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and construction of full-length 
infectious cDNA clone of papaya 
ringspot virus-HYD isolate and its 
efficient in planta expression
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Papaya ringspot virus (PRSV) is a devastating Potyvirus that causes papaya ringspot 
disease in Carica papaya plantations globally. In this study, the complete genome 
sequence of a PRSV isolate from Shankarpalli, Telangana, India, was reported and 
designated as PRSV-HYD (KP743981.1). The genome is a single-stranded positive-
sense RNA comprising 10,341 nucleotides. Phylogenetic analysis revealed that 
PRSV-HYD is closely related to PRSV Pune (Aundh) isolate with 92 and 95% 
nucleotide and amino acid sequence identity, respectively. To develop infectious 
cDNA (icDNA), the complete nucleotide sequence of PRSV-HYD was cloned 
between the right and left borders in the binary vector pCB301 using BglII and 
XmaI restriction sites. Cauliflower mosaic virus (CaMV) double promoter (35S) was 
fused at the 5′-end and Avocado sunblotch viroid (ASBVd) ribozyme (RZ) sequence 
was fused to the 3′ end to generate an authentic 3′ viral end in the transcribed 
mRNAs. The icDNA generated was mobilized into the Agrobacterium tumefaciens 
EHA 105, and the agrobacterial cultures were infiltrated into the natural host C. 
papaya and a non-host Nicotiana benthamiana plants; both did not show any 
symptoms. In RT-PCR analysis of RNAs isolated from N. benthamiana, we could 
detect viral genes as early as 3  days and continued up to 28  days post infiltration. 
Alternatively, virion particles were purified from agroinfiltrated N. benthamiana 
plants and introduced into C. papaya by mechanical inoculation as well as by 
pinprick method. In both cases, we could see visible systemic symptoms similar 
to that of wild type by 40  days. Additionally, we studied the expression patterns of 
the genes related to plant defense, transcription factors (TFs), and developmental 
aspects from both C. papaya and N. benthamiana.
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1 Introduction

Carica papaya is an extensively cultivated, highly valued fruit crop due to its manifold 
nutritional and medicinal advantages (de Oliveira and Vitória, 2011). According to the FAO 
statistical database, 2020, India is the highest papaya-producing country in the world, with an 
annual yield of 5.7 million metric tonnes. However, like most crops, C. papaya farming is 
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vulnerable to several pathogens, including bacteria, fungi, and viruses. 
Various viral pathogens from diverse families, such as Potyviridae, 
Alphaflexiviridae, Geminiviridae, Tospoviridae, and Solemoviridae, are 
commonly known to infect C. papaya plants. The Potyviridae family 
alone has 244 plant viruses classified into 12 genera, with most species 
belonging to the Potyvirus genus (Inoue-Nagata et al., 2022) infecting 
several economically significant crops, such as banana, beans, peanuts, 
chili, maize, watermelon, papaya, potato, and tobacco.

Papaya ringspot disease (PRSD) is the most destructive viral 
disease affecting C. papaya plants worldwide, as it poses a significant 
threat to the economies of the countries that produce papaya 
(Tripathi et  al., 2008). The causative agent, Papaya ringspot virus 
(PRSV), is a Potyvirus, that can infect its host at any stage of growth 
in a systematic manner, resulting in a severe chlorotic and mosaic 
pattern on leaves, water-soaked streaks on leaf petioles and trunks, 
deformed fruits with ring-like spots, distorted and shoestring-like 
appearance of leaves along with reduced photosynthetic efficiency 
(Gonsalves et al., 2010). PRSV can infect Caricaceae, Chenopodiaceae, 
and Cucurbitaceae family members experimentally. Based on the host 
range, it has two subtypes: PRSV-P and PRSV-W (Yeh, 1984). More 
than 24 species of aphids are involved in the transmission of PRSV in 
a non-persistent manner, with Myzus persicae, Aphis gossypii, and 
A. craccivora being the most efficient ones (Kalleshwaraswamy and 
Kumar, 2008). The PRSV genome is comprised of a 10.3 kb positive-
sense single-stranded RNA containing a single open reading frame 
(ORF), which encodes a single large polyprotein and a ribosomal 
frameshifting product PIPO (Chung et al., 2008; Gonsalves et al., 
2010). The polyprotein gets cleaved into 10 different mature proteins 
by three of its own proteases: P1 pro, HC-Pro, and NIa-Pro (Yeh et al., 
1992; Tripathi et al., 2008).

Infectious cDNA clones of plant viruses have been proven to 
be highly effective tools for the confirmation of Koch’s postulates, 
reverse genetic approaches, selecting plant in-breeding programs, and 
investigating the intricate interaction between viruses and their hosts 
(Navas-Hermosilla et  al., 2021). This approach offers invaluable 
insights into the viral life cycle and pathogenesis, ultimately facilitating 
a better understanding of such processes (Boyer and Haenni, 1994). 
Since the inception of the first infectious clone of the Brome mosaic 
virus (BMV) (Ahlquist et al., 1984), agrobacterium-mediated icDNAs 
have been engineered for several plant viruses, paved the way for 
molecular manipulations and functional characterization studies in 
planta and greatly expanded the scope of research in this field (Díaz-
Cruz et al., 2018).

