-resistant (MDR) Acinetobacter baumannii strains have 
been reported by the World Health Organization as one of the most 
serious global threats to human health. Approximately 45% of 
A. baumannii isolates worldwide are classified as MDR, showcasing a 
notable ability for the acquisition of antimicrobial resistance (AMR) 
determinants and clonal transmission (De Oliveira et al., 2020); in 
China, this rate has reached 70%, from 2011 to 2020 according to the 
most recent studies (Chen et al., 2022; Yan et al., 2022; Chen et al., 
2023). Few antibiotic agents show activity against A. baumannii, 
which significantly increases the mortality rates of infected individuals 
(Hu et  al., 2023). From a clinical perspective, resolving MDR 
A. baumannii infection, reducing the time for optimal antimicrobial 
therapy, and preventing its further spread are critical for improving 
patient outcomes (Antimicrobial Resistance, 2022); thus, rapid and 
accurate AMR diagnostic methods are urgently required.

Traditional antimicrobial susceptibility testing (AST) relies on 
microbial culture, which is time-consuming (at least 36 h) and only 
viable for cultivable bacteria (Opota et al., 2015). Recently, modern 
molecular assays have accelerated the AST process by reducing the 
number of repetitive culture steps. With the growing accessibility of 
bacterial whole-genome sequencing (WGS), the cost and time of 
sequencing have decreased, and accuracy has improved (Nguyen et al., 
2023). WGS provides high-resolution for phenotyping and 
surveillance, enabling the assessment of phylogenetic relationships, 
investigations of outbreaks, and predictions for virulence and 
epidemicity (Rodrigues et al., 2021; Hernandez-Gonzalez et al., 2022). 
By analysing, retrieving, and re-analysing existing sequences, WGS for 
AMR provides full insight into resistance genes present in a larger 
number of strains and characterisation of mutations that might confer 
resistance (Cooper et al., 2020). The increase in sequence data for well-
characterised isolates has facilitated the development of computational 
frameworks for automated AMR prediction using machine-learning 
methods (Humphries et al., 2023). The most common approach for 
predicting AMR phenotypes from WGS data relies on meticulously 
curated AMR databases and precisely defined AMR genes (Stoesser 
et al., 2013; Bradley et al., 2015; Pesesky et al., 2016; Eyre et al., 2017). 
Pre-existing knowledge is indispensable in obtaining reliable results 
(Maguire et al., 2019). A limited number of studies have focused on 
applying WGS and AMR phenotype data without prior information 
to train machine-learning models for AMR prediction of 
non-typhoidal Salmonella, Escherichia coli, and Klebsiella pneumoniae 
(Nguyen et  al., 2018; Maguire et  al., 2019; Nguyen et  al., 2019; 
Humphries et al., 2023; Wang et al., 2023). Although this reference-
free approach necessitates a substantial volume of genomes, it is 
unbiased and thus facilitates the detection of novel genomic features 
implicated in AMR (Drouin et al., 2016). For other ESKAPE pathogens 
(Rice, 2008), comparisons of different machine-learning methods for 
AMR prediction based on WGS data without requiring prior 
knowledge of mechanisms or mutations for resistance remain to 
be performed.

To this end, our study aimed to evaluate the random forest (RF), 
support vector machine (SVM), and extreme gradient boosting 
(XGBoost) models to predict the phenotypic susceptibility of 
A. baumannii to 13 antimicrobial agents. We used nucleotide 11-mers 
extracted from each genome and the minimum inhibitory 
concentrations (MICs) of each antimicrobial agent as input features 

to train the models. Then, a feature selection pipeline was developed 
to identify significant AMR phenotype determinants from the models 
without any prior information. In many cases, the models that used 
only a few important features selected by our feature selection pipeline 
obtained better prediction outcomes, with lower computational 
requirements, less computational resources needed, and significantly 
shorter training time than those using all 11-mers features. Application 
of the top-ranked 11-mers models to an additional 120 isolates used 
as an independent test dataset also achieved good performance. In our 
new scheme, we obtained the predicted MICs of 13 antimicrobial 
agents against A. baumannii in 10 min and showed competitive 
performance compared to traditional workflows.

2 Materials and methods

The present study was reviewed and approved by the Research 
Ethics Board at Peking University People’s Hospital (Beijing, China). 
Written informed consent was not required because the medical 
records and patient information were anonymously reviewed 
and collected.

