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Insights into the composition and 
assembly mechanism of microbial 
communities on intertidal 
microsand grains
Meng Wang , Kun Zhao , Xuan Li  and Bin-Bin Xie *

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 
Qingdao, China

Introduction: Marine microorganisms are essential in marine ecosystems and 
have always been of interest. Currently, most marine microbial communities 
are studied at the bulk scale (millimeters to centimeters), and the composition, 
function and underlying assembly mechanism of microbial communities at the 
microscale (sub-100 micrometers) are unclear.

Methods: The microbial communities on microsand grains (40–100 µm, n  =  150) 
from marine sediment were investigated and compared with those on macrosand 
grains (400–1000 µm, n  =  60) and bulk sediments (n  =  5) using amplicon 
sequencing technology.

Results: The results revealed a significant difference between microsand grains and 
macrosand grains. Microsand grains had lower numbers of operational taxonomic 
units (OTUs(97%)) and predicted functional genes than macrosand grains and bulk-
scale samples. Microsand grains also showed greater intersample differences in the 
community composition and predicted functional genes than macrosand grains, 
suggesting a high level of heterogeneity of microbial communities at the microscale. 
Analyses based on ecological models indicated that stochastic processes dominated 
the assembly of microbial communities on sand grains. Consistently, cooccurrence 
network analyses showed that most microbial cooccurrence associations on sand 
grains were highly unstable. Metagenomic sequencing and further genome-scale 
metabolic modeling revealed that only a small number (1.3%) of microbe pairs 
showed high cooperative potential.

Discussion: This study explored the microbial community of marine sediments at 
the sub-100 µm scale, broadening the knowledge of the structure and assembly 
mechanism of marine microbial communities.
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Introduction

The organization of microbial communities influences various properties, such as 
metabolism, community stability, and intermicrobial interactions (Coyte et al., 2015; Nagara 
et al., 2017; Sheth et al., 2019). However, currently used methods for microbiome studies often 
result in the loss of microbial organization information (Sheth et al., 2019). For example, most 
complex microbial communities exhibit significant microscale (micrometres) heterogeneity 
(Kuroda et al., 2016; Leventhal et al., 2018; Armitage and Jones, 2019), and traditional bulk-scale 
(millimeters to centimeters) samples could contain thousands of subcommunities and provide 
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only average information on these subcommunities (Cordero and 
Datta, 2016; Shi et  al., 2020). In addition, current microbial 
community profiling methods, such as metagenomic sequencing, 
require homogenized material (Sheth et al., 2019). All these factors 
will lead to the loss of spatial information. Therefore, the distribution 
information on microbial communities at the microscale in diverse 
environments is poorly understood, although a few samples from 
environments such as the intestinal tract, oral cavity and activated 
sludge have been studied (Sheth et al., 2019; Shi et al., 2020; Chen 
et  al., 2022; Zhao et  al., 2023). Approximately 71% of the Earth’s 
surface is occupied by oceans, but knowledge of the microscale 
microbial distribution in marine environments is limited to the 17 
sand grains (grain size approximately 1 mm) reported by Probandt 
et al. (2018), and the distribution of marine microorganisms at the 
microscale (especially for the scale <100 μm) has not yet been studied.

Microbial interactions occur at the microscale (~100 μm) in most 
complex microbial communities (Gantner et al., 2006; Cordero and 
Datta, 2016), and various network models have been widely used to 
infer interactions between microorganisms (Faust and Raes, 2012; 
Yuan et al., 2021). Currently, most microbial community information 
is derived from bulk-scale samples. Thus, it is worth noting that the 
mismatch between the spatial scales of species interactions and 
physical dimensions of typical microbial community samples may 
lead to erroneous conclusions about population parameters and 
species interactions (Armitage and Jones, 2019). Studies at very small 
scales will yield more reliable inferences about ecological mechanisms 
structuring microbial communities (Cordero and Datta, 2016; 
Armitage and Jones, 2019).

The microbial community assembly mechanism is a central issue 
in microbial ecology. The neutral-based theory suggests that stochastic 
processes, such as birth, death and speciation, shape biological 
communities (Chave, 2004; Ning et al., 2020). Conversely, the niche-
based theory suggests that biological communities are regulated by 
deterministic abiotic and biotic factors, including environmental 
factors and species interactions (Chave, 2004; Ning et  al., 2020). 
Recently, several studies have revealed the assembly mechanisms of 
marine microbial communities and found that the mechanisms varied 
across different marine environments (Allen et al., 2020; Zhang et al., 
2022). Since these studies were conducted using bulk-scale samples, 
the microbial community assembly mechanism at the microscale 
remains unclear. Microbial communities in the intertidal zone are 
affected by water flow (Zhang et al., 2022), and the environmental 
factors (e.g., temperature and oxygen content) of sand grains at 
different depths may differ (Zhou et al., 2013), while the exchange of 
metabolites between microorganisms is convenient at the microscale 
(Cordero and Datta, 2016). These factors may affect the assembly of 
microbial communities at the microscale, making it interesting to 
study the assembly mechanism of microbial communities on 
sand grains.