The study of plant viruses has been primarily directed toward 
their detrimental impact on crop plants (Anderson et al., 2004; Nelson 
and Citovsky, 2005). To safeguard themselves from these threats, 
plants employ pre-existing defense mechanisms to recognize 
elicitor(s) linked to the attacker and initiate the appropriate defense 
responses (Zhou and Zhang, 2020). However, many viruses encode 
RNA-silencing suppressor proteins to prevent the recognition of small 
interfering RNA (siRNA), inhibiting the RNA-silencing pathway 
(Zhao et  al., 2016). Plant hypersensitive response against abiotic 
stresses includes the formation of reactive oxygen species (ROS), 
induction of salicylic acid (SA) and jasmonic acid (JA) signaling, and 
PR gene response (Akbudak et al., 2020). Transcription factors (TFs) 
are highly sought after for genetic engineering because they regulate 
stress-related genes (Baillo et al., 2019). Manipulating TFs has become 
a popular research topic, as many respond to stress and control several 

downstream genes, making them promising candidates for improving 
plant stress tolerance (Hoang et al., 2017). Many TF families, such as 
MYB, bZIP, NAC, ERF, and many more, have been identified to 
be involved in biotic stress response in plants (Ng et al., 2018).

Viral infections significantly impact plant growth, regenerative 
ability, and physiological metabolism (Jiang and Zhou, 2023). A recent 
study highlighted the crucial role of cytokinin(s) in regulating the 
transcriptional expression of downstream genes during various stages 
of leaf development (Wu et al., 2021). Jasmonates (JA) is another type 
of phytohormone that regulates defenses against herbivores and 
pathogens and plays a crucial role in plant development (Goossens 
et  al., 2016). When viruses invade plants, they undergo various 
physiological and molecular changes, including stunted growth, 
poorly developed leaves, chlorophyll degradation and consequently 
leaf senescence, programmed cell death (PCD), and autophagy 
(Espinoza et al., 2007; Park et al., 2007; Tang and Bassham, 2018; Wu 
et al., 2021).

The unavailability of a significant number of complete PRSV 
genome sequences from different geographical regions of India has 
been a substantial limitation in understanding the molecular basis of 
papaya ringspot disease severity at the national and global levels. It is 
essential to surveil the circulating PRSV strains to keep track of the 
genotypic and phenotypic traits of the host plant. A comparative 
study regarding the agroinfectivity of the infectious cDNA in the 
natural host and non-host plants was conducted to monitor plant 
response(s) based on the expression change of essential plant genes 
and TFs.

2 Materials and methods

2.1 Field survey and virus isolate

During field surveys, a papaya orchard was identified at the 
Shankarpalli mandal (17° 28′ 7.04″ N, 78° 7′ 54.16″ E) of Rangareddy 
district, Telangana, India, where the leaves of several plants appeared 
yellowish, distorted and shoestring-like. The leaf samples from 
different plants of that orchard were collected and brought to the 
laboratory for further analysis. The presence of PRSV was confirmed 
by performing DAC-ELISA and RT-PCR analysis 
(Supplementary Figure S1A). Based on these analyses, one sample 
(Shankarpalli 4) was chosen for further analysis.

2.2 Total RNA extraction, cDNA synthesis, 
and cloning of cDNA fragments

Total RNA was isolated from the infected leaf samples using 
TRIzol® reagent (Invitrogen) following the manufacturer’s 
instructions. First-strand cDNA synthesis was carried out using 
primers designed (Supplementary Table S1) based on the complete 
genome sequence of the PRSV-Del isolate (Accession no. EF017707.1) 
with the help of SuperScript™ III Reverse Transcriptase (Invitrogen). 
This cDNA mixture was diluted up to 50 μL to amplify the full-length 
viral genome in overlapping fragments using several combinations of 
sense and antisense primers and Taq DNA polymerase (NEB). The 
PCR products were purified using a QIAquick gel extraction kit 
(QIAGEN) and ligated in pGEM-T Easy (Promega) TA cloning vector 
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following the manufacturer’s instructions. Nine cDNA clones 
spanning the entire genome length were designated PK1.6- PK9.2 and 
selected for sequencing analysis (Figure 1B).

2.3 Complete genome sequencing and in 
silico analysis of PRSV-HYD

To obtain the complete genome sequence of PRSV-HYD, 
we sequenced a minimum of 3 positive clones for each of the nine 
cDNA clones on both strands with the help of sequencing primers 
(Supplementary Table S1) using the Sanger’s dideoxy method by 
3,500 XL Genetic analyzers (ThermoFisher Scientific). Authentic 
5′- and 3′- terminal sequences of PRSV cDNA were confirmed by 
using SMARTer® 5′ RACE and 3′ RACE kits (TaKaRa Bio) by 
following the manufacturer’s instructions. A minimum of 5 
independent clones were sequenced to confirm the termini. The 
obtained raw sequences from 9 different pGEM-T easy clones were 
trimmed and assembled using PRSV-Del (Accession no. 
EF017707.1) genome sequence as a template. To identify ORFs, the 
ORF finder tool1 was used. In silico translation was performed using 
the translate tool by ExPASy (Gasteiger et al., 2003). The full-length 
nucleotide sequence and the in silico translated polyprotein 

1 https://www.ncbi.nlm.nih.gov/orffinder/

sequences were used for blastn and blastp analysis, respectively. 
This helped us obtain closely related PRSV sequences from the 
NCBI database based on sequence homology. Phylogenetic analysis 
was carried out using MEGA-X version 10.1.8 with the Maximum-
likelihood method with the Jones-Taylor-Thornton (JTT) model 
(for polyprotein sequences) with 1,000 bootstrap replicates (Kumar 
et al., 2018).