2.1 Bacterial isolates and AST

We used data from the Chinese Antimicrobial Resistance 
Surveillance of Nosocomial Infections (CARES, 2016 and 2018, 
involving 14 teaching hospitals from nine central cities of China) (Liu 
et al., 2020; Yin et al., 2021). A total of 339 non-duplicate A. baumannii 
isolates collected mainly from bloodstream infections and hospital-
acquired pneumonia were included in this study. To further evaluate 
the developed model, we utilised an additional testing dataset that 
included 60 A. baumannii isolates collected randomly from the 
Chinese Meropenem Surveillance Study (CMSS) (2016 and 2018), 
Peking University People’s Hospital (PKUPH) (2017 to 2019), and 
CARES (2020 and 2021), which involved 11 central cities of China. 
For more extensive data from public sources, we also screened the 
PAThosystems Resource Integration Center (PATRIC) database 
(Wattam et al., 2017) and collected 60 A. baumannii isolates with raw 
sequencing data and the most extensive AST data based on the 13 
antimicrobial agents that we trained. All 120 isolates were completely 
independent of the dataset used for model construction. AST was 
performed on all A. baumannii isolates using the agar dilution method 
for 11 antimicrobial agents, including imipenem (IPM), meropenem 
(MEM), cefepime (FEP), ceftazidime (CAZ), cefoperazone-sulbactam 
(CSL), piperacillin-tazobactam (TZP), amikacin (AMK), ciprofloxacin 
(CIP), levofloxacin (LVX), minocycline (MIN), and trimethoprim-
sulfamethoxazole (SXT). The MICs of colistin (CST) and tigecycline 
(TGC) were determined by the broth microdilution method. The 
susceptible, intermediate, and resistant categories were determined 
according to the Clinical and Laboratory Standards Institute 
guidelines 2022-M100.1 Susceptibility to CSL was interpreted based 
on the MICs of cefoperazone for Enterobacteriaceae (Ku and Yu, 
2021), and susceptibility to TGC was interpreted according to the US 

1 http://www.clsi.org
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Food and Drug Administration (FDA) criteria as susceptible: ≤ 
2 mg L−1, resistant: ≥ 8 mg L−1 (Jo and Ko, 2021). Escherichia coli ATCC 
25922 and Pseudomonas aeruginosa ATCC 27853 were used as quality 
control strains.

2.2 WGS and dataset preparation

Genomic DNA was extracted from pelleted bacteria using DNA 
purification kits (QIAGEN, Hilden, Germany), and paired-end 
sequencing was performed using Illumina NovaSeq 6,000 (Illumina 
Inc., CA, USA). Readfq V82 was used to evaluate the sequencing 
reading quality according to the Phred scoring system. After using 
fastp (version 0.20.1) (Chen et al., 2018) and SPAdes (version 3.13.0) 
(Prjibelski et al., 2020) to quality-trim and assemble the resulting 
FASTQ files, we obtained clean whole-genome sequences and used 
QUAST (version 5.10.0) (Mikheenko et al., 2018) for genome assembly 
evaluation and comparison. According to the Institut Pasteur MLST 
protocols and database,3 multilocus sequence typing (MLST) was 
characterised for each A. baumannii isolate. We  utilised KMC 3 
(Kokot et al., 2017) to extract 11-mers from FASTQ files. In this study, 
the parameter k = 11 was used due to computational memory 
limitations. We used Pandas (version 1.0.5) (Wes, 2011) to build a 
matrix in which the k-mer counts in the columns were treated as 
unique features for each genome in a row. Rather than directly 
dividing the genomes into susceptible or non-susceptible, MIC labels 
corresponding to each genome were converted to one-hot codes using 
LabelBinarizer (scikit-learn, version 0.23.1) (Pedregosa et al., 2011). 
This allowed us to employ the OneVsRest classifier, which offers high 
interpretability and the opportunity to gain insights into each class by 
inspecting its corresponding categories. Finally, the two matrices were 
used for each antibiotic as input data for the subsequent machine-
learning process.

