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Kawasaki disease (KD) is a systematic vasculitis that is often complicated 
by coronary artery lesions and is a leading cause of acquired heart disease 
in developed countries. Previous studies have suggested that genetic 
susceptibility, together with an inducing infectious agent, could be involved 
in KD pathogenesis; however, the precise causative agent of this disease 
remains unknown. Moreover, there are still debates concerning whether KD 
is an infectious disease or an autoimmune disease, although many studies 
have begun to show that various pathogens functioning as critical inducers 
could activate different kinds of immune cells, consequently leading to 
the dysfunction of endothelial cells and systematic vasculitis. Here in this 
review, we  attempt to summarize all the available evidence concerning 
pathogen infections associated with KD pathogenesis. We also discuss the 
related mechanisms, present a future perspective, and identify the open 
questions that remain to be investigated, thereby providing a comprehensive 
description of pathogen infections and their correlations with the host 
immune system in leading to KD.
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1 Introduction

Pathogen infectious diseases have posed a great challenge to human health worldwide 
(Baldari et al., 2023). Currently, various pathogens have been suggested as critical triggers 
in inducing systematic vasculitis in children with Kawasaki disease (KD), which is a 
leading cause of acquired heart disease in developed countries (McCrindle et al., 2017). 
High-dose intravenous immunoglobulin (IVIG) infusion and aspirin can subdue KD 
symptoms and partially reduce the occurrence of coronary artery lesions (CALs); 
however, approximately 10%–20% of affected children develop recrudescent or persistent 
fever even after IVIG infusion, and those patients have a higher risk of CAL (Li et al., 
2018; Nadig et al., 2023). Critically, if this disease is not untreated in a timely manner, 
sudden death may occur due to coronary artery aneurysms (Shulman and Rowley, 2015; 
McCrindle et al., 2017; Sosa et al., 2019). Although genetic background (Chang et al., 
2014), urban industrialization, environmental factors (Chang et al., 2020; Corinaldesi 
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et al., 2020), and regional winds together with large-scale atmospheric 
circulation (Rodo et al., 2011, 2014), have been suggested to correlate 
with KD, these theories fail to explain the seasonal epidemics of this 
illness, and also fail to explain why Kawasaki disease does not broadly 
recur. Nevertheless, an increasing number of epidemiological and 
clinical data all point to KD having an infectious etiology. For example, 
epidemiological data from multiple centers worldwide demonstrate 
that KD has a significant seasonal epidemic (Valtuille et al., 2023), 
frequent occurrence, and low recurrence characteristics in young 
children (Nakamura et al., 2008, 2012; Burns et al., 2013; Lin et al., 
2015; Ozeki et al., 2017, 2018; Kido et al., 2019; Kim et al., 2020; Xie 
et al., 2020). Notably, several studies have shown that both the immune 
repertoire (Kuo et al., 2019) and the heterogeneous host immune 
response including the autoantibody responses in KD children 
resemble those observed in patients with bacterial or viral infections 
(Lindquist and Hicar, 2019; Jackson et al., 2021; Ghosh et al., 2022), 
lending further support of an infectious disease cause of KD.

Additionally, serum KD-specific molecules which were mostly 
derived from biofilms possessed molecular structures common to 
MAMPs (microbe-associated molecular pattern) from Bacillus cereus, 
B. subtilis, Yersinia pseudotuberculosis (Y. pstb), and Staphylococcus 
aureus (Kusuda et  al., 2014), implicating a possible relationship 
between MAMPs and the etiological mechanism of KD vasculitis. 
Recently, at least 14 types of viruses have been suggested to correlate 
with KD based on serological and polymerase chain reaction (PCR) 
analysis of clinical samples (Principi et al., 2013). However, another 
study showed that at least 15 types of viruses were related to KD 
because the isolation rates of various viruses in KD patients were 
significantly higher than those in the control group (Huang et al., 
2015; Jackson et al., 2021). Viral infections can cause vascular damage 
either through direct invasion of the vascular endothelium or 
provoking a rapid cell-damaging event (Hara et al., 2021). This in turn 
results in a larger release of proinflammatory cellular components 
from damaged endothelial cells, pyroptosis, or proinflammatory cell 
death (Mohandas et al., 2023), hence making various kinds of innate 
immune cells infiltrate the coronary arteries of KD subjects (Kuijpers 
et  al., 1999; Takahashi et  al., 2010a). These data thus suggest that 
different kinds of microbes are implicated in the pathogenesis of KD, 
but which microbes are the key inducers and the underlying 
mechanisms remain unclear. In this review, to better understand the 
comprehensive profiles between microbial infection and KD 
pathogenesis, we  summarized the major features of our current 
understanding with respect to various pathogens related to 
KD. We also discuss the state of this field in KD with respect to the 
relationship and/or mechanisms concerning the abnormal immune 
response triggered by various infectious agents, and the open 
questions that remain to be investigated.

2 Involvement of pathogens during 
KD pathogenesis

2.1 Viral infection and KD

2.1.1 DNA viruses
Several DNA viruses, including Epstein–Barr virus (EBV), human 

adenovirus, human parvovirus B19, torque teno virus, herpes family 
virus, varicella zoster virus, bocaparvo virus, and cytomegalovirus 
have been identified to be associated with KD pathogenesis.