In this study, the microbial communities of intertidal surface 
sediment bulk-scale samples (1–2 cm), macrosand grains (400–
1,000 μm), and microsand grains (40–100 μm) were studied using 
amplicon sequencing technology and metagenomic sequencing 
technology. The microbial community compositions and predicted 
functions were compared between samples. Ecological models were 
employed to investigate the assembly mechanism of the community. 
Cooccurrence network analyses and the genome-scale metabolic 
modeling-based approach were used to study the cooperative potential 

among microbes. The results of this study will expand the 
understanding of the distribution and assembly of microbial 
communities on marine sand grains.

Materials and methods

Sample collection

The intertidal surface sediment samples were collected at Qingdao 
Binhai Park, Shandong Province (36°22’ N, 120°41′ E) in May 2023 
using sterilized stainless steel spoons (Figure 1). In order to maintain 
the integrity of the sample and avoid the sample being dispersed by 
seawater, sediment samples were collected from the intertidal zone 1 h 
prior to flooding by seawater. The sampling procedure was as follows. 
First, we delineated a 5 cm × 5 cm nearly square sampling area in the 
intertidal zone using a stainless steel ruler. Then, five 1 cm × 1 cm 
sampling zones were located at the four corners and the center of the 
square sampling area, and the samples collected from 1 cm × 1 cm 
sampling zones were regarded as bulk-scale samples. Finally, the 
remaining samples within the 5 cm × 5 cm square sampling area were 
collected for subsequent sorting. The sampling depth was in the range 
of 0–2 cm. The collected samples were stored in 50 mL sterilized 
centrifuge tubes and transported to the laboratory for processing 
within 20 min.

Single sand grain separation, DNA 
extraction, PCR, and Illumina sequencing

For bulk-scale samples, a total of five independent DNA 
extractions from each 0.2 g of intertidal surface sediment samples were 
performed. Total genomic DNA was extracted using the E.Z.N.A Soil 
DNA Kit (OMEGA, Norcross, Georgia United States) according to the 
manufacturer’s protocol (Figure 1).

To obtain macrosand grains (400–1,000 μm), intertidal surface 
sediment samples were resuspended in PBS and passed through 1,000 
and 400 μm sterilized nylon mesh. Single macrosand grain was 
randomly hand-sorted using sterilized forceps on a super clean bench, 
and single macrosand grain was placed in a sterile PCR tube. A total 
of 75 macrosand grains were collected. To obtain microsand grains 
(40–100 μm), the sand grains that passed through 400 micron nylon 
were subjected to 100 μm (BIOLOGIX) and 40 μm cell strainers 
(BIOLOGIX) (Chen et  al., 2022). For each size cell strainer, sand 
grains were passed through three times. Then, the microsand grains 
were resuspended in 50% ethanol in PBS and subjected to hand 
sorting to obtain single sand grains (Chen et  al., 2022). Single 
microsand grains were randomly hand-sorted using a 2.5 μL pipette 
under a high-definition video microscope (GP-660 V, Kunshan 
Gaopin Precision Instrument Co. LTD.) on a super clean bench, and 
each single sand grain was then transferred into a sterile PCR tube. A 
total of 180 microsand grains were collected. The Extraction-free 
Nucleic Acid Release Agent (GZ011201, Chenyi Jingze Biotechnology 
Co. Ltd., Qidong, China) was used to extract DNA from single sand 
grains according to the manufacturer’s protocol. Briefly, 5 μL of nucleic 
acid release agent was added to the PCR tube containing the sand 
grain and centrifuged for 30 s (S1010E, Scilogex) to immerse the sand 
grain in the release agent, incubated at 95°C for 15 min, mixed with 
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shaking, and then the lysate was taken for PCR amplification 
(Figure 1). Blank controls without sand grain were set up in all assays.

Universal bacterial primers 515F: GTG YCA GCM GCC GCG 
GTA A and 806R: GGA CTA CNV GGG TWT CTA AT were used to 
amplify the V4 region of the 16S rRNA gene of the genomic DNA 
(Apprill et al., 2015; Parada et al., 2016). For the bulk samples, PCR 
amplification was performed in a total volume of 50 μL containing 
1 μL bovine serum albumin (20 mg ml−1), 25 μL of 2 × Taq Plus Master 
Mix (P212, Vazyme, China), 1 μL of forward primer (1 μM), 1 μL of 
reverse primer (1 μM), 1 μL of DNA template (10 ng/μl) and 21 μL 
nuclease-free water. For the single sand grain, PCR amplification was 
performed in a total volume of 50 μL containing 1 μL bovine serum 
albumin (20 mg ml−1), 25 μL of 2 × Taq Plus Master Mix (P212, 
Vazyme, China), 1 μL of forward primer (1 μM), 1 μL of reverse primer 
(1 μM), 4 μL of sample lysate and 18 μL nuclease-free water. The 
thermocycling program was as follows: 98°C for 2 min; 25 cycles of 
98°C for 10 s, 55°C for 30 s, and 72°C for 40 s; 72°C for 5 min; and 
10°C hold. Amplification products were purified using a DNA 
Clean-up Kit (CW2301M, CWBIO, China), and agarose gel 
electrophoresis showed no bands in the blank controls. Then, the 
products underwent a short amplification with Illumina adapters 
(98°C 30 s, 8 cycles of 98°C 10 s, 55°C 30 s, 72°C 40 s, 72°C 5 min, 10°C 
hold). The PCR products were purified and then sequenced using the 
Illumina NovaSeq 6,000 platform, yielding 250 bp paired-end reads 
(Figure 1).