2.4 Infectious cDNA (icDNA) construction 
for PRSV-HYD

To construct PRSV-HYD icDNA, TRIzol (Invitrogen)-extracted 
total RNA was sequentially reverse transcribed using SuperScript™ 
III Reverse Transcriptase (Invitrogen) and three sequence-specific 
primers (Supplementary Table S1) as shown in Figure 2A. Further, 
using Phusion™ High-Fidelity DNA Polymerase (NEB), the cDNAs 
were converted into three overlapping PCR amplified fragments 
designated as PG1, PG2, and PG3 (Figure 2A), encompassing the full-
length PRSV-HYD genome with a minimum of 50 nucleotide overlap. 
By performing primer overlap extension PCR, Cauliflower mosaic 
virus (CaMV) 35S double promoter sequence containing BglII 
restriction site was fused to the 5′ end of PG1 fragment. Similarly, a 
ribozyme (RZ) sequence from Avocado sunblotch viroid (ASBVd) 
followed by XmaI restriction site was added at the 3′ end of PG3 
fragment (Gopinath et al., 2005). PG1, PG2, and PG3 fragments were 
double digested with BglII-MluI, MluI-StuI, and StuI-XmaI, 

FIGURE 1

Symptomatology, complete genome sequencing, and the putative genome organization of PRSV-HYD isolate. (A) The infected leaf and fruit samples 
were collected based on the visible symptoms- ringspots on fruits and distorted leaves. (B) The full-length PRSV-HYD genome was converted into nine 
overlapping cDNA fragments, amplified, and cloned into the pGEM-T Easy vector (Promega). These nine TA clones were sequenced on both strands, 
with three biological replicates of each. Sequences obtained from each clone are as follows: PK1.6- nucleotide 1–1,581, PK2.5–1,538-3362, PK3.3–
3,040-5020, PK4.2–4,610-5429, PK5.2–5,330-6700, PK6.3–6,200-8088, PK7.5–7,691-8488, PK8.6–8,300-10,317, and PK9.2–8,985-10,341. (C) The 
deduced genomic map of PRSV-HYD with the exact position of individual genes and putative cleavage sites of the proteins.
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respectively. The fragments were gel-purified using a QIAquick gel 
extraction kit (QIAGEN) and ligated into the vector backbone (binary 
vector pCB301) digested with BglII/XmaI (Figure 2A). The ligation 
mix was transformed into competent ElectroMAX™ Stbl4™ cells 
(Invitrogen) by electroporation (25 μF, 200 Ω, 1200 V) in a Gene pulser 
XCell (Bio-Rad). A total of six clones were confirmed by colony PCR 
and restriction digestion. All six positive clones were sequenced on 
both strands using sequence-specific primers and matched entirely 
with the full-length PRSV-HYD sequence. A minimum of three 
positive clones (pCB301-icPRSV-HYD) were mobilized into the 
Agrobacterium tumefaciens EHA105 strain by electroporation using 
the parameters mentioned above.

2.5 Agroinoculation of plants

Agroinoculation of plants with pCB301-icPRSV-HYD in 
A. tumefaciens EHA105 cells was carried out following the method 
described by Gopinath et al. (2005). Briefly, A. tumefaciens EHA105 
cells containing pCB301-icPRSV-HYD were allowed to grow in 
Luria broth (LB) supplemented with Rifampicin (50 μg/mL) and 

Kanamycin (50 μg/mL) at 28°C with 180 rpm of continuous shaking. 
1 mL of the pre-culture was used to inoculate 100 mL of 
LB-Rifampicin-Kanamycin supplemented freshly with 10 mM sterile 
2-(N-Morpholino) ethanesulphonic acid (MES) pH 5.85 and 20 mM 
of acetosyringone, and the culture was grown for 36 h at 28°C 
incubator with 180 rpm shaking. Cells were harvested by 
centrifugation at 6000 rpm for 10 min and then resuspended in 
10 mL of infiltration buffer (10 mM MgCl2 and 10 mM MES pH 5.85) 
with 100 μM acetosyringone. This suspension was incubated at room 
temperature for 3 h. A. tumefaciens carrying empty vector pCB301 
served as a negative control. The suspension was diluted to OD595 0.1 
with infiltration buffer and infiltrated at the abaxial surface of 25 
Nicotiana benthamiana plants using a 2 mL syringe without a needle. 
Infiltrated leaves were harvested from all these plants at a regular 
interval of 3 days. Then, virion particles were purified from this 
batch of N. benthamiana plants at 28 dpi according to the method 
explained by Moghal and Francki (1976). The purified virus particles 
were mechanically inoculated onto the C. papaya leaves (3-leaf 
stage) and pinpricked the young stems by sterile needles (Zhang 
et al., 2021). All the agro-inoculated plants were maintained inside 
an insect-free climate chamber (25°C/21°C Day/night temperature, 

FIGURE 2

PRSV-HYD infectious clone preparation and its infectivity in different hosts. (A) The schematic representation of the PRSV-HYD infectious clone 
preparation; three sequence-specific primers were used for reverse transcription, followed by amplification using Phusion DNA polymerase (NEB). BglII 
restriction site followed by CaMV 35S double promoter was fused to the 5′ terminus by primer overlap extension PCR. Similarly, the ASBVd RZ 
sequence followed by the XmaI restriction site was added to the 3′ terminus. Then, restriction digestion was performed using BglII-MluI (PG1), MluI-
StuI (PG2), and StuI-XmaI (PG3). These three double-digested fragments were ligated into the pCB301 vector backbone. (B) Carica papaya leaves 
showed mild leaf distortion symptoms at 40 dpi, and the symptom severity was observed at 60 dpi. In the case of N. benthamiana, no symptoms were 
observed on the inoculated leaves (14 dpi) or systemic leaves (28 dpi). Empty vector pCB301 in A. tumefaciens served as control. (C) Immunoblot 
analysis using PRSV coat protein (CP) specific antibody showed expression of CP in C. papaya leaves (60 dpi) inoculated with the purified virus particles 
from agroinfiltrated N. benthamiana plants (Lane-1), agroinfiltrated N. benthamiana leaves (28 dpi) (Lane-2), and purified virus particles from the 
agroinfiltrated N. benthamiana plants (28 dpi) (Lane-3). Wild-type PRSV-infected C. papaya leaves served as a positive control (Lane-4), and empty 
vector pCB301 in A. tumefaciens served as mock (Lane-5). (D) Real-time PCR analysis showed significant upregulation of P1, HC-Pro, and CP genes in 
both C. papaya (I) and N. benthamiana (II) plants.
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70% relative humidity, 16 h photoperiod at 150 μmol s−1  m−2 
light intensity).