2.1.1.1 Human adenovirus
Adenovirus type 2 was first isolated from a patient with fatal 

Kawasaki disease (Embil et  al., 1985), while another case report 
showed that human adenovirus infection can be found in monozygotic 
twin boys who developed KD (Fukuda et  al., 2017). Among the 
adenovirus-infected cohort, the overall incidence of KD was 5.29 
times higher than that of the non-adenovirus-infected control subjects 
(adjusted HR 5.29, 95% CI: 2.48–11.3), as shown by a population-
based cohort study (Huang et  al., 2020), suggesting a correlation 
between adenovirus infection and KD pathogenesis. Notably, there are 
also studies showing a lack of association between adenovirus 
infection and KD, suggesting that more intense research is needed to 
explore the relationships between adenovirus infections and KD 
(Okano et al., 1990; Shike et al., 2005).

2.1.1.2 Human parvovirus B19
Human parvovirus B19 (HPV-B19) is a single-stranded DNA virus 

that may have a pathogenic role in the development of KD with other 
predisposing factors because it can cause symptoms resembling those 
observed in KD patients (Nigro et  al., 1994; Holm et  al., 1995). 
Importantly, HPV-B19 infection should be considered in the differential 
diagnosis of KD patients who show atypical clinical symptoms during 
the erythema infectiosum epidemic stage (Oura et al., 2022).

2.1.1.3 Torque teno virus
The torque teno virus (TTV), which is a single-stranded circular 

DNA virus, was first found in the lymph node of a KD patient (Katano 
et al., 2012). For instance, a high viral load of torque teno virus 7 
(TTV7) was identified in KD patients (Thissen et al., 2018; Spezia 
et al., 2023a), and the viral load of TTV positively correlated with the 
level of total bilirubin and aspartate aminotransferase in KD patients 
(Spezia et al., 2023b), suggesting that TTV might play a critical role in 
the pathophysiology of patients with KD.

2.1.1.4 Herpes simplex virus
Herpes simplex virus (HSV) consists of multiple subtypes (Rowley 

et al., 2011), and its family members, including EBV, HHV-6 and 
varicella-zoster, were all found to be involved in KD. For instance, a 
previous study showed that the DNA sequence of EBV can be detected 
in KD patients (Kikuta et  al., 1988), and there are many cases of 
KD-like lesions, specifically coronary artery aneurysms (CAAs), that 
were suggested to be caused by EBV infection (Kikuta et al., 1993; 
Rosenfeld et al., 2020; Xiao et al., 2020). However, EBV might not 
be the direct causative agent of KD, as shown by another study (Kikuta 
et al., 1990). Notably, a case of Kawasaki disease triggered by EBV 
virus infection was found to be  complicated with familial 
Mediterranean fever (Maggio et al., 2019). Moreover, the prevalence 

Abbreviations: BCG, Bacillus Calmette-Guérin; CAA, Coronary artery aneurysm; 

CAWS, Candida albicans water soluble fraction; DAMP, Damaged-associated 

molecular patterns; ELISA, Enzyme-linked immunosorbent assay; KD, Kawasaki 

disease; LCWE, Lactobacillus casei cell wall extract; MAMP, Microbe associated 

molecular pattern; PAMP, Pathogen associated molecular pattern; PCR, Polymerase 

chain reaction; PRR, Pattern recognition receptor; SEB, Staphylococcal enterotoxin 

B; SEC, Staphylococcal enterotoxin C; SPE, Streptococcal pyrogenic exotoxins; 

TCR, T-cell receptor; TSS, Toxic shock syndrome; TSST-1, Toxic shock syndrome 

toxin-1.
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of EBV in KD children was significantly lower during the early stage 
(van Stijn et al., 2020), and deoxyuridine 5′-triphosphate nucleotide 
hydrolase (dUTPase), a pathogen nonstructural protein encoded by 
EBV, can stimulate monocyte-derived macrophages through Toll-like 
receptor 2-dependent signaling transduction (Ariza et  al., 2009), 
suggesting that DUTPase could be used as a potential target for drug 
development against EBV infection and KD treatment.

In addition to EBV, certain KD patients also have concomitant 
varicella zoster virus or coxsackievirus A4 infection (Turkay et al., 
2006; Toprak et al., 2015). Given that the features of HHV6-infected 
patients resemble those symptoms observed in KD children (Kakisaka 
et al., 2012; Alramadhan et al., 2020), HHV-6B was thus suggested to 
be a critical mediator during the pathogenesis of KD, and HHV-6B 
infection was also suggested to be  responsible for the increased 
number of KD patients during the SARS-CoV-2 pandemic (Dursun 
and Temiz, 2020).