Bioinformatics

Low-quality sequences in raw data were filtered out using Fastp (v 
0.23.2) (Chen et al., 2018), and the paired sequences were merged 
using Usearch (v 11.0.667). Only sand grains that obtained more than 
10,000 sequences were reserved for subsequent analysis. Sequences 
with ≥97% similarity were assigned to the same OTU(97%), and the 
chimeric sequences were removed using UCHIME (Edgar et  al., 
2011). OTU(97%) taxonomy annotation was performed with the 
Silva_123 database as a reference database using Usearch (v 11.0.667). 
The Shannon index and Bray–Curtis distances were calculated using 
the vegan package in R software (v 4.3.1). Permutational multivariate 

analysis of variance (PERMANOVA) was performed to test the 
significance of differences in the microbial community using the 
vegan package in R software (v 4.3.1). In this study, the coefficient of 
variation was defined as the standard deviation divided by the mean 
and was used to reflect the variation degree in the relative abundance 
of a certain taxon between sand grains (Chen et al., 2022; Zhao et al., 
2023). To determine pairwise associations between OTUs(97%), 
OTUs(97%) with relative abundances greater than 0.1% in at least 10% 
of sand grains were selected for the cooccurrence analysis. A 
significant association between two OTUs(97%) was determined if the 
Spearman’s correlation coefficient was <−0.4 or >0.4 and the q-value 
was <0.05 (Benjamini–Hochberg). Next, we plotted and analyzed the 
cooccurrence networks using Gephi (v 0.9.2) (Bastian et al., 2009). 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt2) was used to infer the microbial 
function of the bulk sample and sand grains (Douglas et al., 2020).

Analysis of microbial community assembly

To determine the role of determinism and stochasticity in sand 
grain microbial community assembly, a previously described null 
model-based analysis was used (Ning et  al., 2020). Briefly, the 
OTUs(97%) were first divided into different bins based on their 
phylogenetic relationships using the iCAMP (v1.3.4) package in R 
software (v 4.3.1) (Ning et al., 2020). Then, the beta net relatedness 
index (βNRI) and β-diversities using the modified Raup-Crick metric 
(RC) of each bin were calculated. According to the values of the βNRI 
and RC parameters, the bins could be considered the percentages of 
five processes: heterogeneous selection (βNTI < −1.96), homogeneous 
selection (βNTI > 1.96), homogenizing dispersal (|βNTI| < 1.96, 
RC < −0.95), dispersal limitation (|βNTI| < 1.96, RC > 0.95), and drift 
(|βNTI| < 1.96, |RC| < 0.95). The relative importance of individual 
processes at the whole community level was the sum of the fractions 
of individual processes across all bins weighted by the relative 
abundance of each bin. The parameter nmin was 24, and it was 
determined in an indirect way (pNST) (Ning et al., 2020). In addition, 
a neutral community model (NCM) was also used to predict the 
importance of stochastic processes on community assembly using R 

FIGURE 1

Schematic graph showing the experimental workflow of this study.
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software (v 4.3.1) (Sloan et al., 2006; Chen et al., 2019). This model is 
an adaptation of the neutral theory adjusted to large microbial 
populations, and the parameter R2 represents the overall fit to the 
neutral model (Sloan et al., 2006).

Metagenomic sequencing, assembly, and 
binning

The genomic DNA of bulk-scale samples was also used for 
metagenome shotgun sequencing. The DNA library was constructed 
and sequenced at Personalbio Technology Co., Ltd. (Shanghai, China) 
using the DNBSEQ-T7 platform. Approximately 500 Gbp (2 × 150 bp 
paired-end reads) of raw metagenomic data were generated for bulk-
scale samples. The raw reads were trimmed with Trimmomatic (v 
0.39) (Bolger et al., 2014), and the trimmed sequences were assembled 
using Megahit (v 1.2.9) with default parameters (Li et  al., 2015). 
Scaffolds longer than 1,000 bp were binned into draft genomes using 
MetaBAT2 (v 2.15) (Kang et al., 2019). The software RefineM (v 0.1.2) 
and CheckM (v 1.1.3) were used to obtain the optimized metagenome 
assembled genomes (MAGs) (Parks et al., 2015, 2017). Only MAGs 
with integrity (≥50%) and contamination (≤10%) were retained for 
subsequent analysis. The GTDB-Tk (v 2.1.1) package was used for 
taxonomic classification of the MAGs (Chaumeil et al., 2020). Prodigal 
(v 2.6.3) was used to predict the open reading frames (ORFs) of each 
MAG (−p meta) (Hyatt et al., 2010).