2.6 Analysis of agro-inoculated icDNAs in 
Carica papaya and Nicotiana benthamiana

To check the functionality of the icDNA, two approaches were 
used. Initially, total RNAs were isolated from N. benthamiana 
leaves infiltrated with PRSV icDNA from 3 to 28 days at regular 
intervals. RT-PCRs were performed for P1, HC-Pro, and CP genes 
individually. However, we  have relied on the development of 
symptoms in the case of C. papaya. Secondly, total soluble proteins 
were isolated from the N. benthamiana and C. papaya following 
the protocol described by Gopinath et al. (2000). Immunoblot 
analysis was performed using PRSV CP-specific antiserum using 
chemiluminescent detection system (Thermo Fisher Scientific) 
according to the manufacturer’s instructions.

2.7 Quantitative analysis of virus and host 
genes from Nicotiana benthamiana and 
Carica papaya

Total RNA isolated from the agroinfiltrated plants were 
quantified using NanoDrop  2000 UV–Vis Spectrophotometer 
(ThermoFisher Scientific). Primers targeted for the genes 
encoding three viral proteins (P1, HC-Pro, and CP) and host 
genes encoding pathogenesis-related gene-1 and 10 (PR1a and 
PR10), defensin-like protein 1.2 (PDF1.2), Ran-binding protein 
1a (RanBP1); host transcription factors basic leucine zipper 60 
(bZIP60), NbNAC042, Ethylene responsive transcription factor-5 
(ERF5), MYB44, Isopentenyl transferase-1 (IPT1), Lonely Guy-1 
(LOG1), Allene oxide cyclase-1 (AOC1), 12- oxo-phytodienoic 
acid reductase-2 (OPR2), Bax inhibitor-1 (BI-1) 
Staygreen1 (SGR1), senescence-associated gene-12 (SAG12), 
autophagy 8f (ATG8f) were synthesized using GenScript 
(Supplementary Table S2). cDNA was synthesized from the total 
RNA, as described earlier. We  performed Real-time PCR on 
Mastercycler Realplex (Eppendorf, Germany), as reported 
previously (Supriya et al., 2022). The actin genes of C. papaya and 
N. benthamiana (AY179605.1) were used as an internal controls 
for respective plants. The relative expression levels of the 
undertaken genes were estimated using the ΔΔCT method (Livak 
and Schmittgen, 2001). Three biological replicates were used for 
every individual gene.

2.8 Statistical analysis

The data presented represents the mean value of three 
treatments, each containing three replicates. The data was analyzed 
using a two-way ANOVA. The error bars on the graph represent the 
standard deviation (± SD) of the mean values. The Duncan multiple 
range test (p  ≤ 0.05) was used to determine significant 
treatment differences.

3 Results

3.1 Complete genome sequencing of 
PRSV-HYD

In this study, we collected C. papaya leaves and fruits suspected 
to be infected with PRSV (Figure 1A). The presence of PRSV was 
confirmed by DAC-ELISA and RT-PCR analysis 
(Supplementary Figure S1). We generated nine overlapping PCR 
amplified fragments by performing RT-PCR using different 
combinations of primers, followed by successful TA cloning of these 
fragments. Positive clones were confirmed through colony PCR 
(data not shown). The positive clones were designated as PK1.6, 
PK2.5, PK3.3, PK4.2, PK5.2, PK6.3, PK7.5, PK8.6, and PK9.2 
(Figure 1B). From the sequencing data of these nine overlapping TA 
clones (Figure  1B), complete genome sequence was deduced 
(Figure  1C). We  determined the terminal nucleotide sequences 
using 5′- and 3′- RACE techniques (Supplementary Figure S2). The 
complete genome is 10,341 nucleotides in length. A single large 
putative ORF was identified, starting from the 86th nucleotide and 
ending at the 10,111th nucleotide of the genome. Putative sizes of the 
coding and non-coding regions were identified (Table  1). 3,342 
amino acids long polyprotein sequence was identified by in silico 
analysis. We identified the putative cleavage sites of the functional 
proteins (Figure 1C) by aligning them with other PRSV sequences 
from the NCBI GenBank database. We deposited the deduced full-
length genome sequence in the NCBI GenBank database with 
accession number KP743981.1. We have also identified conserved 
regions based on previous reports of the known potyviruses available 
in the NCBI databases (Supplementary Figure S3). Some of those 
notable conserved motifs are G496SSG in P1, F726RNK in HC-Pro, 
N2868GDDL in NIb, D3063AG in CP, and a stretch of KE amino acids 
at the N-terminus of the CP.

