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Introduction: The soil microbial community plays an important role in modulating 
cotton soil fertility. However, the effects of chemical fertilizer combined with 
organic fertilizer on soil chemical properties, microbial community structure, and 
crop yield and quality in arid areas are still unclear. This study aimed to explore the 
effects of different organic fertilizers on soil microbial community structure and 
diversity and cotton growth and yield.

Methods: High-throughput sequencing was used to study the soil bacteria and 
fungi in different growth stages of cotton. The field fertilization experiment had 
five treatments.

Results: The results indicated that the treatments of chemical fertilizer reduction 
combined with organic fertilizer significantly increased soil available nitrogen and 
phosphorus in cotton field. There were significant differences in the abundance 
of the bacterial and fungal communities in the dominant phyla among the 
treatments. At the phyla level, there were not significantly different in the diversity 
of bacteria and fungi among treatments. There were significant differences in 
the composition and diversity of bacterial and fungal communities during the 
entire cotton growth period (p  =  0.001). The rhizosphere bacterial and fungal 
community structure was significantly affected by soil TK, NH4

+, AK, TP, AN, 
and NO3

−. The different fertilization treatments strongly influenced the modular 
structure of the soil bacterial and fungal community co-occurrence network. 
A reduction in chemical fertilizer combined with organic fertilizer significantly 
improved cotton stem diameter and seed yield, and the effect of the biological 
organic fertilizer on plant growth and yield formation was greater than that of 
ordinary organic fertilizer.

Discussion: This study provide a scientific and technical basis for the establishment 
of environmentally friendly green fertilization technology for cotton in arid areas 
and the promotion of sustainable development of cotton industry.
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1 Introduction

Xinjiang is the largest commodity cotton base in China (Niu et al., 
2021). Applying chemical fertilizer increases the number of bolls per 
plant, reduces the bud and boll abscission rate, and increases cotton 
yields (Zheng et al., 2015). However, the long-term use of chemical 
fertilizers can lead to a deterioration in soil physicochemical 
properties, resulting in agricultural non-point source pollution, which 
can lead to sustained increases in fertilizer use and water, air, and soil 
pollution (Zhou et al., 2011). Excessive nitrogen fertilizer inputs not 
only waste resources, but also lead to environmental pollution and soil 
degradation (Chen J. S. et al., 2021).

It has become an urgent challenge in agricultural production to 
identify reasonable fertilization measures that reduce the harm caused 
by excessive soil fertilizer applications. Chemical fertilizer reduction 
combined with organic fertilizer is an environmental protection 
fertilization technology (Ye et al., 2020). Appropriate organic fertilizer 
substitution promotes crop yield, improves soil nutrients and protects 
soil ecology (Ding et al., 2021; Li et al., 2021a,b; Xiao et al., 2022).

Organic fertilizer combined with chemical fertilizer can reduce 
nutrient losses in cotton fields (Adeli et  al., 2008), improve the 
fertilizer utilization rate, and increase soil organic matter content 
(Mensik et al., 2018; Wang et al., 2022). This fertilization method 
activate soil nutrients, improve soil microbial community structure 
and diversity (Guo et al., 2019; Zhang et al., 2019; Dong et al., 2020), 
and change rhizosphere soil enzyme activity. It enhance soil microbial 
activity, improve soil fertility, and reduce soil salinization and soil-
borne diseases (Halihashi et al., 2020; Zhang et al., 2021). Then it 
improve crop root activity (Wang et al., 2022), antioxidant enzyme 
activity (Tang et al., 2018), and leaf pigment content (Wang N. et al., 
2020; Wang Y. et al., 2020; Wang Q. Q. et al., 2020). It also increases 
water and fertilizer conservation and ultimately improves crop yield 
and stress resistance.

One study reported that 80% conventional fertilization combined 
with moderate amino acid, fulvic acid, and biogas slurry inputs 
produced the highest cotton yield and benefit (Li et al., 2019), and was 
significantly higher than that produced by conventional fertilization (Li 
et al., 2019). Previous studies have shown that when the amount of 
organic fertilizer was the same, and there was no significant difference 
in cotton yield between different types of organic fertilizer treatments 
(Tao et al., 2017; Li et al., 2019; Sun et al., 2020). The application of 70% 
chemical fertilizer combined with green manure did not reduce the 
nutrient accumulation, seed cotton yield and fertilizer utilization rate 
of cotton plant (Li et al., 2019). Furthermore, the agronomic efficiency 
of chemical fertilizer was significantly higher than that for the 100 and 
85% chemical fertilizer treatments, and the seed cotton yield increased 
by nearly 30% (Sun et al., 2015; Li et al., 2021a,b). The improvement in 
phosphorus use efficiency after applying biological organic fertilizer is 
better than that achieved by applying ordinary organic fertilizer. The 
replacement of 40% chemical fertilizer with bio-organic fertilizer 
significantly increased cashmere length and yield (Sun et al., 2020). 
Chemical fertilizer combined with organic fertilizer also significantly 
increased the number of bacteria and actinomycetes, decreased the 
number of fungi, and increased urease, catalase, sucrose, and alkaline 
phosphatase activities (Wang N. et al., 2020; Wang Y. et al., 2020; Wang 
Q. Q. et al., 2020). Reducing nitrogen fertilization by 30% can reduce 
soil electrical conductivity and improve soil nutrient content, which 
will ultimately increase cotton yield and quality (Zhu et al., 2020). It 

can be seen that chemical fertilizer reduction combined with organic 
fertilizer is economically feasible. Few studies have investigated the 
effect of replacing chemical fertilizer with organic fertilizer on 
microorganisms and cotton growth traits and yield.

