Systematic infrastructure and regulatory weaknesses over many decades, in communities struggling with animal African trypanosomiasis (AAT) would be expected to create an environment that would promote drug misuse and risk development of drug resistance. Here, we explore rural community practices of livestock keepers, livestock extension officers and drug shop attendants to determine whether appropriate practice was being followed in administration of trypanocides and other drugs.
A questionnaire-based survey was undertaken in southwestern Uganda in 2022 involving 451 farmers who kept cattle, sheep or goats and 79 “professionals” who were either livestock extension officers or drug shop attendants.
Respondents reported using one or more type of trypanocidal drug on 80.1% of the 451 farms in the last 30 days. Diminazene aceturate was used on around three-quarters of farms, while isometamidium chloride was used on around one-fifth. Homidium bromide was used on less than 1% of farms. Cattle were significantly more likely to be treated with trypanocides than sheep or goats. On around two-thirds of farms, trypanocides were prepared and injected by farmers, with extension officers administering these drugs on most of the other third, especially on cattle farms. Almost all drugs were obtained from privately-owned drug shops. For treatment of AAT with trypanocides, prescription-only medicines were routinely used by farmers without professional supervision and in the absence of a definitive diagnosis. While a far greater proportion of professionals had a better education and had received training on the use of trypanocides than farmers, there was relatively little difference in their ability to use these drugs correctly. Farmers were more likely than professionals to use only DA to treat trypanosomiasis and were more likely to use antibiotics as well as trypanocidal drugs to treat the animal. Furthermore, they estimated, on average, that twice the recommended dose of either diminazene aceturate or isometamidium chloride was needed to treat a hypothetical 400 kg bovine. A minority of both farmers and professionals reported that they observed the recommended withdrawal times following injection of trypanocidal drugs and very few of either group knew the recommended withdrawal times for milk or meat. Only one in six farmers reported using the sanative pair (alternating use of diminazene aceturate and isometamidium chloride), to reduce the risk of drug resistant trypanosome strains emerging, while this approach was more widely used by professionals. Farmers reported using antibiotics more commonly than the professionals, especially in sheep and goats, raising concerns as to overuse and misuse of this critical class of drugs. In addition to using trypanocides, most farmers also reported using a topical veterinary pesticide for the control of ticks and tsetse. On average, farmers spent 12.2% of their income from livestock sales on trypanocides.
This study highlights the complexity of issues involved in the fight against AAT using drug treatment. A multistakeholder campaign to increase awareness among farmers, drug shop attendants, and extension workers of the importance of adherence to recommended drug dosing, using the sanative pair and following recommended drug withdrawal guidance would promote best practice, reduce the risk of emergence of resistant strains of trypanosomes, and support enhanced food safety.