3.2 Phylogenetic analysis of PRSV-HYD

A maximum likelihood tree was created with 1,000 bootstrap 
replicates using the in silico-translated PRSV-HYD polyprotein 
sequence (Accession no. AKQ98195.1) and other available PRSV 
polyprotein sequences from different regions worldwide. PRSV Pune 
(Aundh) and PRSV-Del isolates (Accession no. ASV48700.1 and 
ABJ74175.1, respectively) were present within the same clade as 
PRSV-HYD, with PRSV Pune (Aundh) being the closest neighbor. 
The isolates have been grouped into distinct clusters based on their 
geographical locations, and individual clusters have been denoted 
with distinct color codes (Figure 3).

Another maximum likelihood tree was constructed with 1,000 
bootstrap replicates involving PRSV-HYD and 25 other Potyviral 
polyprotein sequences. Zucchini tigre mosaic virus (ZTMV) USA 
isolate (ATY37425.1), Papaya leaf distortion mosaic virus 
(PLDMV) Hainan isolate (AGC54443.1), and Cucurbit vein 
banding virus (CVBV) Argentina isolate (ASB15795.1) and 
PRSV-HYD (AKQ98195.1) are present within the 
same clade. ZTMV is the closest neighbor to PRSV-HYD 
(Supplementary Figure S4).
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Furthermore, PRSV-HYD complete nucleotide and amino 
sequence shows up to 92 and 95% of sequence homology, respectively, 
with other Asian isolates. The 5′- non-coding region and P1 coding 
region showed the highest sequence diversity of up to 21 and 33%, 
respectively, which is the maximum compared to other genomic 
regions. P1 amino acid sequence showed up to 41% of sequence 
diversity compared to the Asian isolates (Table 1).

3.3 Construction of PRSV-HYD icDNA and 
its expression patterns in planta

To Construct PRSV-HYD icDNA, the three amplified cDNA 
fragments PG1, PG2, and PG3 were (3.7 kb, 3.2 kb, and 3.4 kb in size, 
respectively) used. By employing diverse molecular manipulations, 
PRSV-HYD infectious cDNA was constructed in the binary vector 
pCB301 under the right and left borders of the T-DNA region. 
Cauliflower mosaic virus 35S double promoter was fused at the 5′ end 
of the genome for efficient transcription. Care was taken that no 
additional sequences are introduced in the transcribed RNAs. 
Similarly, at the 3′ end, Avocado sunblotch viroid RZ sequence was 
fused for cis preferential cleavage and generation of authentic viral 
ends. The resultant clones were sequence-confirmed and designated 
as pCB301-icPRSV-HYD (Figure  2A). Upon agroinfiltration, no 
visible symptoms were observed up to 28 dpi in N. benthamiana 
plants, indicating this could be  an asymptomatic host. However, 
RT-PCR analysis demonstrated the presence of P1, HC-Pro, and CP 
gene products in all the N. benthamiana plants infiltrated from 3 dpi 
up to 28 dpi (Supplementary Figure S5). This is clear evidence of the 
efficient transcription of the icDNAs introduced under the CaMV 35S 
double promoter.

We have not observed any visible symptoms up to 120 dpi in 
C. papaya plants infiltrated with icDNAs. The plants are not as 

conducive to infiltrations as N. benthamiana. Alternatively, 
we have purified virus particles from N. benthamiana plants (28 
dpi) infiltrated with the icDNAs using the protocol of Moghal and 
Francki (1976). This purified virus was introduced into the 
C. papaya plants by mechanical inoculation, and the virus 
particles were introduced into the young stems by the pinprick 
method.14 out of 25 mechanically inoculated plants and 20 out of 
25 plants inoculated by the pinprick method, started showing 
symptoms 40 days post-inoculation, indicating the infectivity of 
infiltration-generated virus particles and the symptom severity 
increased by 60 dpi (Figure 2B). These results were confirmed in 
immunoblot analysis using PRSV-Del CP polyclonal antibody 
(Figure 2C). The results were further substantiated in Real-time 
PCR, where we observed the upregulation of the three viral gene 
products CP, P1, and HC-Pro in both N. benthamiana and 
C. papaya (Figure  2D). The newly emerging leaves of both 
C. papaya and N. benthamiana were analyzed for the presence of 
viral CP gene by RT-PCR analysis to confirm the systemic 
movement of the virus particles. We could detect the PRSV CP 
gene in the systemic leaves of C. papaya indicating its systemic 
spread beyond the infiltrated leaves (Supplementary Figure S6A). 
However, we failed to detect PRSV CP gene from the systemic 
leaves of N. benthamiana indicating its inability to go systemic 
(Supplementary Figure S6B).

3.4 Comparison of host-specific gene 
expression patterns between natural host 
and non-host of PRSV-HYD

All the real-time PCR analyses were performed using total RNA 
extracted from 28 dpi N. benthamiana and 60 dpi C. papaya plants. 
In C. papaya, PR1a showed no change, PR10 and RanBP1 were 

TABLE 1 Putative sizes of individual genes and mature proteins of PRSV-HYD were identified and documented.