2.3 Model generation

All data were shuffled into 80% training and 20% testing datasets. 
To select the best model for each antibiotic, we tested RF (Breiman, 
2001), SVM with three kernels (linear, polynomial, and RBF) (Cortes 
and Vapnik, 1995), and XGBoost (Chen et al., 2016). For XGBoost, 
the Python implementation (version 1.4.0) was used during the 
training phase; for the remaining methods, we utilised Scikit-learn 
(version 0.23.1). The accuracy and recall/sensitivity of the models 
were tested using ten-fold Stratified Shuffle-Split Cross-Validation. For 
each cross-validation, the training and testing data partition was 
randomly determined. After ten rounds (folds) of training, the best-
performing model was selected, and the final outcome was determined 
by calculating the average of the results.

The comparison results can be  found in the Supplementary 
Materials. Since RF outperformed the other methods with reasonable 
computational complexity, we used the built-in feature importance 
function to obtain the importance scores of each feature. The top-500 

2 https://github.com/cjfields/readfq

3 http://www.pasteur.fr/mlst

feature importance scores were then arranged to generate an overall 
importance feature for each antibiotic. Subsequently, the top-ranked 
11-mers features were adopted for independent model training and 
validation, as described above. The analysis scripts are available at 
https://github.com/yuegao-pkuhsc/aba_mic_prediction.

2.4 Model evaluation and interpretation of 
results

According to FDA requirements for automated MIC measuring 
device standards (Administration, U.S.F.a.D, 2009), the models’ 
accuracy was measured by their capability to predict the correct MIC 
within ±1 of the two-fold dilution step of the laboratory-derived 
MIC. Termed essential agreement (EA) and category agreement (CA), 
receiver operating characteristic (ROC) curves, and area under the 
curve (AUC) values were also used to judge the predictive performance 
of the models. For the final classification results based on clinical 
breakpoints, the recall/sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), major error (ME), and very 
major error (VME) were also calculated to evaluate model 
performance as follows: Recall/Sensitivity = TP/(TP + FN); 
Specificity = TN/(TN + FP); PPV = TP/(TP + FP); NPV = TN/
(TN + FN); ME = FP/(TN + FP); VME = FN/(TP + FN), where TP, FN, 
TN, and FP represent true positives, false negatives, true negatives, 
and false positives, respectively (Wang et al., 2023).

3 Results

3.1 Overview of genome and AST features

The workflow of this study is illustrated in Figure  1. The 
A. baumannii strains were mainly isolated from bloodstream 
infections (109/339, 32.2%) and hospital-acquired pneumonia cases 
(230/339, 67.8%) from 14 teaching hospitals in nine central cities, 
which represents four regions of China: the Northern Region 
(including Beijing, Tianjin, Jinan, and Shenyang); Eastern Region 
(Hangzhou); Central Region (Xi’an, Wuhan, and Changsha); and 
Southern Region (Guangzhou). After using WGS to obtain the DNA 
sequences of all isolates, over 90% of reads per genome surpassed the 
standard threshold (Q30), indicating the high quality of the 
sequencing reads. All assembly statistics are shown in 
Supplementary Table S1. Forty different sequence types (STs) were 
then identified in the model construction dataset, with ST2 (255/339, 
75.2%) being the most abundant. The geographical and temporal 
distributions are shown in Figure 2. For the independent test dataset, 
120 isolates were randomly collected from CMSS (2016 and 2018, 18 
isolates), PKUPH (2017 to 2019, 12 isolates), CARES (2020 and 2021, 
30 isolates), and public data sources (before 2017, 60 isolates). These 
isolates had significant differences in geographic and temporal 
distribution compared to the 339 isolates used for model construction 
to simulate the application of the abovementioned models for AMR 
surveillance. However, ST2 was still the most abundant (84/120, 
70.0%), which is in line with previous studies that show that ST2 is 
widely spread globally and represents the predominant clone of MDR 
A. baumannii (Hamidian and Nigro, 2019; Li et al., 2023). This is 
especially true for China, where ST2 affects a high proportion of 
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FIGURE 1

Workflow of this study. MIC data and k-mer count files of 339 isolates were used to train and cross-validate the three main machine-learning 
algorithms. The built-in feature importance function was utilised to rank the features for independent tests. The workflow was created with BioRender.
com.
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hospitalised patients and contributes to significant mortality rates (Yu 
et al., 2021; Liu et al., 2022; Wei et al., 2023). Specimen collection, 
sampling location, accession number, and other details of all 459 
isolates can be found in Supplementary Table S2. The 11-mer features 
derived from the genome sequences of the model construction dataset 
(339 isolates) were used for machine learning. Theoretically, there are 
411 = 4,194,304 features. Upon excluding the 11-mer features absent 
from our dataset, the overall feature count amounted to 2,097,076.