2.1.1.5 Bocavirus
Human bocavirus (HboV) is a single-stranded DNA etiologic 

agent that has been suggested as a cause of acute respiratory tract 
infection in children (Schildgen et  al., 2008). This virus was first 
identified in nasopharyngeal, serum or stool samples, and was thus 
suggested to play a pathogenic role in some cases of Kawasaki disease 
(Catalano-Pons et al., 2007). Late, this work was verified by the results 
from another group showing that HboV can indeed be detected in 
nasopharyngeal secretions of KD patients, demonstrating a 
coincidental or possible etiological association between HboV 
infection and KD pathogenesis (Santos et al., 2011). Furthermore, a 
significant correlation between HboV infection and KD incidence was 
identified based on epidemiological data (Kim et al., 2014; Lim et al., 
2021), whereas some investigators have proposed that there is little 
correlation between HboV infection and KD based on the serological 
test (Lehmann et al., 2009). Cytomegalovirus was also suggested to 
be  involved in the development of atypical KD and coronary 
aneurysms (Catalano-Pons et  al., 2005; Guc et  al., 2008). Taken 
together, more intense researches is needed to elucidate the precise 
mechanism concerning DNA viruses associated with KD pathogenesis.

2.1.2 RNA viruses associated with KD
Apart from the DNA viruses mentioned above, a total of nine 

types of RNA viruses have been suggested to correlate with KD 
pathogenesis, including coxsackie virus, enterovirus, human 
coronavirus NL63 (HCoV-NL63), influenza virus, measles virus, 
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), 
feline virus, influenza A virus H1N1 and human immunodeficiency 
virus, as discussed below.

2.1.2.1 Coxsackie virus
The coxsackie virus, which belongs to enteroviruses of small RNA 

viridine, has been identified as the main cause of viral myocarditis in 
humans since 1955 (Dalldorf, 1955). Both coxsackie virus B3 (CVB3) and 
coxsackie virus A4 were identified to correlate with KD (Rigante et al., 
2012; Ueda et  al., 2015), and this type of virus can induce neonatal 
symptoms similar to viral myocarditis observed in KD (Verma et al., 2009).

2.1.2.2 Enterovirus
It has been demonstrated that the KD incidence in the enterovirus 

(EV)-infected cohort was significantly higher than that in the 

non-EV-infected cohort (Weng et al., 2018), thereby indicating a high 
correlation between EV infection and KD. In addition, a decreased 
incidence of severe enterovirus infection cases is simultaneously 
correlated with decreased KD hospitalizations during the SARS-
CoV-2 epidemic (Guo et al., 2022), thus suggesting that enterovirus 
might function as a critical mediator during the pathogenesis of KD.

2.1.2.3 HCoV-NL63 virus
Although HCoV-NL63 was once identified in several KD patients 

(Dominguez et al., 2006), most data later do not support an association 
between HCoV-NL63 infection and KD (Baker et al., 2006; Chang 
et al., 2006; Lehmann et al., 2009). In fact, only 1 (2%) of 48 patients 
with KD was found to be positive for HCoV-NL63/NH (Shimizu et al., 
2005), although HCoV-229E was also suggested to be involved in KD 
(Lehmann et al., 2009; Shirato et al., 2014).

2.1.2.4 Influenza virus
Influenza viruses have been revealed to positively correlate with 

the monthly KD incidence (Kim et al., 2014). For instance, influenza 
A H1N1/09 virus has been shown to be  associated with the 
pathogenesis of KD by several groups (Joshi et al., 2011; Wang et al., 
2019; Banday et al., 2021). Additionally, Parainfluenza type 3 virus 
(PIV-3) was also found to correlate with KD (Schnaar and Bell, 1982; 
Karron et  al., 1993), suggesting that influenza virus infection has 
etiological importance in the development of KD. However, given that 
concomitant influenza infection affects the clinical manifestations of 
KD and impacts the laboratory test results of the disease (Huang et al., 
2015), it remains to be determined regarding influenza infection and 
KD pathogenesis.

2.1.2.5 Measles virus
The measles virus (MeV), which is an enveloped RNA virus, 

frequently causes acute febrile illness accompanied by a rash 
(Takemoto et al., 2022). This virus can be isolated from KD children, 
and the symptoms caused by MeV infection partially resemble those 
observed in KD patients (Whitby et al., 1991; Kuijpers et al., 2000).

2.1.2.6 SARS-CoV-2
The RNA respiratory virus SARS-CoV-2 (severe acute respiratory 

syndrome coronavirus 2) can induce multisystem inflammatory 
syndrome in children (also called MIS-C), including multifocal 
endovascular dermatitis, thrombosis, and systemic thrombotic 
microangiopathy, which resemble certain features observed in KD 
(Ackermann et al., 2020; Consiglio et al., 2020; Loomba et al., 2020; 
Bukulmez, 2021; Cherqaoui et al., 2021; Sancho-Shimizu et al., 2021; 
Sokolovsky et al., 2021; Zhang et al., 2021).