Genomic region Size in bp  
(amino acids)

% Sequence identities with 
different PRSV strains Asian

American European

Whole genome 10,341/ (−) 81–92 86–88 87–88

Polyprotein −/ (3342) (87–95) (91–92) (92)

5′ UTR 85/ (−) 79–100 (−) 79–100 (−) 79 (−)

P1 1,638/ (546) 67–89 (59–87) 75–78 (71–75) 77 (74–75)

HC-Pro 1,371/ (457) 84–94 (92–98) 89–91 (96–97) 91 (96–97)

P3 1,035/ (345) 81–92 (88–95) 88–90 (92–94) 89 (93)

6 K1 156/ (52) 81–92 (77–96) 85–92 (90–100) 88 (90)

CI 1905/ (635) 80–94 (93–98) 90–92 (97–98) 91–92 (98–99)

6 k2 171/ (57) 80–92 (87–95) 86–92 (89–96) 90–91 (91)

VPg 567/ (189) 80–94 (92–97) 87–91 (93–97) 91 (96)

NIa-Pro 714/ (238) 80–93 (91–97) 88–91 (94–96) 89 (95)

NIb 1,611/ (537) 81–93 (89–95) 88–90 (92–95) 89 (96)

CP 858/ (286) 85–95 (85–97) 86–88 (87–92) 87–88 (94)

3′ UTR 230/ (−) 88–94 (−) 90–94 (−) 91–92 (−)

Pairwise percent nucleotide and amino acid sequence identities of different genomic regions of PRSV-HYD compared with other PRSV isolates from Asian, American, and European countries 
are shown. Protein size and amino acid sequence identities are shown in parentheses. PRSV-HYD P1 has been identified as the most diverse genomic region.
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upregulated by 1.4-fold and 2.4-fold, respectively, whereas PDF1.2 
was significantly downregulated (Figure  4A). PR1a, PR10, and 
RanBP1 genes were significantly upregulated in N. benthamiana, but 
PDF1.2 showcased unchanged expression compared to control plants 
(Figure 4B). The expression levels of some transcription factors, such 
as MYB44, basic Leucine zipper-60 (bZIP60), NAC042, and Ethylene 
response factor-5 (ERF5), were checked. In the case of C. papaya, all 
four transcription factors showed significant upregulation, with 
bZIP60 and EFR5 showing the highest level of upregulation by 42- 
and 13-fold, respectively (Figure 4C). N. benthamiana showed 1.26-, 
1.25- and 1.20-fold upregulation of MYB44, NAC042, and ERF5, 
respectively, but there was no change in bZIP60 expression 
(Figure 4D). Some genes that are directly related to the physiology of 
plants, such as Isopentenyl transferase-1 (IPT1), Lonely Guy-1 
(LOG1), Allene oxide cyclase-1 (AOC1), 12- oxo-phytodienoic acid 
reductase (OPR2), and Autophagy-related protein 8f (ATG8f) were 
also checked. The host plants showed significant downregulation of 
all these five genes, whereas the non-host N. benthamiana exhibited 
no change in expression levels. When we checked the expression 
levels of Bax inhibitor-1 (BI-1), Staygreen-1 (SGR1), and senescence-
associated gene-12 (SAG12), these genes were found to be upregulated 
by 2.6, 7.3, and 3.4-fold, respectively in C. papaya (Figure 4E). On the 
other hand, BI-1 and SGR1 showed a 1.17- and 1.13-fold change in 
N. benthamiana, whereas SAG12 showed 1.1-fold downregulation 
(Figure 4F).

4 Discussion

The severity of PRSV infection in papaya orchards is rising 
alarmingly with time (Premchand et al., 2023). The lack of availability 
of a significant number of full-length genomic sequences is one of the 
major drawbacks in viral disease management. We sequenced and 
confirmed PRSV infection in the samples from an orchard mentioned 
earlier (Figure 1). This full-length genome sequence provides us with 
information about the diverse nature of this virus, conserved regions 
or motifs, mutation-prone genomic regions, and many more. The 
presence of some of the conserved motifs is essential for successful 
PRSV infection, as different motifs have different functions such as 
GDSG motif is required for the protease activity of P1 (Adams et al., 
2005), FRNK within HC-Pro is involved in symptom development 
(Gal-On, 2000), GDD motif of NIb is important for RNA-dependent 
RNA polymerase activity (Liu et al., 2021), coat protein DAG motif is 
required for aphid transmission (Bravo et al., 2008), a region of KE 
repeats at the N-terminal region of coat protein with unknown 
function (Shukla et al., 1994), and many others. All these conserved 
motifs with minor modifications have been identified in PRSV-HYD, 
and the modifications could be due to the natural diversities that did 
not hinder the functionality. P1 is the most diverse functional protein 
among potyviruses (Tordo et al., 1995; Mishra et al., 2019). Our study 
showed the same outcome, with P1 showing maximum nucleotide and 
amino acid sequence diversities compared to other PRSV isolates. The 

FIGURE 3

Phylogenetic analysis of the polyprotein sequence of PRSV-HYD isolate (accession no. AKQ98195.1) along with 40 closely related PRSV polyprotein 
sequences retrieved from the NCBI database and a Moroccan watermelon mosaic virus (accession no. ANF99508.1) isolate as an outgroup. The 
sequences were aligned using ClustalW, and a maximum-likelihood phylogenetic tree was constructed with MEGA-X [14]. The numbers at the nodes 
represent the percentage of 1,000 bootstraps. Bootstrap values less than 50% are not shown. PRSV-Pune (Aundh) and PRSV-Del isolate (accession no. 
ASV48700.1 and ABJ74175.1) are present within the same clade as PRSV-HYD, with PRSV Pune isolate being the closest neighbor to PRSV-HYD, has 
been shown with a red triangle.
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5′ UTR was also more diverse than the 3′ UTR (Table 1). We can 
presume that the 5′ terminal of the PRSV genome might be more 
prone to random mutations than the 3′ terminal. This complete 
genome sequence data will contribute to the further understanding of 
PRSV epidemiology and sequence diversity studies.