The potential interactions between MAGs

A genome-scale metabolic modeling-based approach described 
by Du et  al. was adopted in this study to explore the potential 
interactions between microorganisms in intertidal sediments (Du 
et al., 2022). Briefly, the protein fasta file of each MAG was used to 
reconstruct the genome-scale metabolic model using CarveMe (v 
1.4.1) (Machado et  al., 2018), and the gap-filling process was 
performed with M9 media (Du et al., 2022). The metabolic interaction 
potential of each pair of unique models was assessed seven times with 
the same parameters using SMETANA (v 1.0.0) (the global mode) 
(Zelezniak et al., 2015), given that the results (MIP value) of each 
SMETANA calculation are not entirely consistent, and finally, the 
median was taken to represent the cooperation potential of each pair. 
The MIP scores could reflect the number of essential nutritional 
components that the pair could provide for each other through 
metabolic exchange; thus, the MIP scores were used to evaluate the 
cooperation potential between pairs. Next, according to the criteria 
described by Du et al. (2022), MIP ≥ 3 was set as the threshold to 
distinguish the relatively low and high interactions for this community. 
Briefly, along with the increase in the MIP, the pair number presented 
an exponential decay that tended to be  gentle from MIP = 3, and 
MIP = 3 was the median value of the MIP interval (0–5) for this 
community. Thus, MIP = 3 was set as the threshold to distinguish the 
relatively low and high interactions for this community. SMETANA 
was also applied to calculate the compounds exchanged in highly 
interacting pairs (the detailed mode), and only the compounds with a 
SMETANA score greater than or equal to 0.1 were considered, and 
inorganic compounds were excluded (Zelezniak et  al., 2015; Du 
et al., 2022).

Results

Fewer OTUs(97%) were found on microsand 
grains than on macrosand grains

In this study, amplicon sequencing technology was used to reveal 
the microbial community composition in bulk-scale (1–2 cm), 
macroscale (400–1,000 μm), and microscale (40–100 μm) sediment 
samples. After removing the low-quality sequences and the samples 
with sequence numbers less than 10,000, a total of 11,372,765 high-
quality 16S rRNA gene sequences were obtained, belonging to 215 
samples, including 5 bulk samples, 60 macrosand grain samples, and 
150 microsand grain samples. To ensure a fair comparison, 
we randomly subsampled the sequences to the smallest sample size 
(n = 10,405 sequences) across all samples. The rarefaction curves 
approached saturation, indicating that the current number of 
sequences can reflect the microbial community composition of the 
samples (Supplementary Figure S1). After clustering the sequences,  
a total of 5,138 OTUs(97%) were obtained. A total of 2,908 OTUs(97%) 
were found in the bulk-scale sample, of which 2,276 were also  
present in both macrosand grains and microsand grains 
(Supplementary Figure S2). The sum of the relative abundance of 
these 2,276 OTUs(97%) was 96.48% ± 0.28, 92.15% ± 6.50, and 
91.45% ± 5.75  in the bulk-scale samples, macrosand grains and 
microsand grains, respectively (Supplementary Figure S2), suggesting 
the representativeness of manually picked single macro/microsand 
grains. Further analyses revealed that, 3 macrosand grains could cover 
more than 60% OTUs(97%) (relative abundance: 92.58% ± 0.61%) found 
in the bulk samples (Supplementary Figure S2), and 23 microsand 
grains could cover more than 60% OTUs(97%) (relative abundance: 
91.23% ± 0.24%) found in the bulk samples (Supplementary Figure S2). 
The total 60 macrosand grains covered 92.67% of OTUs(97%) found in 
the bulk samples (99.17% in relative abundance) and the total 150 
microsand grains covered 85.35% of OTUs(97%) found in the bulk 
samples (97.24% in relative abundance) (Supplementary Figure S2). 
As expected, the number of OTUs(97%) harbored in the community 
decreased significantly with decreasing sand grain size (bulk-scale 
samples: 1581 ± 35, macrosand grains: 907 ± 181, microsand grains: 
169 ± 181) (p < 0.001, Wilcoxon test) (Figure  2A), as well as the 
Shannon index (bulk-scale samples: 5.5 ± 0.1, macrosand grains: 
5.1 ± 0.4, microsand grains: 4.1 ± 0.6) (p < 0.01, Wilcoxon test) 
(Figure 2B). The above results suggested that the microbial diversity 
decreased significantly with decreasing sand grain size.