Moreover, SARS-CoV-2 can be detected in certain KD patients, 
and a host of SARS-CoV-2-positive patients exhibit KD-like syndrome 
(Consiglio et al., 2020; Jones et al., 2020; Toubiana et al., 2020; Sharma 
et  al., 2021). However, although high titers of anti-SARS-CoV-2 
antibodies have been detected both in KD and multisystem 
inflammatory syndrome patients (Kabeerdoss et al., 2021), the two 
diseases are different because of the differential T-cell subsets, 
interleukin (IL)-17A, and biomarkers associated with arterial damage 
(Consiglio et al., 2020). On the other hand, global studies have reported 
that the incidence of KD declined during the COVID-19 pandemic, 
suggesting a potential KD pathogenesis involving transmission among 
children (Ae et al., 2022). However, several earlier studies showed that 

https://doi.org/10.3389/fmicb.2023.1313838
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2023.1313838

Frontiers in Microbiology 04 frontiersin.org

the KD incidence has increased during the pandemic (Ouldali et al., 
2020; Roe, 2020; Stower, 2020; Viner and Whittaker, 2020), supporting 
the hypothesis that KD might be caused by an unknown RNA virus that 
may function as the main trigger in inducing abnormal immune 
responses in genetically susceptible individuals.

2.1.2.7 Other types of RNA viruses
In addition to the RNA viruses mentioned above, several other 

types of RNA viruses were also found to be  involved in KD. For 
example, both a novel feline virus (Moynahan, 1987) and the influenza 
A virus (Wang et  al., 2019) were suggested to be  related to KD 
symptoms. Notably, HIV patients also show symptoms similar to 
those observed in KD patients (Johnson et  al., 2016). The 
intracytoplasmic inclusion bodies induced by viruses can be isolated 
from KD patients, suggesting that the infectious etiologic agent of KD 
might be associated with an unknown novel RNA virus (Rowley et al., 
2011). In addition, dengue virus was also identified in the serum of 
certain KD patients in southern Thailand, and mosquitoes were 
hypothesized to work with the dengue virus to spread the KD 
pathogen, thus inducing cell proliferation and morphological changes 
in endothelial cells and coronary arteritis lesions in KD patients 
(Sopontammarak et al., 2008). Moreover, regions with the highest 
reported arboviral infections in Venezuela simultaneously have the 
highest incidence of KD (Paniz-Mondolfi et al., 2020), demonstrating 
the critical roles of viral infections in mediating the pathogenesis of KD.

2.2 Bacterial infection associated with KD

Regarding bacterial infection, the superantigens produced by gut 
bacteria may be involved in the onset of KD. Until recently, there were 
five Streptococcus spp. (S. pneumonia, pseudopneumoniae, oralis, 
gordonii, and sanguinis) were found to increase during the acute phase 
in KD patients based on metagenomic sequencing, indicating that 
Streptococci are involved in the pathogenesis of KD disease (Kinumaki 
et al., 2015). Furthermore, the stool of KD patients contains higher 
numbers of gram-positive bacteria, including Streptococcus, 
Staphylococcus, Eubacterium, and Peptostreptococcus genera, Hsp60-
producing gram-negative bacteria, and a lower number of lactobacilli, 
when compared with those from healthy control children (Yamashiro 
et al., 1996; Takeshita et al., 2002; Nagata et al., 2009). Specifically, 
three pathogens, S. pyogenes (Leahy et  al., 2012), S. mitis Nm-65 
(Tabata et al., 2021), and S. sanguis (Tsurumizu et al., 1991), have been 
identified in the pleural fluid, tooth surface or blood of KD patients. 
Additionally, serum IgM antibodies against superantigens of S. aureus 
and S. pyogenes have been identified in KD patients (Matsubara et al., 
2006), and these two pathogens together can produce 19 different 
superantigens (Llewelyn and Cohen, 2002). Mechanistically, S. aureus 
isolated from the rectum or pharynx of KD patients can secrete toxic 
shock syndrome toxin 1 (TSST-1) and staphylococcal protein A, 
which in turn stimulate Vβ2+ lymphocyte amplification and are thus 
involved in the abnormal immune responses of KD patients (Leung 
et al., 1993; Wann et al., 1999; Leung et al., 2002).

Regarding Yersinia pseudotuberculosis (Konishi et al., 1997), the 
Propionibacterium acnes strain and its products cytopathogenic proteins 
(CPPs; Kato et al., 1983; Tomita et al., 1987) can all be isolated from KD 
patients, suggesting a causative role of bacterial infection in mediating 
the pathogenesis of KD. Moreover, several recent studies suggest that 

Y. pstb infection is closely related to KD pathogenesis (Kato et al., 2019; 
Kamura et al., 2020; Miyata et al., 2022; Ohnishi et al., 2022), and the 
antibody titers of Y. pstb were significantly elevated in both Chinese and 
Japanese KD patients (Chou et al., 2005; Tahara et al., 2006). In contrast, 
a recent study showed that the positive rate of Y. pstb infection is much 
lower in KD patients (Horinouchi et al., 2015; Hayashi et al., 2023), but 
when the population is exposed to a higher risk of Y. pstb infection, the 
incidence of KD is much higher (Vincent et al., 2007).

2.3 Mycoplasma pneumoniae and 
Chlamydia pneumoniae hypothesis related 
to KD

In addition to the microbes mentioned above, M. pneumoniae 
infection was identified in an important proportion of KD patients 
(Umezawa et al., 1989; Ebrahim et al., 2011; Lee et al., 2011; Tang et al., 
2016; Wang et  al., 2021; Huang et  al., 2022). For instance, the 
M. pneumoniae infection-positive rate in KD patients was significantly 
higher than that in non-KD patients during the SARS-CoV-2 
epidemic (Ding et al., 2021), and certain KD patients were found to 
be coinfected with M. pneumoniae and Epstein–Barr virus (Huang 
et al., 2012).