ZTMV, PLDMV, CVBV, and PRSV-HYD sharing the same clade 
signifies their similar evolutionary origin. ZTMV-USA isolate 
(Accession no. ATY37425.1) is the closest to PRSV-HYD, and these 
two isolates share 67.2% of amino acid sequence homology, suggesting 
they might have a common or closely related ancestor. PRSV Pune 

(Aundh) (Accession no. ASV48700.1) is the closest relative to PRSV-
HYD, with a 95% amino acid sequence similarity, suggesting they 
might have a similar evolutionary origin (Figure 3).

The importance of having stable infectious cDNA clones for any 
RNA virus is well-known in the field of plant virology. Several 
infectious clones available for many potyviruses, such as 
Watermelon mosaic virus (WMV) (Desbiez et al., 2012), Potato virus 
Y (PVY) (Chikh Ali et  al., 2011), Tobacco vein mottling virus 
(TVMV) (Domier et  al., 1989), Zucchini yellow mosaic virus 
(ZYMV) (Gal-On et al., 1991), Soybean mosaic virus (SMV) (Bao 

FIGURE 4

Relative expression levels of different plant-specific genes from host (C. papaya) (A,C,E) and non-host (N. benthamiana) (B,D,F) plants. (A) It was 
observed that the genes PR1a showed no change, whereas PR10 and RanBP1 showed 1.4-fold and 2.4-fold upregulation. Meanwhile, PDF1.2 was 
significantly downregulated. (B) Significant upregulation of PR1a, PR10, and RanBP1 was observed in non-host plants, while PDF1.2 expression 
remained at a regular level. (C) All four TFs were found to be upregulated in host plants, with bZIP60 showing the highest upregulation of 42-fold. 
(D) MYB44, NAC042, and ERF5 showed 1.26-, 1.25- and 1.20-fold upregulation in expression levels in non-host plants, while bZIP60 was expressed at 
a regular level. (E) Cytokinin biosynthesis-related genes IPT1 and LOG1, Jasmonate biosynthesis genes AOC1 and OPR2, and autophagy-related gene 
ATG8f were significantly downregulated in host plants, while BI-1, SGR1, and SAG12 genes were upregulated significantly. (F) There were no significant 
changes in the expression levels of IPT1, LOG1, AOC1, OPR2, and ATG8f genes in non-host plants. BI-1 and SGR1 showed a 1.17- and 1.13-fold change, 
while SAG12 showed no change in expression.
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et al., 2020), Plum pox virus (PPV) (Riechmann et al., 1990), and 
many more. We  have successfully developed icDNA for PRSV-
HYD, which was agroinfectious in N. benthamiana; however, no 
visible symptoms appeared in the infiltrated plants, indicating this 
as an asymptomatic host (Figure 2). We have some limitations in 
the infiltration protocol of C. papaya. However, the infiltration-
generated virus particles from N. benthamiana were infecting the 
C. papaya plants efficiently, with systemic movement of the virus 
particles. As C. papaya is the natural host of PRSV-P, there might 
be certain essential factors that are present only in C. papaya plants 
that aid in the establishment and multiplication of PRSV. These 
factors may play a crucial role in promoting PRSV systemic 
infection. So, the absence of such factors can be  a reason for 
non-systematic infection in N. benthamiana.

The importance of PR genes is invaluable regarding the host 
response during any biotic or abiotic stress condition. PR1a gene is an 
activator of the Salicylate (SA) pathway and, thereby, plays an essential 
role in systemic acquired resistance (SAR) (Ali et al., 2018). PR10 
genes have been shown to possess anti-microbial activities during 
biotic stress (Chen et al., 2006). RanBP1 is another crucial gene of 
plants as it accumulates terpenoids that show resistance against several 
pathogens (Mizuno et al., 2019). The expression levels of the PR genes 
and RanBP1 were relatively lesser in the case of C. papaya plants 
compared to that in N. benthamiana, indicating that the natural host 
resistance is not strong enough against PRSV-HYD to overcome its 
symptoms. However, real-time PCR and immunoblot analysis proved 
that the virus replicates inside the non-host. However, the non-host 
plant has exerted resistance against the invasion of the virus, but the 
virus can still replicate without any symptoms. PDF1.2 is a gene of the 
plant defensin family. It is known to be a part of the innate immune 
system and is involved in jasmonate (JA)- dependent defense response 
(Manners et al., 1998; Brown et al., 2003). Downregulation of PDF1.2 
in the host but unchanged in the non-host can be described as the 
ability of the virus to overcome the innate immune barrier of the 
natural host but not the non-host (Figures 4A,B).

Transcription factors (TFs) are essential as they regulate several 
genes involved in different plant growth and development stages, 
metabolic pathways, and many other molecular events. MYB44 TF 
gets activated by ethylene, which has multiple roles in growth, 
development, defense responses, etc. (Adie et al., 2007; Iqbal et al., 
2017). Higher levels of MYB44 expression in C. papaya compared 
to N. benthamiana indicate that the latter has managed to minimize 
the effect of the virion particles on the developmental stages of the 
plant. Another important TF is NAC042, which was shown to be a 
modulator of defense response in N. benthamiana during viral 
infections (Ke et al., 2022). It was upregulated in both host and 
non-host, but like MYB44, the expression was higher in the host 
plant, signifying infection severity. Another important TF is 
bZIP60, which is involved in ER stress response as it regulates the 
genes involved in unfolded protein response (Xu et al., 2019). Its 
significant upregulation in host plants designates that these plants 
are under severe stress due to the presence of virion particles. 
However, no significant change of bZIP60 expression in the 
non-host plant may be  pointing toward a better resistance 
mechanism against the virus. ERF5 is necessary for plant innate 
immunity (Son et al., 2012). Elevated viral load has resulted in the 
expression of ERF5 being upregulated by 12-fold in the natural host, 
whereas just 1.2-fold increased expression in the non-host. This 

signifies that the non-host system has dealt with the adversity of the 
infection (Figures 4C,D).