In this study, ordinary organic fertilizer, humic acid urea, 
biological bacterial fertilizer substitution, and conventional 
fertilization were taken as the research objects. Field experiments were 
used to investigate the effects of different fertilization regimes on 
cotton yield, soil nutrients, and the microbial community. In addition, 
the scientific and economic efficiency of combining chemical fertilizer 
reduction and organic fertilizer applications was also evaluated. The 
underlying hypotheses are that (I) the reduction of chemical fertilizer 
combined with organic fertilizer increases the content of soil nutrient 
in cotton fields; and (II) affects the community structures of soil 
microorganism over the whole cotton growth period.

2 Materials and methods

2.1 Field site and experimental design

The experiment was conducted at Xinjiang Academy of Agricultural 
Sciences in Korla City, Xinjiang, in 2020. The experimental area was 
located on Baotouhu Farm, Xinjiang Academy of Agricultural Sciences, 
Korla City, southern Xinjiang (E 85°52′, N 41°41′). The experimental 
area has a typical arid climate, the average annual rainfall is 56.20 mm. 
The tested soil was a medium fertility sandy loam soil, the soil organic 
matter in the 0–30 cm of soil above the plow layer was 10.24 g/kg, 
available nitrogen was 48.78 mg/kg, available phosphorus was 20.36 mg/
kg, available potassium was 139.00 mg/kg, and the pH was 8.20.

The experiment consisted of five treatments 
(Supplementary Table S1): T1: no fertilizer application; T2: 
conventional fertilization (CF; NPK dosage: 714 kg/ha: 357 kg N/ha, 
207 kg P/ha, and 150 kg K/ha); T3: 60% CF + 12,000 kg/ha organic 
fertilizer; T4: 46% CF + 428.4 kg/ha humic acid urea; and T5: 73% 
CF + 225 kg/ha bio-organic fertilizer. Each treatment was replicated 
three times and the area of each experimental plot was 40.5 m2. 
Organic fertilizer refers to sheep manure. The nutrient contents of 
sheep manure were N 0.192%, P2O5 1.16%, K2O 0.82%, humic acid 
19.04%, organic matter 56.05%, water content 51.50%. Humic acid 
urea is a urea containing 0.12% humic acid. The nutrient contents of 
Bacillus velezensis were N 0.357%, P2O5 0.09%, K2O 0.04%, humic 
acid 2.00%, organic matter 1.94%. The bio-organic fertilizer is a 
bacterial fertilizer produced by fermentation of Bacillus velezensis 
BHZ-29, which we isolated from cotton fields (Zhang et al., 2018).

The cotton variety was Xinluzhong 66. The common organic 
fertilizer was used as a base fertilizer and applied to the 0–20 cm soil 
layer before sowing. The chemical fertilizers, humic acid urea, and 
bio-organic fertilizer were drip applied with water six times 
throughout the cotton growing season according to their fertilizer 
requirements (Niu et al., 2021).

2.2 Soil sampling and analysis of 
physicochemical properties

Soil samples from the 0–20 cm soil layer were collected by soil 
drilling at the cotton seedling stage (B), bud stage (M), flowering 
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stage (H), boll opening stage (T) in 2020. There were three 
replicates per treatment, a five-spot sampling method for each 
treatment. Each replicate collected 500 g soil samples. Plant 
residues and stones were removed from the soil samples using a 
2 mm mesh sieve. Some of the samples were placed in a 4°C 
refrigerator for the determination of soil microbial diversity, 
whereas the others were stored under natural air drying to 
determine the soil physicochemical properties. The SPAD (Soil and 
Plant Analyzer Development) value of cotton leaves was measured 
at bud stage, flowering stage and boll stage (Chen et al., 2011). The 
agronomic traits, yield, and yield related factors were measured at 
the cotton boll opening stage and the harvest stage. Ten cotton 
plants were randomly selected from each plot before boll opening. 
The number of fruit branches per plant, plant height, and boll 
number per plant were measured. The yield was measured after 
drying and the seed cotton yield for the plot was calculated. The 
lint yield and lint percentage were calculated after rolling and the 
cotton quality index was determined by the Cotton Quality 
Supervision and Testing Center of the Ministry of Agriculture and 
Rural Areas (Wan et al., 2018; Chen et al., 2020).

Soil moisture content (WCR) was determined by the drying 
method. Soil organic matter (OM) was determined using potassium 
dichromate dilution heat method, total nitrogen (TN) was quantified 
by a Kjeldahl nitrogen analyzer (multi N/C 2100 S, Analytik Jena, 
Jena, Germany), alkaline nitrogen (AN) was measured using 
the diffusion method, soil ammonium nitrogen (NH4+) and 
nitrate (NO3-) was determined by flow analyzer, total phosphorus 
(TP) was determined by the acid-soluble-molybdenum-antimony 
colorimetric method, effective phosphorus (AP) was determined 
using sodium bicarbonate extraction-molybdenum antimony 
antispectrophotometry, total potassium (TK) was measured using 
an NaOH alkali fusion-flame photometer, and available potassium 
(AK) was determined using the ammonium acetate extraction-flame 
photometric method (Ma et al., 2022). Each analysis was repeated 
three times.

2.3 Extraction and sequencing of soil 
microbial DNA

The soil microbial DNA was extracted according to the Power Soil 
DNA Isolation Kit instructions (MoBio Laboratories, Carlsbad, CA, 
United States). The extracted DNA was detected by 1% agarose gel 
electrophoresis and spectrophotometry, and the qualified samples 
were stored at −20°C until needed. Primers 338F (5’-ACTCCTAC 
GGGAGGCAGCAG-3′) and 806R (5’-GGACTACHVGGGTWT 
CTAAT-3′) were used to amplify the V3–V4 region of bacterial 16S 
rRNA gene (Jones et  al., 2021) and the primers for ITS gene 
sequencing of the fungi were ITS1F (5’-CTTGGTCATTT 
AGAGAAGTAA-3′) and ITS2 (5’-TGCGTTCTTCATCGATGC-3′) 
(Li S. et al., 2020; Li Y. et al., 2020). The above primers with barcode 
sequences were synthesized for the PCR amplification procedure. The 
PCR products were detected by 1.5% agarose gel electrophoresis, 
purified using a TIANgel nucleic acid purification kit (Tiangen, 
Beijing, China) and then used to construct a microbial diversity 
sequencing library. Paired-end sequencing was performed using the 
Illumina MiSeq high-throughput sequencing platform by Shanghai 
Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, China).