Additionally, the positive rate of serum Chlamydia pneumoniae 
IgM antibody in KD children was significantly higher than that in the 
control group (Numazaki and Chiba, 1996); however, another study 
showed that the link between C. pneumoniae infection and KD 
pathogenesis or coronary artery lesions remains to be clarified (Chua 
et al., 2000; Strigl et al., 2000), suggesting that more intense research 
is needed to confirm the correlations between M. pneumoniae or 
C. pneumoniae infection and KD pathogenesis.

2.4 Rickettsia infection and KD

Rickettsia-like organisms were also found in biopsies of the skin 
and lymph nodes of KD patients (Tasaka and Hamashima, 1978). 
However, in most cases, only Coxiella burnetiid but not Rickettsia 
conorii, R. typhi, Coxiella burnetii or Ehrlichia phagocytophila was 
suggested to cause KD-like symptoms in young children (Kafetzis 
et al., 2001), suggesting its specific causative roles in KD pathogenesis.

2.5 Pathogen infection evidenced from 
experimental studies with a murine model

Given that the fungus Candida albicans can be isolated from KD 
patients, and its extract, the Candida albicans water soluble fraction 
(CAWS) intraperitoneally injected in mice could induce symptoms 
resembling those observed in KD patients (Murata, 1979; Martinez 
et al., 2012; Yoshikane et al., 2015; Stock et al., 2016; Noval Rivas and 
Arditi, 2020). Furthermore, β-glucan, which is the major component 
of CAWS, is also increased in KD patients (Ishibashi et al., 2014). 
Mechanistically, the mannoprotein-β-glucan complex of C. albicans 
can affect the functions of leukocytes, endothelial cells, and platelets 
in vitro (Kurihara et al., 2003). The systematic vasculitis induced by 
CAWS in mice can be  alleviated after administration of human 
immunoglobulin or etanercept (Takahashi et al., 2010b; Ohashi et al., 
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TABLE 1 Microbial etiology demonstrated as critical triggers of Kawasaki disease.

Pathogens Related to KD References

Virus

Epstein–barr 

Virus (EBV)

EBV infection is associated with recurrence of KD Kikuta et al. (1990)

EBV infection is associated with the development of coronary aneurysms in KD Kikuta et al. (1993)

EBV infection was first demonstrated in KD cases by PCR Rosenfeld et al. (2020)

Adenovirus The cause of KD was not proved to be adenovirus by TaqMan PCR test Shike et al. (2005)

The specific immune response to HADV-3 plays a key role in the occurrence of KD Fukuda et al. (2017)

Human 

parvovirus B19 

(HPV-B19)

HPV-B19 can cause some symptoms resembles to those observed in KD Nigro et al. (1994)

Infection with HPV-B19 is closely associated with KD and collagen diseases Holm et al. (1995) and Oura et al. 

(2022)

HPV-B19 DNA was identified in the blood and pathological tissues of adult KD patients Flossdorf et al. (2020)

Torque Teno virus 

7

A low copy number torque teno virus 7 was detected in cervical lymph nodes of a KD case by using real-time 

PCR

Katano et al. (2012)

TTV7 variants were detected by metagenomic sequencing and PCR method in two KD patients Thissen et al. (2018)

Herpes virus Patients with KD and HHV6 infection had similar skin changes at the BCG vaccination site Kakisaka et al. (2012)

The number of KD patients increased significantly due to HHV-6 infection during the SARS-CoV-2 epidemic Dursun and Temiz (2020)

A child with incomplete KD complicated with HHV-6B infection developed aseptic meningitis Alramadhan et al. (2020)

Varicella Zoster 

Virus

A case of KD patient was found to infect with EB virus and varicella-zoster virus Turkay et al. (2006)

A case of KD patient was found to complicate with varicella-zoster virus infection Toprak et al. (2015)

Human boca virus 

(HboV)

Certain KD patients were found to infect with HboV by using PCR method Catalano-Pons et al. (2007)

The serological data shows no association between HBoV infection and KD occurrence Lehmann et al. (2009)

Human boca virus DNA was identified in the nasopharyngeal secretions of a male child with KD Santos et al. (2011)

KD was significantly correlated with the monthly incidence of human boca virus Kim et al. (2014)

Cytomegalovirus Two infants with cytomegalovirus infection developed atypical KD and coronary aneurysm Catalano-Pons et al. (2005)

A case of atypical KD was found to infect with cytomegalovirus Guc et al. (2008)

Dengue virus The dengue virus titer is positive in certain KD children Sopontammarak et al. (2008)

Coxsackie virus The coxsackie virus infection was found in two cases of KD by using ELISA method, and the CVB3 antibody was 

detected by complement binding assay

Rigante et al. (2012)

The antibody titer to coxsackie virus A4 was significantly higher than those in an adult KD case Ueda et al. (2015)