The isolates (n = 339) were tested for resistance to 13 antimicrobial 
agents using agar dilution and broth microdilution methods (TGC and 
CST). Of all antimicrobial agents, only data for four SXT were missing. 
Considering the AST phenotypes, the percentages of non-susceptibility 
were found to be 80.83, 80.83, 4.72, 6.19, 82.01, 81.12, 79.94, 82.01, 70.50, 
81.71, 80.24, 56.34, and 66.57% for IPM, MEM, CST, TGC, FEP, CAZ, 
CSL, TZP, AMK, CIP, LVX, MIN, and SXT, respectively. For the 
independent test dataset, 13 antimicrobial agents were also evaluated for 
the 60 isolates; for the other 60 isolates, MIC values were downloaded 
from the PATRIC database. Detailed AST results of all 459 isolates are 
shown in Supplementary Table S3. The model construction dataset was 
split randomly into training (n = 271) and testing (n = 68) sets using an 8:2 
ratio, which was guided by the principles of stratified sampling. To 
guarantee that all MICs of all antimicrobial agents could be effectively 
trained as separate categories within the training set, we used the Stratified 
ShuffleSplit software to generate stratified randomised folds while 
maintaining the proportion of samples for each MIC level.

3.2 Model performance for the MIC 
prediction of Acinetobacter baumannii

After performing WGS and AST on all isolates to obtain 11-mer 
features and MIC data, the overall performance of the RF, SVM 

(linear, polynomial, and RBF), and XGBoost models was evaluated 
based on the two matrices obtained for each antimicrobial agent. ROC 
curves and AUC values indicate the efficacy of machine-learning 
models (Fawcett, 2006). In this study, RF performed better than the 
other models, with the average cross-validation results for the 13 
antimicrobial agents were all ≥0.945 (Figure  3A; 
Supplementary Figures S1–S13; Supplementary Table S4).

The specific best prediction and standard results for each 
antimicrobial agent are shown in Supplementary Tables S5–S30. 
We used the average results and 95% confidence interval (CI) of 
ten cross-validations of EA, CA, recall/sensitivity, specificity, PPV, 
NPV, ME, and VME to measure the best model’s performance 
(Table  1). Although the data structure and volume of some 
antimicrobial agents (such as CST and TGC) were unbalanced, the 
CAs for all antimicrobial agents exceeded 93%. With the exception 
of MIN, the EAs for all antimicrobial agents exceeded 90%, which 
met the acceptable percentage of the FDA standards 
(Administration, U.S.F.a.D, 2009). Figure  3B compares the 
prediction results of the best models, and Figure 3C shows the 
average accuracy of the best models for each MIC of the 13 
antimicrobial agents. The models tended to have lower accuracies 
when few genomes represented the MIC. Overall, the models 
exhibited robustness for both non-susceptible and susceptible 
MICs. Furthermore, the recall/sensitivity was >91% and the 
specificity was >97% for all antimicrobial agents. MEs were 
identified as susceptible genomes to which non-susceptible MICs 
were inaccurately assigned, whereas VMEs referred to 
non-susceptible genomes to which susceptible MICs were 
inaccurately assigned using the machine-learning models. The 
standards stipulated by the FDA for automated systems prescribe 
an ME rate of ≤3% and an upper confidence limit of ≤5.96% (at 
95% confidence level) for VME rates. Nine of the 13 antimicrobial 

FIGURE 2

Sequence types (STs) of the 339 isolates collected in 2016 and 2018, according to the Institut Pasteur MLST scheme. A total of 40 STs were identified, 
and the STs of 24 isolates were unknown; ST2, ST23, and ST25 were the most abundant in all isolates.
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agents (MEM, CST, TGC, CAZ, CSL, TZP, AMK, CIP, and SXT) 
had acceptable ME and VME rates (Table 1). Since the RF model 
demonstrated resilience against diverse mechanisms of resistance, 
FEP had slightly higher VME rates, while MEM, LVX and MIN had 
lower accuracies, probably because of MICs less than, equal to, or 
greater than a certain value, which represent a range of MICs 
defined as discrete values in the machine learning process. We also 
noticed that the ME and VME rates of CST and TGC were as low 
as 0%, this might be due to the fact that naturally collected isolates 
resistant to tigecycline and colistin are relatively infrequent in 
clinical settings and even public sources, resulting in a dataset with 
a lesser quantity of resistant isolates. We expect the improvements 
in both ME and VME rates with a corresponding expansion in the 
collection of genomes and a greater balance of the dataset.