2.4 Analysis method for the sequencing 
data

To improve the accuracy and reliability of the information 
analysis, the offline data were split into samples according to their 
Barcode sequence by QIIME1 (v 1.8.0) software. The data were filtered 
and spliced by Pear (v 0.9.6) software and the chimera sequences are 
removed using the Uchime method according to the Gold Database. 
Finally, the Vsearch (v 2.7.1) software UPARSE algorithm was used to 
cluster the high-quality sequences based on 97% consistency and the 
Silva128 database was used to annotate the OTUs (Operational 
Taxonomic Units) using the RDP Classifier algorithm. Then, the 
community composition of each sample was analyzed at the phylum, 
class, order, family, genus, and species levels to obtain the species 
composition and relative abundance at each taxonomic level (Shi 
et  al., 2022). The α-diversity of each sample was calculated using 
Mothur 1.45.3 (Barouillet et al., 2022) and Excel 2007 (Microsoft, 
Redmond, WA, United States) software and included the Chao1 value, 
the Shannon index, and the Simpson index. Rarefaction curves were 
obtained from the ratio of the number of OTUs in the sample to the 
effective reads.

2.5 Data processing

Microsoft Excel 2007 was used for data pre-processing and 
presentation, and SPSS 20.0 (IBM Corp, Armonk, NY, United States) 
software was used for the one-way analysis of variance (ANOVA) and 
the Duncan method (α = 0.05) for multiple comparisons and difference 
testing. The data are shown as the mean ± standard error. A principal 
coordinate analysis (PCoA) and a permutation multi-factor analysis 
of variance (Adonis) based on the sample Bray-Curtis distance (OTU 
level) were performed by R Studio (version 4.0.3), and a dominant 
OTU heat map and a correlation heat map were constructed. Canoco 
5.1 was used to draw a redundancy analysis diagram (redundancy 
analysis, RDA) (Dalu et al., 2021). Finally, the Spearman’s correlation 
coefficient was used to calculate the correlations among OTUs 
(relative abundance ≥0.1%) and OTUs with correlation coefficients of 
r ≥ 0.6 and p < 0.01 were selected as data sources to construct the 
co-occurrence network for soil bacteria using Gephi (version 9.2) 
(Tang et al., 2018).

3 Results

3.1 Soil properties in response to chemical 
fertilizer reduction combined with organic 
fertilizer

It can be seen from Supplementary Table S2 that the treatments of 
chemical fertilizer reduction combined with organic fertilizer 
increased the contents of soil organic matter (OM), total nitrogen 
(TN), total phosphorus (TP), total potassium (TK), available nitrogen 
(AN), available phosphorus (AP) and available potassium (AK) in 
cotton field. Compared with T1, T3, T4 and T5 treatments significantly 
increased the content of soil available nitrogen and available 
phosphorus in cotton fields. The content of soil available nitrogen and 
available phosphorus in T3 treatment was the highest, reaching 
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32.33 mg / kg and 32.35 mg/kg. The trend of soil TN, TP, AN and AK 
in different fertilization treatments was T3 > T5 > T2 > T4 > T1. The 
content of SOM in each growth period of T3, T4 and T5 treatments 
showed an increasing trend. Except for T5, the total nitrogen of each 
treatment increased first and then decreased, and the total nitrogen of 
each treatment at flowering stage was the highest. Total phosphorus 
changed little in each period, and total potassium showed an 
increasing trend. Available nitrogen, phosphorus and potassium 
showed a downward trend.

3.2 Soil microbial alpha diversity

The 16S rRNA gene and ITS sequencing results showed that 
2,616,391 and 3,812,536 original sequences were obtained from 60 
samples. The samples contained 34,107–73,318 bacterial and 38,032–
74,915 fungal sequences. The minimum numbers of sequences (34,107 
and 38,032, respectively) were used as the sampling depth for the 
bacteria and fungi. The number of OTUs after flattening was 2,685–
3,576 and 183–372 for bacteria and fungi, respectively (Table 1). There 
was no significant difference in the Chao1 indexes, Shannon indexes, 
and Simpson indexes for the rhizosphere bacterial and fungal 
communities among treatments (Table 2), indicating that chemical 
fertilizer reduction combined with organic fertilizer did not 
significantly change soil microbial α-diversity. The ACE, Chao and 
Shannon indexes of soil bacteria in the boll opening stage decreased 
significantly, and the ACE, Chao and Simpson indexes of soil fungi in 
the flowering and boll opening stages increased significantly.

3.3 Soil microbial community composition 
and structure

Among the five fertilization treatments, organic fertilizer combined 
with chemical fertilizer treatments (T3, T5) did not change the 
community structure of soil bacteria and fungi, but affected the bacterial 
abundance at different species classification levels (Figure 1). Among 
the five fertilization treatments, Proteobacteria, Actinobacteriota, 
Chloroflexi, Acidobacteriota, Gemmatimonadota, Firmicutes, 

Bacteroidota, and Ascomycota, Mortierellomycota, Basidiomycota, and 
Chytridiomycota were the dominant phyla in the bacterial and fungal 
communities, respectively (Figures  1A,D). Alphaproteobacteria, 
Actinobacteria, Gammaproteobacteria, Acidimicrobiia, Anaerolineae, 
Vicinamibacteria, Chloroflexia, Gemmatimonadetes, Bacilli, 
Dehalococcoidia, Thermoleophilia, Bacteroidia. KD4-96 was the 
dominant class of bacterial community (Figures 1B,E). The class with 
relative abundances greater than 2% in the T1, T2, T3, T4, and T5 
treatments accounted for 73.11, 74.62, 73.11, 74.48, 73.76, 96.19, 95.91, 
97.02, 96.69, and 92.94% of the total bacterial and fungal class, 
respectively (Figures 1B,E). With regards to the dominant genera of the 
bacterial and fungal community (relative abundance >1%), the T3 and 
T5 treatments increased the relative abundance of norank_f__
norank_o__Vicinamibacterales, norank_f__Vicinamibacteraceae, 
norank_f__norank_o__norank_c__MB-A2-108 and Preussia 
compared to T1 and T2, but the norank_f__Gemmatimonadaceae and 
Mortierella relative abundances decreased (Figures 1C,F).