Enterovirus The cumulative incidence of KD in enterovirus-infected cohort was significantly higher than that in non-EV-

infected cohort

Weng et al. (2018)

The decrease in the number of KD hospitalizations was positively correlated with the decrease in the number of 

severe enterovirus infections

Guo et al. (2022)

HCoV-NL63 A lack of evidence proving human coronavirus NL63 infection associated with KD induction Shimizu et al. (2005)

The infection rate of HCoV-NL63 in KD patients is very low Dominguez et al. (2006)

Lack of association between infection with HCoV-NL63 virus and KD Chang et al. (2006)

Serological data showed no association with HCoV-NL63 infection in KD children Lehmann et al. (2009)

Serological data support that HCoV-NL63 is not involved in KD, but suggest that HCoV-229E may be involved 

in KD

Shirato et al. (2014)

Parainfluenza 

type3 virus

The parainfluenza type 3 virus infection was suggested to associate with KD occurrence Schnaar and Bell (1982)

The parainfluenza virus type 3 infection was found to associate with KD in one patient Johnson and Azimi (1985)

Measles-virus The measles-virus infection was suggested to associate with KD occurrence Whitby et al. (1991)
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Pathogens Related to KD References

SARS-CoV-2 The KD incidence has increased during the SARS-CoV-2 pandemic Ouldali et al. (2020), Sandhaus 

et al. (2020), and Stower (2020)

The cases of SARS-CoV-2 infection children have a higher frequency of myocarditis or pericarditis than the 

classic KD

Ventura et al. (2020)

The KD incidence is increased during the pandemic of SARS-CoV-2 or influenza A H1N1 in western counties Kam et al. (2020)

The SARS-CoV-2 cases show a highly active proinflammatory cytokine response similar to KD Choi (2020)

Asymptomatic children with SARS-CoV-2 infection shows a hyperinflammatory syndrome similar to KD shock 

syndrome

Rehman et al. (2020)

Several concurrent incomplete KD cases with SARS-CoV-2 infection were identified Rivera-Figueroa et al. (2020) and 

Raut et al. (2021)

Feline virus KD was suggested to correlate with a new feline virus transmitted by fleas Moynahan (1987)

H1N1 The H1N1 virus infection was identified in the cases of incomplete KD patients Wang et al. (2019)

Human 

immunodeficiency 

virus

The inflammatory characteristics of pediatric KD resembles the symptoms of adult immunodeficiency virus 

syndrome

Johnson et al. (2016)

Virus-like 

particles

The virus-like particles were found in the circulating peripheral blood of KD patients Lin et al. (1992)

The accumulation of virus-like particles (VLP) in lung tissue of KD patients, and the intracytoplasmic inclusion 

bodies of skin cells in the ciliated bronchial wall of KD patients were suggested to be induced by virus-like 

particles

Rowley et al. (2011)

Bacteria

Staphylococcus 

aureus

The amplification of T cells in KD patients may be caused by a new clone of TSST-producing S. aureus Leung et al. (1993)

High levels of extracellular SpA secreted locally by S. aureus in the gastrointestinal tract may lead to KD-like 

symptoms

Wann et al. (1999)

The value of S. aureus in larynx and rectum mucosa was higher in KD patients Abe et al. (2003)

Staphylococcus superantigens is associated with KD pathogenesis Matsubara and Fukaya (2007)

Multiple superantigens are involved in KD by using serum IgG and IgM antibodies against all the superantigens Matsubara et al. (2006)

Yersinia 

pseudotuberculosis 

(Y. pstb)

Y. pseudotuberculosis was isolated from the stool of a KD patient Konishi et al. (1997)

Some studies have shown that superantigen (YPM) is produced in vivo and plays an important role in the 

pathogenesis of pseudomonas tuberculosis infection

Abe et al. (1997)

KD was significantly associated with myocarditis and the increase of yersinia antibody titer Chou et al. (2005)

The incidence of coronary artery lesions in Y. pseudotuberculosis positive group was significantly higher than that 

in Yersinia negative group in KD patients

Tahara et al. (2006)

The KD incidence is higher when the population is exposed to the risk of Y. pseudotuberculosis infection Vincent et al. (2007)

Specific molecules in the serum samples of KD share a common molecular structure with the microbe associated 

molecular pattern (MAMP) of Y. pseudotuberculosis

Kusuda et al. (2014)

KD Patients associated with Y. pseudotuberculosis infection had significantly more frequent cardiac sequelae (CS) Horinouchi et al. (2015)

A KD-like patient who was positive for yersinia tuberculosis was diagnosed with far east scarlet fever Ocho et al. (2018)

LOOP-mediated isothermal amplification method identifies Y. pseudotuberculosis infection in KD patient Kato et al. (2019)

The symptom caused by pseudomeric mycobacterium tuberculosis infection resembles o the features observed in 

KD

Kamura et al. (2020)

Propionibacterium 

acnes

The levels of anti-cytopathic protein (CPP) antibodies in serum of KD patients are increased during the acute 

phase

Tomita et al. (1987)

The variant strain of P. acnes may have a causative role in KD and house-dust mites a role as vectors Kato et al. (1983)