3.3 Top-ranked 11-mers as predictive 
features

The developed models exhibited predictive capabilities. However, 
the presence of high-dimensional feature vectors may potentially 
impact machine learning performance and increase execution time 
(Wang et al., 2023). We further analysed the best models of the 13 
antimicrobial agents and used the feature and importance function 
estimator integrated within RF and SVM-linear to summarise and 
rank the importance of the 11-mers features. The top-ranked 11-mers 
features were selected for each antimicrobial agent according to the 
importance scores (Supplementary Table S31). Subsequently, RF was 

applied to construct prediction models for each agent utilising the 
MIC dataset and top-ranked 11-mer features.

The models using the top-ranked 11-mers features 
demonstrated good performance, similar to those using over two 
million 11-mers features as input, with all average AUC values 
were > 0.9 (figures not shown). A detailed comparison of the means 
and 95% CIs for EA, CA, VME, and ME is shown in Figure 4. 
Unexpectedly, even a small improvement was observed using the 
top-ranked 11-mers features. The VME rate of FEP was lower than 
that observed when using all 11-mers, to the extent that it satisfied 
FDA standards; The average EA and CA of the model using the 
top-ranked 11-mers were 93.82 and 97.17%, respectively, while the 
model using all 11-mers showed averages of 94.14% for EA and 
97.14% for CA. Given that the top-ranked 11-mer features 
performed well on the 339 isolates collected in 2016 and 2018, an 
additional dataset comprising 120 isolates was used as an 
independent test. The models using the top-ranked 11-mers 
achieved an average prediction accuracy of 0.96 across the 13 
antimicrobial agents within ±1  in the two-fold dilution step, 
indicating the robust performance of these models. More detailed 
information can be found in Supplementary Table S32.

These findings imply that the top-ranked 11-mers are crucial 
components for MIC prediction and could potentially outperform 
models that utilise all 11-mers features. Altogether, the 
top-ranked 11-mers models are useful for improving MIC 
prediction by significantly optimising the training time and 
computing resources and may provide valuable insights for 
future research.

FIGURE 3

(A) Median and mean AUC values of five models for the 13 antimicrobial agents. In each box plot, the whiskers represent the maximum and minimum. 
The boxes represent the first and the third quartiles. The black line represents the median, and the red line represents the mean. (B) Comparison of 
prediction results of the best models for the 13 antimicrobial agents. The bars show the rate of true resistance, false resistance, true susceptibility, and 
false susceptibility. The broken line depicts the predictive accuracy. The grey shadow surrounding the line represents the 95% confidence interval. 
(C) Average accuracies within ±1 in the two-fold dilution step. The values shown in each cell are the number of genomes with that MIC for a given 
antibiotic; ‘NA’ indicates no isolates under the specific MIC level. The thick green line indicates the MIC breakpoints for ‘susceptible’, and the thick red 
line indicates the MIC breakpoints for “resistant.” The accuracy is depicted by colour, with light blue being the most accurate and orange being the 
least accurate. IPM, imipenem; MEM, meropenem; CST, colistin; TGC, tigecycline; FEP, cefepime; CAZ, ceftazidime; CSL, cefoperazone-sulbactam; 
TZP, piperacillin-tazobactam; AMK, amikacin; CIP, ciprofloxacin; LVX, levofloxacin; MIN, minocycline; SXT, trimethoprim-sulfamethoxazole.
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TABLE 1 Performance of the best models to predict A. baumannii susceptibility or non-susceptibility for 13 antimicrobial agents.