Plant phenotypes can be significantly affected by viral infections, 
which can cause various symptoms that hinder growth, development, 
and productivity (Roossinck, 2010). The symptoms occur due to 
intricate molecular interactions between the virus and the host plant 
(Jiang and Zhou, 2023). Cytokinins (CKs) are plant hormones that 
stimulate cell growth and elongation and are instrumental in several 
developmental processes, such as transmitting nutritional signals and 
postponing senescence (Sakakibara, 2006). Additionally, CKs have 
been found to contribute to plant resistance against viral infections 
(Choi et  al., 2011). Two essential genes involved in the cytokinin 
biosynthesis pathway are IPT1 and LOG1 (Takei et al., 2001; Kurakawa 
et al., 2007). The significantly decreased transcript expressions of these 
two genes in the host plant might suggest the hindrance in CK 
production due to virus assembly, which ultimately contributes to the 
distorted phenotype and wilted leaves in plants. Contrarily, unchanged 
expressions of these two genes in non-host plants point toward its 
unaffected CK biosynthesis, correlated with unaltered phenotype and 
non-chlorotic leaves. During pathogen invasion, Jasmonic acid (JA) 
acts as a vital phytohormone in defense mechanisms (Sun et al., 2011). 
In the absence of JA, symptoms of PVY-PVX co-infection develop at 
an accelerated rate, whereas treatment with JA enhances resistance 
against double infection (García-Marcos et al., 2013). The biosynthesis 
pathway of JA involves the AOC1 and OPR2 genes (Eng et al., 2021). 
Significant downregulation of these genes indicates the impeded JA 
biosynthesis and, consequently, compromised virus resistance. 
Nevertheless, despite the occurrence of viral replication, maintained JA 
biosynthesis as proved by unaltered expressions of said genes, justifying 
the futile impact of the virus on the physiology of non-host plants.

Autophagy delivers non-functional intracellular components to 
vacuoles to regulate the host’s response to pathogens like viruses 
(Shoji-Kawata and Levine, 2009). ATG8 proteins are crucial in 
forming autophagosomes and selecting cargo for degradation. 
(Nakatogawa et  al., 2007; Johansen and Lamark, 2011). The 
expression of ATG8f is significantly suppressed during viral infection, 
indicating that the host is unable to undergo autophagy. However, 
maintained ATG8f expression in the non-host suggesting the 
occurrence of autophagy. Plants use PCD to defend themselves 
against different pathogens (Jorgensen et al., 2017). BI-1 is a well-
known suppressor of PCD (Watanabe and Lam, 2009). The virus has 
likely overcome the host’s resistance through PCD, as shown by the 
significant increase in BI-1 expression in the host. Conversely, while 
there is a change in BI-1 expression in the non-host, it is relatively less 
pronounced as compared to the host plant, suggesting effective 
usage of PCD.

The accumulation of viral CP inside chloroplasts was related to 
the induction of chlorotic symptoms during Tobacco mosaic virus 
(TMV) infection (Lehto et  al., 2003). It has been reported that 
Sugarcane mosaic virus (SCMV) HC-Pro has a specific interaction 
with the maize chloroplast precursor protein of Fd V, ultimately 
resulting in disturbances to the structure and function of chloroplasts 
(Cheng et  al., 2008). Staygreen-1 (Sgr-1) regulates chlorophyll 
degradation during leaf senescence (Park et  al., 2007). Based on 
current research, SAG12 is considered the most effective molecular 
marker for identifying senescence (Weaver et al., 1998). The chlorotic 
spots on the symptomatic leaves of the host plants are justified by the 
upregulated SGR1 and SAG12 gene expressions. On the other hand, 
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the absence of any chlorotic symptom or leaf senescence in the 
non-host could be due to the considerably lower expression levels of 
SGR1 and SAG12 compared to the host plant (Figures 4E,F). This 
entire study has been represented as a schematic diagram (Figure 5).

5 Conclusion

This study was conducted to characterize the PRSV-HYD isolate 
through complete genome sequencing. To our knowledge, it is the 
first report of PRSV isolate from South India to be fully sequenced. 
The PRSV-HYD genome differs significantly from other PRSV 
isolates in certain genomic regions, suggesting its evolving nature. It 
is essential to monitor the different circulating strains of PRSV to 
understand the phenotypic and genotypic characteristics of the 
infected host plants. Our comprehensive genome sequence data will 
aid future PRSV epidemiology and sequence diversity research. 
Moreover, this study is the first of its kind to report a complete 
infectious cDNA clone of PRSV from the Indian subcontinent. 
Despite the agroinfectivity of pCB301-icPRSV-HYD in both the host 
(C. papaya) and non-host (N. benthamiana) plants, only the host 
exhibited systemic infection with compromised expressions of genes 
related to cytokinin, jasmonic acid, and autophagy. Additionally, the 
virulence also affected the photosynthetic ability of the host by 
elevating chlorophyll degradation and consequently increasing 
chlorosis. Although the ability of this virus to be replicated, due to 

some unknown mechanism, the infectivity was subdued in non-host, 
proving the essential requirement of host factors for a successful 
systemic PRSV infection. This icDNA clone can be  aided in the 
further detailed study of this virus at the molecular level, investigate 
virus-vector interactions, or use it as a viral vector to express 
heterologous proteins.
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