3.4 Dynamics of the soil microbial 
communities

The PCoA analysis showed that there are seasonal differences in the 
bacterial and fungal community structure among the samples 
(Figures 2A,B). The PC1 axis for bacteria and fungi explained 23.97 and 
28.26% of the difference, respectively, and the PC2 axis explained 19.34 
and 17.95%, respectively. Together, they explained 43.31 and 46.21% of 
the variability, respectively (Figures 2A,B). Figure 2 also showed that 
the dispersion degree of the samples at the bud, flowering, and boll 
stages was low. However, the dispersion degree was high for the samples 
at the seedling stage. There were significant differences in the 
community structures of the bacteria and fungi over the whole cotton 
growth period. The bacteria samples were highly clustered on the PC1 
axis, which showed that the rhizosphere bacteria were highly similar in 
the samples, but the fungi were very different at the flowering stage.

The cluster analysis (Supplementary Figure S1) showed that there 
were significant differences in bacterial and fungal community 
composition among the samples at the bud, flowering, and boll stages, 
while the samples at the seedling stage were clustered on the same 
branch. The growth period had significant effects on the bacterial 
floras Actinobacteria, Gammaproteobacteria, Acidimicrobiia, 
Chloroflexia, Gemmatimonadetes, Dehalococcoidia, and Bacteroidia, 
and the fungal floras Leotiomycetes, Sordariomycetes, 
Mortierellomycetes, Eurotiomycetes, and Pezizomycetes were 
dominant in the five treatments (Supplementary Figure S2).

3.5 Correlation between bacterial and 
fungal abundance and soil properties

The Spearman’s correlation heatmap analysis indicated that the 
soil physicochemical factors affecting the soil bacterial and fungal 
communities were TK, NH4, AK, TP, and AN and TP, AN, NO3, 
and TK, respectively (Supplementary Figure S3). The effect of soil 
physicochemical factors on Bacillus was weak and only TK, NH4, 
TP, and AN were significant factors. Pseudounas was sensitive to 
most soil physicochemical factors, except for NH4+ and NO3-. The 
physical and chemical factors OM and NH4+ had significant 

TABLE 1 Statistics of sample sequence of soil bacteria and funge under 
different treatments.

Treatment Bacterial Fungal

Sequences OTUs Sequences OTUs

T1 540,418 6,731 769,780 770

T2 530,104 6,503 776,576 738

T3 511,787 6,645 744,029 746

T4 516,572 6,487 758,039 709

T5 517,510 6,660 764,112 774

Total 2,616,391 7,802 3,812,536 1,180

T1: no fertilizer application (CK); T2: Conventional fertilization (CF; NPK dosage: 
714 kg ha−1: 357 kg N ha−1, 207 kg P ha−1, and 150 kg K ha−1); T3: 60% CF + 12,000 kg ha 
organic fertilizer (CFO; NPK dosage: 428.4 kg ha−1: 214.2 kg N ha−1, 124.2 kg P ha−1, and 
90 kg K ha−1); T4: 46% CF + 428.4 kg ha humic acid urea (CFO; NPK dosage: 714 kg ha−1: 
357 kg N ha−1, 207 kg P ha−1, and 150 kg K ha−1); T5: 73% CF + 225 kg ha bio-organic 
fertilizer (CFB; NPK dosage: 617.55 kg ha−1: 260.55 kg N ha−1, 207 kg P ha−1, and 
150 kg K ha−1).
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effects on Microascus, and WCR and NO3 had significant effects 
on Fusarium, and NO3-had significant effects on Tricharina 
(Supplementary Figures S3A,B).

The RDA analysis showed that soil physicochemical factors 
explained 35.50% of the differences in the community structure of the 
dominant bacteria and fungi, and that RDA1 and RDA2 explained 

TABLE 2 Soil microbial diversity index of different treatment and different growth stages.

Microbe Sampling 
time

Treatment Ace Chao Shannon Simpson Coverage

Bacteria B T1 4536.67 ± 386.62a 4348.68 ± 71.06a 6.60 ± 0.04a 0.0046 ± 0.0009a 0.9683 ± 0.0038a

T2 4117.57 ± 89.06a 4158.72 ± 110.67a 6.57 ± 0.06a 0.0052 ± 0.0012a 0.9680 ± 0.0016a

T3 4358.96 ± 410.72a 4179.94 ± 203.59a 6.63 ± 0.02a 0.0041 ± 0.0005a 0.9688 ± 0.0025a

T4 4596.39 ± 378.84a 4218.28 ± 62.83a 6.58 ± 0.10a 0.0059 ± 0.0025a 0.9694 ± 0.0039a

T5 4376.90 ± 190.53a 4201.28 ± 147.43a 6.58 ± 0.04a 0.0048 ± 0.0005a 0.9655 ± 0.0005a

M T1 4489.46 ± 202.27a 4491.07 ± 241.34a 6.60 ± 0.03a 0.0041 ± 0.0006a 0.9806 ± 0.0023a

T2 4380.59 ± 183.77a 4338.51 ± 201.31a 6.56 ± 0.06a 0.0044 ± 0.0002a 0.9803 ± 0.0016a