Antimicrobial 
agents

Recall/
Sensitivity 
[95% CI]

Specificity 
[95% CI]

NPV [95% CI] PPV [95% CI] VME 
[95% CI]

ME [95% CI] EA [95% CI] CA [95% CI]

Imipenem
92.00%  

[90.30%; 93.70%]

100.00%  

[100.00%; 100.00%]

75.25%  

[71.00%; 79.50%]

100.00%  

[100.00%; 100.00%]

8.00%  

[6.30%; 9.70%]

0.00%  

[0.00%; 0.00%]

93.09%  

[91.48%; 94.70%]

93.53%  

[92.16%; 94.90%]

Meropenem
96.61%  

[95.28%; 97.94%]

100.00%  

[100.00%; 100.00%]

86.91%  

[82.29%; 91.53%]

100.00%  

[100.00%; 100.00%]

3.39%  

[2.06%; 4.72%]

0.00%  

[0.00%; 0.00%]

95.00%  

[93.56%; 96.44%]

97.21%  

[96.12%; 98.30%]

Colistin
100.00%  

[100.00%;100.00%]

100.00%  

[100.00%; 100.00%]

100.00%  

[100.00%;100.00%]

100.00%  

[100.00%; 100.00%]

0.00%  

[0.00%; 0.00%]

0.00%  

[0.00%; 0.00%]

93.09%  

[91.73%; 94.45%]

100.00%  

[100.00%; 100.00%]

Tigecycline
100.00%  

[100.00%; 100.00%]

100.00%  

[100.00%; 100.00%]

100.00%  

[100.00%;100.00]

100.00%  

[100.00%; 100.00%]

0.00%  

[0.00%; 0.00%]

0.00%  

[0.00%; 0.00%]

95.59%  

[93.98%; 97.20%]

100.00%  

[100.00%; 100.00%]

Cefepime
94.29%  

[93.82%; 94.76%]

100.00%  

[100.00%; 100.00%]

79.00%  

[77.69%; 80.31%]

100.00%  

[100.00%; 100.00%]

5.71%  

[5.24%; 6.18%]

0.00%  

[0.00%; 0.00%]

92.50%  

[91.41%; 93.59%]

95.29%  

[94.91%; 95.67%]

Ceftazidime
97.86%  

[96.60%; 99.12%]

100.00%  

[100.00%; 100.00%]

91.49%  

[86.79%; 96.19%]

100.00%  

[100.00%; 100.00%]

2.14%  

[0.88%; 3.40%]

0.00%  

[0.00%; 0.00%]

97.14%  

[96.26%; 98.02%]

98.24%  

[97.21%; 99.27%]

Cefoperazone-sulbactam
95.45%  

[94.23%; 96.67%]

99.23%  

[97.72%; 100.00%]

84.15%  

[80.51%; 87.79%]

99.81%  

[99.45%; 100.00%]

4.55%  

[3.33%; 5.77%]

0.77%  

[0.00%; 2.28%]

94.71%  

[93.41%; 96.01%]

96.18%  

[95.20%; 97.16%]

Piperacillin-tazobactam
99.63%  

[99.15%; 100.00%]

100.00%  

[100.00%; 100.00%]

98.57%  

[96.70%;100.00]

100.00%  

[100.00%; 100.00%]

0.37%  

[0.00%; 0.85%]

0.00%  

[0.00%; 0.00%]

98.36%  

[97.25%; 99.47%]

99.70%  

[99.31%; 100.00%]

Amikacin
99.58%  

[99.04%; 100.00%]

97.50%  

[95.87%; 99.13%]

99.02%  

[97.74%;100.00]

98.98%  

[98.31%; 99.65%]

0.42%  

[0.00%; 0.96%]

2.5%  

[0.87%; 4.13%]

93.97%  

[92.12%; 95.82%]

98.97%  

[98.35%; 99.59%]

Ciprofloxacin
98.00%  

[97.01%; 98.99%]

99.23%  

[97.72%; 100.00%]

92.45%  

[89.03%; 95.87%]

99.82%  

[99.46%; 100.00%]

2.00%  

[1.01%; 2.99%]

0.77%  

[0.00%; 2.28%]

97.35%  

[96.63%; 98.07%]

98.24%  

[97.40%; 99.08%]

Levofloxacin
93.39%  

[92.48%; 94.30%]

100.00%  

[100.00%; 100.00%]

76.28%  

[73.72%; 78.84%]

100.00%  

[100.00%; 100.00%]

6.61%  

[5.70%; 7.52%]

0.00%  

[0.00%; 0.00%]

93.82%  

[92.79%; 94.85%]