Greater intersample difference for 
microsand grains than macrosand grains

Further analyses were conducted to reveal the microbial 
composition on sand grains among different scales. First, the microbial 
composition of a single sand grain was profiled at the phylum level. 
As shown in Figure 3A, the microbial community was dominated by 
Proteobacteria, with a mean relative abundance of 46.41%, followed 
by Bacteroidetes (18.47%), Planctomycetes (8.02%), and Cyanobacteria 
(7.37%). The community compositions were not uniform among 
individual sand grains, especially for microsand grains, and evident 
microscale heterogeneity could be observed. For example, the relative 
abundance of Bacteroidetes fluctuated greatly across microsand grains, 
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ranging from as low as 0.05% to as high as 60% (Figure 3A), and the 
same was the case for Proteobacteria (22.40–74.60%), Planctomycetes 
(0.25–21.40%), Cyanobacteria (0–32.3%) and other microbial phyla 
(Figure  3A). Then, the coefficient of variation for the relative 
abundance of each phylum was calculated. For the dominant phyla, 
the coefficients of variation of microsand grains (1.05 ± 0.57) were 
significantly higher than those of macrosand grains (0.86 ± 0.70) 
(Wilcoxon test, p = 0.038) and bulk-scale samples (0.10 ± 0.06) 
(Wilcoxon test, p = 0.0025) (Figures 3B–D; Supplementary Figure S3).

The microbial composition of single sand grains was also profiled 
at the OTU(97%) level. The coefficient of variation for each OTU(97%) was 
also calculated. The results of the coefficient of variation analysis at the 
OTU(97%) level also supported the conclusion obtained based on the 
analysis at the phylum level, except that the values of the coefficients 
of variation at the OTU(97%) level were much higher than those at the 
phylum level (Figure  2C) (p < 0.001, Wilcoxon test). Notably, the 
distribution of individual OTUs(97%) among the sand grains was 
extremely heterogeneous. No OTU(97%) was present on all microsand 
grains. Only 0.59% (25) of OTUs(97%) with high mean relative 
abundance were found on more than half of the microsand grains, and 
42% (1,766) of OTUs(97%) were found only once on microsand grains 
(Supplementary Figure S4). Furthermore, analyses based on Bray–
Curtis distance also showed that the community composition 
difference between samples of microsand grains was significantly 
higher than that of macrosand grains and bulk-scale samples 
(Figure  2D) (p < 0.001, Wilcoxon test). Similarly, as shown in 
Figure 2E, microbial communities from macrosand grains were closer 
to each other than those from microsand grains. Therefore, all the 
above results indicated that there was evident heterogeneity in 
microsand grain microbial communities, and the variation in the 
microbial communities on the sand grains increased as the sand grain 
decreased in size.

Differences in predicted functional gene 
compositions between microsand and 
macrosand grains

A total of 7,190 functional genes were predicted from 215 samples 
by PICRUSt2 (Supplementary Table S1). There were significant 
differences in functional gene compositions on sand grains at different 
scales (Figure  4A). The functional gene composition difference 
between samples of microsand grains was significantly higher  
than that of macrosand grains and bulk-scale samples 
(Supplementary Figure S5) (p < 0.001, Wilcoxon test). However, the 
heterogeneity of functional gene composition was significantly lower 
than that of microbial composition at all scales (Figure 4C). Notably, 
unlike the great heterogeneity in the distribution of OTUs(97%) on 
microsand grains, there were 2,510 shared functional genes (core 
genes) present on all sand grains (Supplementary Table S1), and the 
relative abundance of these functional genes exceeded 90% on bulk-
scale samples (93.17% ± 0.13), macrosand grains (93.51% ± 1.02), and 
microsand grains (95.09% ± 1.68) (Figure 4B).

In addition, the relationship between the number of OTUs(97%) 
and functional genes on sand grains was investigated. As shown in 
Figure 4D, the slope of the number of functional genes gradually 
slowed as the number of OTUs(97%) increased. If it was assumed that 
the functional genes shared on bulk-scale samples were saturated 
and could complete all ecological functions, microbes on a single 
macrosand grain could complete nearly all ecological functions 
(95.85% ± 1.30), and microbes on a single microsand grain could 
complete most of the ecological functions (80.40% ± 7.96) 
(Figure 4D; Supplementary Table S1). Furthermore, a total of 351 
functional pathways (KEGG level 3) were predicted from OTUs(97%) 
in the bulk-scale samples (Supplementary Table S2). Macrosand 
grains contained an average of 345 (98.29%) functional pathways, 

FIGURE 2

Alpha diversity and beta diversity of microbial communities. (A) The OTU(97%) numbers in bulk-scale samples, macrosand grains, and microsand grains. 
(B) The Shannon index in bulk-scale samples, macrosand grains, and microsand grains. (C) The coefficient of variation between samples for each 
OTU(97%). (D) Bray–Curtis dissimilarity values between samples of microbial community composition. (E) Principal coordinate analysis (PCoA) was used 
to visualize the communities of bulk-scale samples, macrosand grains, and microsand grains. Significance was determined with the Wilcoxon rank sum 
test, and * represents p  <  0.05, ** represents <0.01, and *** represents p  <  0.001.
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with three macrosand grains containing all pathways, and microsand 
grains contained an average of 310 (88.32%) pathways 
(Supplementary Figure S6).