T3 4234.93 ± 54.27a 4227.17 ± 95.44a 6.51 ± 0.04a 0.0056 ± 0.0013a 0.9799 ± 0.0005a

T4 4504.83 ± 288.02a 4326.57 ± 131.56a 6.52 ± 0.07a 0.0044 ± 0.0007a 0.9788 ± 0.007a

T5 4540.26 ± 87.55a 4506.48 ± 43.22a 6.63 ± 0.05a 0.0041 ± 0.0006a 0.9787 ± 0.0008a

H T1 4736.61 ± 342.15a 4482.58 ± 140.08a 6.59 ± 0.04a 0.0041 ± 0.0001a 0.9749 ± 0.0011a

T2 4483.86 ± 181.42a 4534.25 ± 192.78a 6.60 ± 0.02a 0.0042 ± 0.0004a 0.9743 ± 0.0029a

T3 4466.28 ± 152.33a 4444.78 ± 168.34a 6.62 ± 0.05a 0.0037 ± 0.0002a 0.9758 ± 0.0031a

T4 4299.29 ± 157.52a 4325.31 ± 167.40a 6.54 ± 0.06a 0.0048 ± 0.0006a 0.9763 ± 0.0014a

T5 4594.59 ± 117.60a 4445.61 ± 278.72a 6.58 ± 0.07a 0.0039 ± 0.0003a 0.9746 ± 0.0019a

T T1 4224.49 ± 94.45a 4183.12 ± 92.73a 6.46 ± 0.07a 0.0057 ± 0.0013a 0.9774 ± 0.0008a

T2 4369.93 ± 353.65a 4106.09 ± 36.31a 6.40 ± 0.02a 0.0058 ± 0.0008a 0.9786 ± 0.0019a

T3 4170.23 ± 300.76a 4135.48 ± 279.01a 6.47 ± 0.07a 0.0056 ± 0.0005a 0.9754 ± 0.0014a

T4 4285.48 ± 348.73a 4081.21 ± 240.30a 6.42 ± 0.06a 0.0057 ± 0.0008a 0.9771 ± 0.0012a

T5 4124.10 ± 75.04a 4092.05 ± 135.40a 6.46 ± 0.03a 0.0051 ± 0.0003a 0.9789 ± 0.0020a

Fungi B T1 282.49 ± 27.84a 289.42 ± 19.71a 2.93 ± 0.37a 0.1320 ± 0.0467a 0.9993 ± 0.0002a

T2 248.09 ± 2.23a 246.76 ± 4.61a 2.54 ± 0.22a 0.2085 ± 0.0249a 0.9994 ± 0.0001a

T3 240.42 ± 13.30a 238.33 ± 8.38a 2.22 ± 0.49a 0.3180 ± 0.1499a 0.9991 ± 0.0002a

T4 254.79 ± 37.75a 252.25 ± 36.41a 2.64 ± 0.39a 0.2158 ± 0.0887a 0.9994 ± 0.0001a

T5 264.64 ± 46.87a 265.95 ± 50.00a 2.94 ± 0.09a 0.1298 ± 0.0155a 0.9994 ± 0.0002a

M T1 265.26 ± 31.31a 274.97 ± 34.69a 2.37 ± 0.19a 0.2754 ± 0.0731a 0.9994 ± 0.0002a

T2 290.41 ± 37.62a 288.43 ± 39.52a 2.67 ± 0.16a 0.2232 ± 0.0620a 0.9993 ± 0.0003a

T3 275.90 ± 46.58a 278.92 ± 50.87a 3.08 ± 0.37a 0.1331 ± 0.0414a 0.9994 ± 0.0003a

T4 265.84 ± 28.97a 268.43 ± 27.74a 2.67 ± 0.12a 0.1787 ± 0.0169a 0.9994 ± 0.0002a

T5 293.79 ± 16.28a 294.81 ± 16.68a 2.78 ± 0.19a 0.1807 ± 0.0217a 0.9993 ± 0.0001a

H T1 309.92 ± 25.09a 314.01 ± 23.06a 2.27 ± 0.15a 0.3362 ± 0.0416a 0.9993 ± 0.0001a

T2 341.50 ± 71.90a 340.29 ± 75.35a 2.30 ± 0.79a 0.3279 ± 0.1976a 0.9992 ± 0.0003a

T3 341.95 ± 5.16a 337.49 ± 3.27a 2.34 ± 0.30a 0.3209 ± 0.0807a 0.9993 ± 0.0001a

T4 335.95 ± 23.39a 340.77 ± 25.87a 2.37 ± 0.25a 0.3122 ± 0.0796a 0.9993 ± 0.0001a

T5 332.84 ± 15.08a 326.19 ± 7.73a 2.34 ± 0.13a 0.2885 ± 0.0301a 0.9992 ± 0.0001a

T T1 352.05 ± 36.79a 360.53 ± 30.73a 2.44 ± 0.20a 0.3012 ± 0.0423a 0.9992 ± 0.0002a

T2 349.80 ± 26.72a 341.89 ± 28.35a 2.35 ± 0.46a 0.2709 ± 0.1266a 0.9992 ± 0.0001a

T3 341.93 ± 23.17a 342.91 ± 27.11a 2.47 ± 0.52a 0.2547 ± 0.0914a 0.9992 ± 0.0001a

T4 336.92 ± 27.30a 339.55 ± 34.77a 2.13 ± 0.14a 0.3555 ± 0.0366a 0.9991 ± 0.0002a

T5 293.64 ± 55.99a 313.67 ± 63.39a 2.30 ± 0.01a 0.2917 ± 0.0349a 0.9993 ± 0.0002a

Values indicate mean ± SE (n = 3). Different superscript letters in the columns represent significant differences among fertilizer treatments according to one-way ANOVA (Duncan’s test, 
p < 0.05). The abbreviations T1, T2, T3, T4, and T5 are as defined in the footnote to Table 1. B: seedling stage; M: bud stage; H: flowering stage; T: boll opening stage.
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FIGURE 1