94.54%  

[93.78%; 95.30%]

Minocycline
91.32%  

[89.98%; 92.66%]

98.00%  

[96.93%; 99.07%]

89.98%  

[88.62%; 91.34%]

98.34%  

[97.45%; 99.23%]

8.68%  

[7.34%; 10.02%]

2.00%  

[0.93%; 3.07%]

88.24%  

[86.18%; 90.30%]

94.26%  

[93.74%; 94.78%]

Trimethoprim-

sulfamethoxazole

95.51%  

[94.04%; 96.98%]

99.13%  

[97.99%; 100.00%]

91.93%  

[89.54%; 94.32%]

99.54%  

[98.94%; 100.00%]

4.49%  

[3.02%; 5.96%]

0.87%  

[0.00%; 2.01%]

90.90%  

[89.03%; 92.77%]

96.72%  

[95.76%; 97.68%]

CI, confidence interval.
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4 Discussion

In the traditional workflow, after collecting specimens from the 
bedside, culturing, bacterial identification, and AST, at least three to 
four days are required to obtain the AMR phenotypes of A. baumannii 
isolates. The present study established MIC prediction models for 13 
antimicrobial agents against A. baumannii isolates using different 
machine-learning methods combined with 11-mer features. The 
overall EAs and CAs reached 94.14 and 97.14%, respectively. By 
integrating WGS combined with our machine-learning models into 
the traditional workflow, we obtained AST reports at least six hours 
earlier than we would in routine clinical testing (Figure 5). Thus, this 
model exhibits the potential to assist the screening of A. baumannii 
isolates and provide clinicians with guidance before AST reports 
become available.

Methods of AMR prediction from bacterial genomes are mainly 
based on pre-existing genetic AMR determinants or conserved genes 
(Pesesky et al., 2016; Macesic et al., 2020; Nguyen et al., 2020). Several 
databases providing a large number of known AMR determinants are 
required for these methods, including the PATRIC (Wattam et al., 
2017), Comprehensive Antibiotic Resistance Database (CARD) 
(McArthur et  al., 2013), and ResFinder (Zankari et  al., 2012). 

Although prior knowledge-based AMR prediction methods 
demonstrate high accuracy, their main limitation is that their 
effectiveness is restricted to situations in which the AMR mechanisms 
are known. Additionally, these methods show a lack of adaptability 
when it comes to incorporating updates from databases. Generally, 
these methods are premised on the belief that AMR arises from a 
single genetic factor. However, several studies have indicated that the 
presence of multiple co-existing mechanisms can alter the ultimate 
AMR phenotype (Vogwill et al., 2016; Porse et al., 2020). Furthermore, 
reliance solely on gene-centric methodologies can overlook pivotal 
mutations in non-coding areas, such as regulatory elements and 
promoter regions, potentially leading to inaccuracies in susceptibility 
prediction, including false-negative results (Nguyen et al., 2018). The 
methods reported in the present study can infer the AMR phenotype 
directly from FASTQ files using machine-learning techniques. Five 
machine learning models based on 11-mers were developed to predict 
MIC values for 13 antimicrobial agents. These models were thoroughly 
validated and tested using two separate datasets to ensure their 
reliability. This is the first study to use k-mer as a machine-learning 
input feature to predict the MICs of antimicrobial agents for 
A. baumannii. By comparing the average cross-validation results, RF 
performed better than SVM and XGBoost for the 13 antimicrobial 