Ecological stochastic and deterministic 
processes shape the sand grain microbial 
community

To gain insights into the assembly mechanisms underlying the 
microbial communities on sand grains, two different ecological 
models, the null model (icamp.big) and the neutral community 
model, were used to examine the internal forces driving the assembly 
of microbial communities on the sand grain. The results based on the 
null model indicated that stochastic processes (macrosand grains: 
65.20%, microsand grains: 71.88%) were more critical than 
deterministic processes (macrosand grains: 34.80%, microsand grains: 
28.12%) (Figure 5B). Dispersal limitation (macrosand grains: 64.43%, 
microsand grains: 71.83%) and homogeneous selection (macrosand 
grains: 34.15%, microsand grains: 25.77%) were the two processes that 
governed the assembly of microbial communities on macrosand and 
microsand grains (Figure 5A). In addition, the neutral community 

model successfully estimated most of the relationship between the 
occurrence frequency of OTUs(97%) and their relative abundance 
variations (Figures  5C,D), with 79.78 and 74.54% of explained 
community variance for macrosand grains and microsand grains, 
respectively. Therefore, this result suggested that stochastic processes 
were important in shaping the microbial community assembly on 
sand grains.

Unstable cooccurrence associations 
between microorganisms on microsand 
and macrosand grains

To investigate whether there were stable associations between 
microorganisms on sand grains, the cooccurrence patterns within the 
microbial communities across sand grains were analyzed. To reduce 
random noise, OTUs(97%) with relative abundances greater than 0.1% 
in at least 10% of sand grains were selected for cooccurrence network 
analysis. Finally, a total of 355 OTUs(97%) were used to construct 
macroscale and microscale cooccurrence networks. To prevent the 
biases introduced by sampling, co-occurrence networks were 
constructed repeatedly based on three randomly selected subsamples 

FIGURE 3

(A) Community composition profiles at the phylum level of all samples, including 5 bulk-scale samples, 60 macrosand grains, and 150 microsand 
grains. Distribution of the dominant phyla across bulk-scale samples (B), macrosand grains (C), microsand grains (D), and the coefficient of variation of 
relative abundance is shown in the bars on the right.
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for macrosand grains (each containing 15, 20, and 25 sand grains) and 
microsand grains (each containing 40, 50, and 60 sand grains), 
respectively (Goberna and Verdú, 2022). Notably, the cooccurrence 
networks constructed by different subsamples varied greatly 
(Figures  6C,D). Of all the co-occurring pairs inferred from 
subsamples, only 88 OTU(97%) pairs were stable in the macrosand 
grains and 10 pairwise OTUs(97%) in the microsand grains 
(Figures 6C,D). Then, the networks were constructed from the entire 
set of macrosand grains and microsand grains, respectively, and most 
of the OTU(97%) pairs consistently found in subsamples were also found 
in the full samples (macrosand grains: 91%, microsand grains: 100%) 
(Supplementary Figure S7). Finally, the stable OTU(97%) pairs in 
macrosand grains and microsand grains were used to construct the 
cooccurrence network. As shown in Figures 6A,B, all correlations 
were positive. The OTUs(97%) (network nodes) were generally from 
phyla such as Proteobacteria, Bacteroidetes, and Actinobacteria, and 
most associations associated with OTUs(97%) of Proteobacteria 
(macrosand grains: 73%, microsand grains: 80%). Compared to the 
macrosand grain network, the microsand grain network harbored a 

simple cooccurrence pattern, and most associations on macrosand 
grains were absent on microsand grains (Figures 6A,B). Even so, some 
associations were robust as the spatial scale changed, such as the 
association between OTU_335 (Sphingobacteriales) and OTU_165 
(Rhodobacterales) and the association between OTU_5383 
(Cyanobacteria) and OTU_920 (Cyanobacteria) (Figures 6A,B). A 
study of samples from a desalination plant revealed similar 
distribution patterns for bacteria from the orders Sphingobacteriales 
and Rhodobacterales (Al-Ashhab et  al., 2022), but the underlying 
mechanisms are not clear.

Low proportion of high cooperative 
potentials between microorganisms in 
intertidal sediment

To understand the cooperative potentials of microorganisms in 
intertidal sediment, we performed metagenome sequencing of bulk-
scale intertidal sediments. After assembly and binning, 484 

FIGURE 4

(A) Principal coordinate analysis (PCoA) was used to visualize the predicted functional gene compositions of bulk-scale samples, macrosand grains, 
and microsand grains. (B) The mean relative abundance of the 2,510 core functional genes in bulk-scale samples, macrosand grains, and microsand 
grains. (C) Bray–Curtis dissimilarity values of microbial community composition (left) and predicted functional gene composition (right) between 
samples. Significance was determined with the Wilcoxon rank sum test, and *** represents p  <  0.001. (D) Relationship between the number of OTUs(97%) 
and the number of predicted functional genes. The horizontal coordinate is the number of OTUs(97%), and the vertical coordinate is the number of 
functional predicted genes.
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metagenome assembled genomes (MAGs) (completeness ≥50% and 
contamination ≤10%) were obtained (Supplementary Table S3). These 
484 MAGs were mostly affiliated with 39 phyla, including 
Proteobacteria (122 MAGs), Chloroflexi (46 MAGs), Bacteroidota  
(42 MAGs), Actinobacteria (37 MAGs) and 237 other  
MAGs (Supplementary Table S3). Then, a genome-scale metabolic 
modeling-based approach applied in a previous study was used to 
infer cooperative potentials between pairwise MAGs 
(Supplementary Table S4). A total of 116,886 pairs were obtained from 
484 MAGs. As shown in Figure 7A, 60,146 (51.5%) pairs showed no 
cooperation potential (MIP = 0), 55,130 (47.2%) pairs showed low 
cooperation potentials (MIP = 1, 2), and only 1,610 (1.3%) pairs 
showed high cooperation potentials (MIP = 3, 4, 5). Therefore, the 
above results suggested that most of the pairs of microbial individuals 
did not benefit from each other. A total of 427 MAGs from 37 phyla, 
including Proteobacteria, Bacteroidota, and Myxococcota, were 
involved in these 1,610 pairs with high interaction potential, 
accounting for 88% of the total number of MAGs 
(Supplementary Tables S3, S4). Furthermore, the exchanged 
metabolites between high cooperative potential pairs were identified. 
The amino acids, aldehydes, saccharides and some other compounds 
were likely exchanged between the pairs with high cooperative 
potential (Figure 7B).