Relative abundances of bacterial (A–C) and fungal (D–F) taxa at the phylum, class, genus level, respectively. T1: no fertilizer application (CK); T2: 
Conventional fertilization (CF; NPK dosage: 714  kg  ha-1: 357  kg  N  ha-1, 207  kg P ha-1, and 150  kg  K  ha-1); T3: 60% CF  +  12,000  kg  ha organic fertilizer 
(CFO; NPK dosage: 428.4  kg  ha-1: 214.2  kg  N  ha-1, 124.2  kg P ha-1, and 90  kg  K  ha-1); T4: 46% CF  +  428.4  kg  ha humic acid urea (CFH; NPK dosage: 
714  kg  ha-1: 357  kg  N  ha-1, 207  kg P ha-1, and 150  kg  K  ha-1); T5: 73% CF  +  225  kg  ha bio-organic fertilizer (CFB; NPK dosage: 617.55  kg  ha-1: 
260.55  kg  N  ha-1, 207  kg P ha-1, and 150  kg  K  ha-1).
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29.09, 21.97 and 6.41%, 9.77% of the bacterial and fungal differences, 
respectively (Figure 3). Total phosphate (R2 = 0.75, p = 0.0000), TK 
(R2 = 0.47, p = 0.0000), and AN (R2 = 0.59, p = 0.0000) for the bacterial 

community and TP (R2 = 0.17, p = 0.0012), TK (R2 = 0.10, p = 0.0139), 
and AN (R2 = 0.15, p = 0.0022) for the fungal community reached 
significant levels (Figures 3A,B).

FIGURE 2

Principal coordinate analysis (PCoA) plots of bacterial (A) and fungal (B) community composition at the OTU level. T1, T2, T3, T4, and T5 are as defined 
in the Figure 1 legend. B: seedling stage: M: bud stage: H: flowering stage: T: boll opening stage.
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3.6 Soil microbial network structure and 
composition analysis

The soil bacterial and fungal co-occurrence networks under the T1, 
T2, T3, T4, and T5 treatments were composed of 251, 253, 247, 254, 361, 
and 84, 85, 87, 79, 84 nodes, respectively, and 3,698, 3,403, 3,071, 3,776, 
and 4,291, 308, 337, 332, 305, 297 had highly significantly positively 
correlated edges, with average degrees of 28.337, 26.901, 24.866, 29.732, 
32.881, and 7.333, 7.929, 7.632, 7.722, 7.071, respectively (Figures 4A,B). 
The modular indexes were 3.249, 5.458, 2.793, 3.498, 2.955, and 1.798, 
0.638, 0.757, 0.316, 1.965, respectively. A modularity index >0.4 indicates 
that the co-occurrence network has a modular structure.

Figure 4A also indicated that the bacterial co-occurrence networks 
for T1, T2, and T4 were similar, whereas the bacterial co-occurrence 
networks for T5 were relatively complex. The fungal co-occurrence 
networks for T1, T4, and T5 were similar, as were the fungal 
co-occurrence networks for T2 and T3 (Figure 4B).

Supplementary Table S3 showed that the proportions of the 
bacterial and fungal groups in the co-occurrence network were 
different in each treatment. The Proteobacteria and Actinobacteriota 
proportions were the largest in the bacterial co-occurrence network 
and the Ascomycota and Basidiomycota proportions were largest in 
the fungal co-occurrence network. The bacterial groups in each 
treatment were basically the same, but the number of fungal groups 
was lower in T3. In addition. Proteobacteria, Actinobacteriota, 
Chloroflexi, Bacteroidota, Acidobacteriota, Firmicutes, and 
Myxococcota were the dominant genera in the soil bacterial 
co-occurrence network and Pseudeurotium, Metarhizium, 
Talaromyces, Trichoderma, Preussia, Chaetomium, and Mortierella 
were the dominant genera in the soil fungal co-occurrence network.

3.7 Cotton agronomic traits, quality and yield

The T5 treatment produced the highest yield (Table 3). The four 
fertilization treatments significantly increased the boll number per 
plant and the seed cotton yield compared to T1 (Table 3). Compared to 
T2, the stem diameter and seed cotton yield significantly increased 
under the chemical fertilizer reduction combined with organic fertilizer 
treatments, but there was no significant difference in plant height, leaf 
number, SPAD, single boll weight, and lint percentage. This showed that 
organic fertilizer promoted cotton plant growth and boll formation, but 
had no significant effect on cotton yield per plant. The raw cotton yields 
of the chemical fertilizer reduction combined with organic fertilizer 
treatments were in the order T5 > T4 > T3 and the differences among 
the three treatments were significant. The raw cotton yields of T4 and 
T5 were 5.27 and 12.10% higher than those of T2, respectively, when 
T2 was reduced by 50 and 54%, combined with 428.4 kg hm−2 humic 
acid urea (T4) and 225 L hm-2 Bacillus velezensis fertilizer (T5), 
respectively, and there was no significant effect on cotton quality.

4 Discussion

4.1 Effects of fertilization on soil 
physicochemical properties

The proportion of soil available nutrients compared to the total 
soil nutrients is one of the important indicators used to evaluate the 

effectiveness of soil nutrients (Zhao and Huang, 2022). Reasonable 
combinations of organic and inorganic fertilizers can improve the soil 
physicochemical properties. In this study, we have demonstrated that 
reductions in chemical fertilizer combined with organic fertilizer 
could increase soil nutrients, such as AP, SOM and TN, which was 
consistent with previous studies on agricultural soils (Lu et al., 2009; 
Hossain et al., 2021; Yang W. N. et al., 2022). The increase in AP 
content by the fertilizer combined with organic fertilizer suggests that 
the organic fertilizer provided a large amount of soil organic matter 
(SOM), and then, organic matter decomposes under the action of 
microorganisms to produce a large number of organic acids, which 
can activate soil phosphorus, thereby increasing the soil AP content 
(Alori et al., 2017).