FIGURE 4

Comparison of MIC prediction based on all k-mers versus top-ranked 11-mers: the average results of EA, CA, VME, and ME with 95% confidence 
interval.
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agents, which may be  due to the fact that the RF is a nonlinear 
machine learning algorithm, and its ability to make predictions based 
on complex rules derived from ensembled decision trees that 
incorporate 11-mer features (Wang et  al., 2023). Since AMR can 
involve multiple genes simultaneously, RF’s approach can potentially 
provide better performance than other machine learning algorithms. 
By utilising advances in machine learning, one notable characteristic 
of the models in this study is that prior knowledge is no longer 
required; instead, the algorithms learn AMR knowledge from the data 
(Avershina et al., 2023). Although nucleotide k-mers can accurately 
predict AMR, as the value of k rises, the number of features 
exponentially grows until constrained by the genome size. 
Consequently, the presence of longer k-mers and a greater number of 
features may result in memory challenges during the training of 
machine-learning models. We built a feature selection pipeline to 
extract the top-ranked important k-mer features of A. baumannii 
isolates to make this process less time-consuming and more applicable. 
Models that use only a few top-ranked 11-mer features can predict 
resistance as accurate as models utilising all 11-mer features; the 
average EA and CA were 93.82 and 97.17%, respectively. To evaluate 
our models, we compared them with those from other relevant studies 
that are also based on k-mer features. In these published studies, for 
the phenotypic predictions of nontyphoidal Salmonella, the model 
developed by Maguire and colleagues exhibited a precision exceeding 
91% (Maguire et al., 2019), while Nguyen and associates indicated an 
overall average accuracy of 95% within ±1 two-fold dilution step 
(Nguyen et al., 2019). As for the phenotypic prediction of E. coli, the 
model designed by Humphries and colleagues reached a categorical 
agreement of 97% (Humphries et al., 2023). Regarding the phenotypic 
prediction of K. pneumoniae, the model by Nguyen and associates 

demonstrated the overall accuracy of 92% (Nguyen et  al., 2018). 
Although there are no current k-mer based prediction studies for 
A. baumannii, our results closely align with the outcomes of the prior 
published study based on pre-existing AMR mechanisms (Avershina 
et al., 2021), particularly for the agents such as AMK, CIP, LVX, and 
MEM. Furthermore, the top-ranked 11-mer models were externally 
validated using a cross-temporal, cross-regional and independent test 
dataset of 120 A. baumannii isolates, which also showed good 
performance. The comparison of the top-ranked 11-mers and all 
11-mers models highlighted the significance of feature selection. The 
top-ranked 11-mers can be  further mapped to the genome for 
identifying genes associated with AMR, which can also provide 
additional insights for researchers to discover new AMR mechanisms 
by analysing these features. Despite the distinct STs of the 
A. baumannii isolates examined in this study and the exclusion of 
strain evolution from consideration, the EAs and CAs for all 
antimicrobial agents exhibited generally high performance across the 
two kinds of models.

This study has some limitations. Data volume and structure limit 
the improvement of VMEs and MEs. Owing to disparity in the sample 
size of different MIC levels, the classifier could not fully grasp the MIC 
features when there were only a few isolates available. Given that the 
utilised dataset was sourced from the regular surveillance program, 
imbalances in the data were anticipated. Continuous updating of 
databases is required to avoid these extremes of distribution 
phenomena where there are only one or two isolates in some MICs. 
The public database also significantly overrepresents clinically 
important resistant bacterial strains in comparison to susceptible ones. 
Nevertheless, with ongoing advances in sequencing and high-
throughput technologies, we foresee the databases becoming more 

FIGURE 5

Traditional workflow for clinical laboratories to obtain AST reports from the bedside, which takes at least 3 to 4  days due to the reliance on bacterial 
culture. The new scheme of this study can obtain AST reports earlier by integrating WGS combined with machine-learning models into the traditional 
workflow. The workflow was created with BioRender.com.
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enriched and balanced, leading to improved outcomes for machine 
learning applications (Sunuwar and Azad, 2021). The accurate 
prediction of MICs for A. baumannii isolates, particularly when 
dealing with strains at the extremes of the resistance spectrum, is 
complicated by potential underlying genetic variations; however, with 
the collection of more genomic data and the achievement of a more 
balanced dataset, we expect the ME and VME rates to decline and the 
accuracy of MICs and classification to further improve.

In conclusion, we present a machine-learning approach for AMR 
prediction in A. baumannii. The developed k-mer-based workflow 
demonstrated high recall/sensitivity and specificity, making it a reliable 
tool for MIC prediction in clinical settings. Machine-learning 
algorithms can decipher the mechanisms of AMR from DNA sequence 
data without the need for prior information. We  extracted the 
top-ranked k-mer features of 13 antimicrobial agents that can 
be interpreted and exploited to obtain new information on resistance 
mechanisms. In combination with database improvements, our 
methodology could assist clinical laboratories in the rapid MIC 
prediction of A. baumannii to complement traditional AST. Importantly, 
the success of directly predicting MICs from a limited number of 
genomes indicates that it is viable to obtain susceptibility results without 
any prior information using machine-learning methods, an approach 
that can be extended to other pathogens.
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