Discussion

With the development of metagenomic sequencing technology, the 
distribution of microbial communities in various environments, such 
as soils, rivers, and oceans (Chen et al., 2019; Hoshino et al., 2020; 
Wang et al., 2023), has been well studied. Since most of these studies 
use bulk-scale samples, we know little about the spatial distribution of 
microorganisms at the microscale, except for samples in a few 
environments, such as the human gut, activated sludge, plant 
rhizosphere and soil aggregates (Sheth et al., 2019; Liu et al., 2021; 
Chen et al., 2022; Cao et al., 2023). The study of microbial communities 
at very small scales will lead to more reliable inference of the ecological 
mechanisms structuring microbial communities (Armitage and Jones, 
2019). Knowledge of microbial distribution in marine environments at 
a small scale has been limited to the 17 sand grains reported by 
Probandt et  al. (2018). They found a highly diverse microbial 
community in each sand grain, and a core community accounting for 
>50% of all cells was present on each sand grain (Probandt et al., 2018). 
In this study, a similar phenomenon was observed on macroscale sand 
grains. A core community (31 OTUs(97%)) with a mean relative 
abundance of 34% was present on each macrosand grain, which may 
be a consequence of the size of the macrosand grains in this study being 
close to that in the study of Probandt et al. (2018). However, regarding 

FIGURE 5

(A) The proportion of dispersal limitation, homogeneous selection, heterogeneous selection and drift processes in the microbial assembly process. 
(B) The proportion of stochastic processes and deterministic processes in the microbial assembly process. Fit of the neutral community model (NCM) 
of macrosand grain microbial community assembly (C) and microsand grain microbial community assembly (D). The solid blue lines indicate the best 
fit to the NCM, and the dashed blue lines represent 95% confidence intervals around the model prediction. OTUs(97%) that occur more or less frequently 
than predicted by the NCM are shown in different colors. m indicates the immigration rate, and R2 indicates the fit to this model.
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microscale sand grains, the situation becomes different. There were no 
shared OTUs(97%) among microsand grains, which is attributed to the 
heterogeneity of the microbial community on microsand grains being 
significantly greater than that on macrosand grains. In addition, an 
increase in the number of sand grains will also lead to a decrease in the 

number of shared OTUs(97%). Thus, by comparing microbial 
communities from different sand grain sizes, this study expanded the 
knowledge of microbial community assembly on sand grains at small 
scales. Meanwhile, it is noted that the microbial community of marine 
sediments changes with seasonal and tidal variations (Zhang et al., 

FIGURE 6

Cooccurrence associations between OTUs(97%) on sand grains. (A) Network analysis based on stable cooccurrence associations between OTUs(97%) on 
macrosand grains. Each node represents an OTU(97%), and the size of the node represents the degree. The green connecting lines represent positive 
correlations, and the red lines represent negative correlations. (B) Network analysis based on stable cooccurrence associations between OTUs(97%) on 
microsand grains. Each node represents an OTU(97%), and the size of the node represents the degree. The green connecting lines represent positive 
correlations, and the red lines represent negative correlations. (C) Venn diagram of the shared cooccurrence associations between OTUs(97%) of three 
subsamples of macrosand grains each containing 15, 20, and 25 sand grains. (D) Venn diagram of the shared cooccurrence associations between 
OTUs(97%) of three subsamples of microsand grains, each containing 40, 50, and 60 sand grains.

FIGURE 7

(A) Genomic distribution of the MIP scores of all possible pairs of MAGs in the intertidal sediment sample. (B) Metabolite classes likely to be exchanged 
between MAGs predicted by SMETANA.
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2023; Zhao et al., 2023). Analyses based on time series data in the 
future will help to obtain a panoramic picture of the assembly of 
marine microbial communities at the microscale.