4.2 Effects of fertilization on the diversity 
and composition of soil microbial 
community

In microbial diversity studies, the greater the Shannon index, the 
higher the microbial community evenness; the higher the Chao1 and 
Ace indices, the higher the richness of the microbial communities 
(Hartmann et  al., 2006). We  also found that chemical fertilizer 
reduction combined with organic fertilizer increased soil bacterial 
richness and diversity, and reduced fungal richness and diversity 
(Table 2), which was consistent with previous studies that showed 
increased richness and diversity of the bacterial community, and 
decreased richness and diversity of the fungal community (Liu et al., 
2021; Jin et al., 2022).

Microorganisms are an important part of the soil ecosystem. Their 
community composition and diversity show certain dynamic changes 
at different growth stages and under different nutritional statuses, 
fertilization measures, and tillage modes (Yang and Crowley, 2000; 
Wang et  al., 2016; Liu et  al., 2020; Iqbal et  al., 2022). They are 
important indicators for evaluating soil fertility and are related to the 
occurrence of plant soil-borne diseases, continuous cropping 
obstacles, and soil acidification and salinization (Yao and Wu, 2010; 
Shen et al., 2016; Gao et al., 2021; Song et al., 2022). We found that 
there was little differentiation in the composition of bacterial or fungal 
communities among different fertilization treatments (Figures 2A,B). 
The reason might be that the soil organic matter content and microbial 
community diversity of long-term continuous cropping cotton field 
were low, and the organic matter content in fertilization treatment was 
not high.

4.3 Correlation between microorganism 
and soil physicochemical properties

Soil can directly provide the necessary environmental conditions 
for the survival of microorganisms (Santoyo et al., 2017). Organic 
fertilizer application can not only increase the total amount of soil 
nutrients such as soil total organic carbon, total nitrogen, and total 
phosphorus but can also increase the content of available soil nutrients 
(alkali nitrogen, available phosphorus, available potassium) (Liu et al., 
2014; Qaswar et al., 2020). TP, TK, AN is significantly associated with 
the bacterial and fungal communities and is one of the main factors 
promoting changes in the soil microbial community (Dong et al., 
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2014; Hu et al., 2019; Chen Y. et al., 2021; Li et al., 2021a,b; Zhao et al., 
2021). Proteobacteria and Ascomycota is a dominant taxon in the 
bacterial and fungal community, separately and is positively correlated 
with the soil nitrogen, phosphorus and potassium pool; therefore, TP, 
TK, AN has been proven to drive changes in the soil bacterial and 
fungal community (Landesman and Dighton, 2010; Zhong et al., 2010; 

Ducousso-Détrez et al., 2022). In the present study, TP, TK, and AN 
were found to be the key determinants driving changes in the bacterial 
and fungal community in this study (Figures  3A,B; 
Supplementary Figures S3A,B), which was consistent with previous 
studies on soils (Landesman and Dighton, 2010; Zhong et al., 2010; 
Ducousso-Détrez et al., 2022).

FIGURE 3

Redundancy analysis (RDA) of bacterial (A) and fungal (B) communities with soil chemical properties. WCR, electrical conductivity; OM, soil organic 
matter, NO3, electrical conductivity, NH4, soil organic matter.TN. total nitrogen: TP. total phosphorus: TK, total potassium; AN, total nitrogen, AP. total 
phosphorus: AK, total potassium. T1, T2, T3, T4, and T5 are as defined in the Figure 1 legend. B: seedling stage; M: bud stage, H: flowering stage. T. boll 
opening stage.
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FIGURE 4

The co-occurrence network of soil bacterial and fungal community composition in a cotton field with different fertilization treatments on the phylum 
level. (A) bacterial community, (B) fungal community. Each node denotes a bacterial or a fungal OTU (defined at a 97% similarity level); each edge 
linking two nodes represents a positive (pink line) or negative (black line) relationship. OTUS are colored by different phylum. The size of each node is 
proportional to the number of connections. A connection between two nodes is a statistically significant (p <  0.01) and strong (r  >  0.60) correlation. The 
percentage of positive links in every network: A 90.08%, B 73.87%.
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Another study reported that SOM were the major driver on 
structuring soil microbial communities across land uses, while soil 
bacterial communities were more sensitive to variations in SOM and 
geochemical characteristics compared with fungi (Bahadori et al., 
2022). This is inconsistent with our results and suggests that the effect 
of chemical fertilizer reduction combined with organic fertilizer on 
microbial community structure is not the only factor. This makes it 
difficult to assess the full effect of their nutritional potential on the soil 
microbial community in a short-term study period (Zhang et  al., 
2021). Therefore, the short-term effect of chemical fertilizer reduction 
combined with organic fertilizer on soil microbial community may 
be smaller than chemical fertilizer.

4.4 Co-occurrence networks for soil 
microorganisms in cotton fields

The network complexity became gradually more complicated as 
soil nutrient levels increased (Liao et al., 2020; Wang et al., 2021; Ye 
et al., 2021), indicating that the increase in the co-occurrence network 
complexity in the T5 treatment was closely related to the increases in 
SOM, TN, TP, and AP contents (Supplementary Table S2). The 
proportion of Proteobacteria in the T5 co-occurrence network was 
higher than that for the other treatments, but the Patescibacteria, 
Chloroflexi, and Planctomycetota proportions were lower than in the 
other treatments in our study (Supplementary Table S3). 
Proteobacteria are mainly distributed in the upper humus layer of 
farmland soil or the rhizosphere and are enriched in environments 
with high levels of active organic carbon (Pinhassi and Berman, 2003; 
Sagova-Mareckova et  al., 2016). In contrast, Chloroflexi are 
oligotrophic bacteria with slow growth characteristics (Feng et al., 
2022) and are ubiquitous in nutrient-poor soils (Wang N. et al., 2020; 
Wang Y. et al., 2020; Wang Q. Q. et al., 2020). When the substrate 
concentration of the microbial environment increased, the nutrient-
rich bacteria replaced the oligotrophic bacteria and colonize the 
nutrient-rich environment, which strongly suggested that the T5 
treatment improved the growth of nutrient-rich bacteria and restricted 
the growth of oligotrophic bacteria (Wang N. et  al., 2020; Wang 
Y. et al., 2020; Wang Q. Q. et al., 2020).