Rickettsia-Lick 

organism

The clostridium bursteni is associated with KD instead of other rickettsiae pathogen Kafetzis et al. (2001)

Streptococcus 

sanguis

Streptococcus hemorrhage can be isolated from KD patients in acute stage Tsurumizu et al. (1991)

Bacillus cereus KD specific molecules in serum share a common molecular structure with the MAMP of B. cereus. Kusuda et al. (2014)
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Pathogens Related to KD References

Lactobacillus casei The asymmetric inflammatory coronary inflammation was detected in the LCWE-induced mouse model Lehman et al. (1988)

The macrophage dectin-1/Syk-mediated pathway is involved in LCWE-induced CALs and production of IL-6 

and MCP-1

Lin et al. (2013)

CD8+ T cells functionally contributed to the development of KD vasculitis in LCWE-induced mouse model Noval Rivas et al. (2017)

The endothelial progenitor cell Notch4 signaling pathway was identified in the LCWE-induced mouse model Wang et al. (2016)

The adrenergic stimulation after KD vasculitis can cause myocardial hypertrophy and bridging fibrosis in the 

LCWE-induced mouse model

Matundan et al. (2019)

The electrophysiological abnormalities and cardiac neuronal remodeling were observed in the LCWE-induced 

mouse model

Abe et al. (2020)

The coronary artery stenosis with severe coronary vasculitis and elastin degradation was detected in the LCWE-

induced mouse model

Suganuma et al. (2020)

Nonpathogenic LCWE-specific T-cell combinations are related to KD occurrence Hsieh et al. (2021)

Mycobacterium 

SSP

Atypical mycobacterium infection enhances autoimmunity leading to coronary arteritis after vaccination with 

BCG

Nakamura et al. (2007)

The development of tuberculid in the two infants might be associated with the remnant immune activation of KD Yamada et al. (2016)

Streptococcus Group A streptococcus was not detected in an adult Japanese female with KD Hattori et al. (2005)

The superantigens of S. pyogenes are involved in KD pathogenesis based on the IgM antibodies test Matsubara et al. (2006)

KD is associated with many streptococcal superantigens Matsubara and Fukaya (2007)

The first case of incomplete KD complicated with S. pyogenes pneumonia was reported Leahy et al. (2012)

The complete genome sequence of Streptococcus nM-65 can be isolated from KD patient Tabata et al. (2021)

Fungi

Candida albicans The fungi C. albicans isolated from KD patients can produce coronary arteritis in mice Murata (1979)

CAWS strongly inhibits leukocyte function in vitro Kurihara et al. (2003)

The adeno-associated virus vector encoding IL-10 improves CAWS-induced cardiac dysfunction and lethality in 

mouse

Nakamura et al. (2018)

The genetic background of CAWS immune response is related to the occurrence of coronary arteritis Nagi-Miura et al. (2004)

The genetic control of susceptibility to induction of vasculitis by the candida albicans extract is dependent on the 

mouse strains, but is not linked to the histocompatibility-2 loci

Takahashi et al. (2004)

Severe stenosis of the aorta and coronary arteries, and fibrinoid necrosis in the vessel walls were observed in the 

CAWS-induced DBA/2 mouse strain

Hirata et al. (2006)

Most CAWS strains can induce vasculitis Nagi-Miura et al. (2008)

Candida cell wall mannan might contribute to coronary arteritis and acute shock, and that an alteration of 

mannan structure could be responsible for Candida pathogenicity

Tada et al. (2008)

The human immunoglobulin suppresses development of murine systemic vasculitis induced by CAWS Takahashi et al. (2010b)

The important role of CCR2 involved in the pathogenesis of CAWS-induced mouse model Martinez et al. (2012)

Etanercept is effective in inhibiting CAWS-induced vasculitis and may be a new therapeutic drug for KD Ohashi et al. (2013)

The preformed toxins and the Candida species were identified as the dominant fungus leading to KD Rodo et al. (2014)

The α-mannan contained in C. albicans extract could induce coronary arteritis and acute shock Tada et al. (2014)

KD patients have a higher titer of β -glucan (BG) antibody against candida cell wall Ishibashi et al. (2014)

Granulocyte/macrophage colony stimulating factor was found in the CAWS-induced cardiac inflammation site of 

KD mice

Stock et al. (2016)

The CAWS-induced mouse model showed inflammatory cell infiltration, destruction of elastic lamellae, loss of 

medial smooth muscle cells and intimal thickening, whose features resembles the vascular lesions of KD patients

Yoshikane et al. (2015)

The recognition of A-mannan by A-mannan receptor dectin-2 plays an important role in the pathogenesis of 

vasculitis in KD mice induced by C. albicans cell wall polysaccharide.

Oharaseki et al. (2020)

The mannoprotein fractions of clinically isolated Candida species can induce vasculitis in mice Tanaka et al. (2020)

The cell wall mannoprotein of C. krusei could induce coronary vasculitis in mouse model Yanai et al. (2020)
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2013). Together, these findings imply that infectious agents might play 
critical roles in triggering this disease.