The functional heterogeneity among sand grains was significantly 
lower than the taxonomic composition heterogeneity. The 
microorganisms on individual microscale sand grains had an average 
of 80% of the functional genes contained in the bulk-scale samples, 
even though the number of OTUs(97%) on a single microsand grain was 
only 11% of the bulk-scale samples. This reflected the functional 
redundancy in bulk-scale marine sediment samples. Functional 
redundancy is widespread in the microbial community and reflects 
the diversity of microorganisms with specific metabolic functions 
(Louca et al., 2018). This study revealed the distribution of microbial 
functional genes on a single sand grain, even though this result was 
obtained by prediction (Douglas et al., 2020). With the development 
of single-cell sequencing technology, the application of this technology 
to environmental samples may provide more direct evidence for the 
distribution of microbial functional genes among sand grains 
(Lloréns-Rico et al., 2022).

Ecological stochastic and deterministic processes shape the sand 
grain microbial community, and stochastic processes are more 
important than deterministic processes. The possible reasons were as 
follows. First, intertidal surface sediments are strongly affected by 
tides (Zhang et  al., 2022), promoting randomness in microbial 
community assembly. Several studies have demonstrated that the 
proportion of stochastic processes increased when the community was 
disturbed (Dini-Andreote et al., 2015; Zhang et al., 2022), and water 
flow can affect microbial communities (Zhang et al., 2022). Second, 
cooccurrence associations between microorganisms in intertidal 
sediments were mostly unstable, and cooccurrence associations are 
usually thought to be a result of microbial interactions (Faust and 
Raes, 2012). Generally, environmental filtering and various biological 
interactions contribute to deterministic processes (Ning et al., 2020). 
Our study demonstrated that the biological interactions between 
microorganisms on sand grains were few and unstable. Finally, 
Proteobacteria was the dominant phylum on sand grains, and the 
members of Proteobacteria usually have broad niches and their 
community assembly is dominated by random collision and 
colonization (Wang et al., 2019). Several studies have revealed marine 
microbial community assembly mechanisms using bulk-scale samples 
and found that the microbial community assembly mechanisms 
varied across different marine environments (Allen et al., 2020; Zhang 
et al., 2022). For example, a study of microbial community assembly 
processes in marine microplastics revealed that the β-NTI values of all 
samples were between 0.036 and 0.037, suggesting that stochastic 
processes dominate microbial community assembly (Zhang et al., 
2022). Another study revealed that homogeneous environmental 
selection dominates microbial community assembly in the 
oligotrophic South Pacific Gyre (Allen et al., 2020). Here, we found 
that stochastic processes, especially diffusion limitation, dominated 
the assembly of microbial communities on sand grains. In this study, 
we revealed the assembly mechanism of microbial communities on 
sea sands at the microscale and suggested that stochastic processes are 
more important than deterministic processes.

Microbial cooccurrence network analysis is often used to describe 
microbial interactions within communities (Faust and Raes, 2012). The 
microbial interactions derived from bulk-scale samples tend to reflect 
the response of abiotic factors such as biogeochemical parameters rather 

than intermicrobe interactions (Cordero and Datta, 2016), and the 
study at microscales will yield more reliable inferences (Armitage and 
Jones, 2019). In this study, the associations between microorganisms on 
sand grains were highly variable, and only a few co-occurring 
relationships were stable across different subsample groups 
(Figures 6C,D). This may be caused by the following reasons. First, most 
of the microorganisms on the sand grains have no or low cooperation 
potential with each other (Figure 7A; Supplementary Table S4) (Du 
et al., 2022), and this low cooperation potential may not be sufficient to 
support their aggregation. Second, metabolic intermediates can 
be transported advectively through the sediment matrix in permeable 
sediments (Probandt et al., 2018). Thus, microorganisms may not need 
to live together to obtain the required intermediates, resulting in the 
inability to observe significant spatial cooccurrence relationships. 
Similarly, Probandt et al. found that some microbial partners occur as 
densely packed in activated sludge, but on marine sand grains, they were 
sometimes in close contact with their partner aggregates but often more 
distant from each other (Probandt et al., 2018).

Though different DNA extraction methods were used for the bulk 
samples and sand grains, 2,901 of the 2,908 OTUs(97%) found in the 
bulk samples could be detected in the sand grains, indicating that both 
methods were efficient. Significant differences in the relative 
abundance between sand grains and bulk samples were observed for 
some microbial taxa (q < 0.05, Wilcoxon test, BH) 
(Supplementary Table S5). For example, the relative abundances of 
Cyanobacteria and Verrucomicrobia were significantly higher in the 
bulk samples than in the sand grains, whereas the relative abundances 
of Proteobacteria, Nitrospirae, and Bacteroidetes were significantly 
higher in the sand grains than in the bulk samples. Such differences 
may be explained by different efficiencies of different DNA extraction 
methods. Other factors may also contribute to the above differences 
in relative abundance. For example, cells of Cyanobacteria often 
aggregate and some cells may be lost during the filtration pretreatment, 
resulting in lower relative abundance of Cyanobacteria in sand grains 
than in bulk samples. Interestingly, there were a large number of 
OTUs(97%) in the sand grains that were not found in the bulk samples, 
suggesting that analyses based on sand grains may help to recover 
more community members than that based on bulk samples.
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