Another major KD-like murine coronary arteritis model involves 
induction by L. casei cell wall extract (LCWE), which is widely used 
to mimic systematic vasculitis in KD patients (Lehman et al., 1988; 

Abe et al., 2020). In the LCWE-induced mouse model, the TLR2 and 
ILβ-dependent signaling pathways were suggested to play important 
roles during its pathogenesis (Rosenkranz et al., 2005; Lee et al., 2012; 
Matundan et  al., 2019). Additionally, the dectin-1/Syk signaling 
pathway in macrophages (Lin et al., 2013) and the Notch4 signaling 

FIGURE 1

Schematic illustrating the pathogenic mechanisms of KD. The superantigens (SAgs) hypothesis and different infectious agents produce pathogen/
microbe-associated molecular patterns (PAMPs/MAMPs) were all proposed to be involved in KD pathogenesis. SAgs non-specifically activate T cells 
and/or B cells. PAMPs/MAMPs also stimulate immune cells [e.g., macrophages (Mφ), dendritic cells (DCs), monocytes (MCs)] and endothelial cells (ECs) 
through cellular pattern recognition receptors (PRRs; e.g., TLRs, NOD1, and Dectin-1/-2). Additionally, PAMPs/MAMPs can activate the complement 
lectin pathway through soluble PRRs (e.g., ficolin-1 and mannose binding lectin-2). Activated complement pathways can induce inflammatory vascular 
damage through recruitment of innate inflammatory cells and direct injury to ECs. This cross-talk among different cells augments the production of 
proinflammatory cytokines/chemokines and reactive oxygen/nitrogen species (ROS/NOS), hence leading to a systemic inflammatory reaction in KD.

Pathogens Related to KD References

Mycoplasma

Mycoplasma 

pneumoniae

The pulmonary symptoms of KD were suggested to be associated with pneumococcal infection Lee et al. (2011)

Incomplete KD patients were found to be related with acute M. pneumoniae infection Ebrahim et al. (2011)

Many cases of KD simultaneously infected with Epstein–barr virus and M. pneumoniae were identified Huang et al. (2012)

MP infection occurs in the elderly population, and the respiratory tract involvement rate is higher in KD patients Tang et al. (2016)

The MP infection rate in KD patients was significantly higher than that those observed in non-KD patients Ding et al. (2021)

M. pneumoniae infection may be associated with a reduced incidence of small CAA in KD patients Wang et al. (2021)

The serological test for M. pneumoniae infection was positive in one case of acute KD patients Huang et al. (2022)

A lack of evidence showing association between M. pneumoniae infection and KD induction Strigl et al. (2000)

Chlamydia

The positive rate of serum C. pneumoniae IgM antibody in KD was higher than those in control group Numazaki and Chiba (1996)

A deficiency evidence of C. pneumoniae infection associated with KD occurrence Chua et al. (2000)
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pathway in endothelial progenitor cells are also involved in LCWE-
induced coronary artery disease, thereby contributing to the 
development of KD pathogenesis (Wang et  al., 2016). Moreover, 
LCWE was likewise suggested to function as immunogenic for 
proinflammatory T helper (Th) 1, Th17, and CD8+ T cells and 
inducible regulatory T cells (iTreg) (Noval Rivas et al., 2017; Hsieh 
et  al., 2021). Taken together, the systematic vasculitis induced by 
CAWS or LCWE in mice resembles pathological features observed in 
KD patients, demonstrating the causative roles of etiological agent 
infection and related PAMP/MAMP signaling activation in inducing 
KD vasculitis (Table 1).

3 Summary and perspective

Taken together, various pathogens identified in KD were all 
suggested to be the critical triggers in causing systematic vasculitis, 
and these pathogens were demonstrated to work independently or 
synergistically to potentiate abnormal immune responses by 
inducing pyroptosis and/or proinflammatory cell death, hence 
leading to systematic vasculitis in KD (Figure 1). However, whether 
these pathogens are direct causes or merely the accompanying 
pathogens after KD induction remains elusive. Additionally, the 
causative agent of KD remains ambiguous, and several questions 
remain to be  clarified. First, those pathogens suggested to 
be  involved in the pathogenesis of KD largely rely on PCR and 
serological methods using a relatively small sample size. Second, 
the differences in timing of obtaining the blood sample and 
constraints of the study design used to measure pathogens in KD 
patients by different investigators could make pathogen 
identification inconsistent. Third, whether KD is caused by a single 
pathogen or is the combined result of more than one agent remains 
to be investigated. Consequently, the relationship between pathogen 
infection and KD vasculitis is far more complex than currently 
appreciated. Caution should be  exercised in the clinic when 
considering the possible agents merely based on the symptom 
similarities between KD and other infectious diseases. Importantly, 
given that the recognition of the infectious origin of KD is a critical 
prerequisite to understanding its pathogenetic mechanism, more 
intense research using artificial intelligence, metagenomic 
sequencing and culturing specific pathogens isolated from KD 
patients from multiple centers and then verifying each of them in 
animal models could help uncover the underlying mechanisms of 
pathogen infections involved and thus facilitate the development of 
novel intervention strategies for Kawasaki disease.
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