The dominant groups are considered to be important drivers of 
microbial community structure and function (Banerjee et al., 2018). 
Zhang et al. (2017) found that Acinetobacter and Pseudomonas were 

the core functional bacteria in acid red soil paddy fields and that their 
relative abundances increased by 5.7–10 times over 31 years, indicating 
that bacterial communities experienced ecological succession, and 
that dominant bacteria occupied specific niches and had specific 
functions. In this study, Proteobacteria, Actinobacteriota, Chloroflexi, 
and Pseudeurotium, and Metarhizium and Talaromyces were the core 
genera of soil bacteria and fungi in the co-occurrence networks.

4.5 Effects of fertilization on agronomic 
traits and cotton yield

Combined applications of chemical fertilizer and organic fertilizer 
can regulate the release and intensity of soil and fertilizer nutrients, 
which means that crops can obtain stable and balanced amounts of 
nutrients at all growth stages (Zhao et al., 2016; Muhammad et al., 
2020). This study showed that the chemical fertilizer reduction 
combined with organic fertilizer treatments increased cotton yields by 
different degrees, which is consistent with previous studies on cotton 
field soils (Bai et al., 2014). Previous studies have shown that the ratio 
of chemical fertilizer to organic fertilizer is related to soil fertility and 
climatic conditions (Ye et  al., 2020). When soil fertility is high, 
increasing the proportion of organic fertilizer can promote 
reproduction by microorganisms, improve soil structure, and increase 
crop yields (Ye et al., 2020). Bioorganic fertilizers can replace 23–52% 
of nitrogen fertilizers without causing a loss of yield (Rose et al., 2014).

In this study, the effect of fertilizer reduction combined with 
bacterial fertilizer on yield increase was clear, indicating that the 
nutrient release law for organic fertilizer was consistent with the 
nutrient demand law for cotton growth. At the same time, crop yield 
was significantly correlated with soil nutrients, microorganisms, and 
related enzyme activities (Jiang et al., 2017). Therefore, reductions in 
chemical fertilizer and reasonable applications of organic fertilizer 
could effectively control the number of soil microorganisms, improved 
soil enzyme activity and soil fertility. At present, soil nutrient 
imbalances in cotton fields caused by unreasonable fertilization is 
common in Xinjiang (Gong et al., 2012; Yang J. Y. et al., 2022). The 
fertilization structure can be  adjusted and optimized to reduce 
chemical fertilizer application rates through the combined use of 
chemical fertilizer and organic fertilizer. In this study, reducing 
chemical fertilizer by 30% combined with 12,000 kg·hm−2 common 
organic fertilizer or 225 kg·hm−2 bio-organic fertilizer produced the 

TABLE 3 Effects of different fertilizer treatments on agronomic characters, quality and yield of cotton.

Parameters Treatments

T1 T2 T3 T4 T5

Plant height 63.57 ± 12.28a 60.93 ± 8.04a 66.00 ± 9.46a 67.07 ± 10.97a 66.40 ± 6.49a

Number of blades 12.87 ± 1.46b 13.07 ± 1.80a 14.00 ± 1.65a 14.07 ± 1.28a 13.93 ± 1.91a

Stem diameter 9.14 ± 0.88a 8.91 ± 1.11b 9.65 ± 1.33a 9.71 ± 1.15a 9.87 ± 1.51a

SPAD 51.0 ± 9.64a 54.39 ± 12.09a 49.81 ± 11.95a 50.95 ± 14.44a 53.78 ± 14.22a

Boll number per plant 5.55 ± 1.35b 9.89 ± 0.70a 9.33 ± 0.67a 10.45 ± 3.24a 10.11 ± 2.37a

Boll weight 5.42 ± 0.27a 5.77 ± 0.20a 5.68 ± 0.11a 5.80 ± 0.18a 5.70 ± 0.35a

Lint percent 44.64 ± 0.38a 44.39 ± 0.54a 44.11 ± 0.16a 44.52 ± 0.43a 44.12 ± 0.53a

Raw cotton yield 309.47 ± 3.30d 427.68 ± 8.83c 418.43 ± 5.44c 450.2 ± .83b 479.43 ± 9.48a

Values indicate mean ± SE (n = 3). Different superscript letters in the columns represent significant differences among fertilizer treatments according to one-way ANOVA (Duncan’s test, 
p < 0.05). The abbreviations T1, T2, T3, T4, and T5 are as defined in the footnote to Table 1.
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highest yields, but the continuous application of organic fertilizer 
changed soil fertility. Therefore, future research should investigate the 
most appropriate proportion of organic fertilizer to apply to a field 
when combined with a chemical fertilizer application.

5 Conclusion

This study indicated that the reduction of chemical fertilizer 
combined with organic fertilizer significantly increased the content of 
soil available nitrogen and phosphorus in cotton fields, and that total 
and available nitrogen, phosphorus and potassium contents in the 
chemical fertilizer reduction combined with organic fertilizer 
treatments were basically stable in the cotton fields. The application of 
chemical fertilizer reduction combined with organic fertilizer 
significantly affected the community structures of the bacteria and 
fungi over the whole cotton growth period, without significantly 
changing the soil microbial alpha diversity. The different fertilization 
treatments strongly influenced the modular structure of the soil 
bacterial and fungal community co-occurrence network. A reduction 
in chemical fertilizer combined with organic fertilizer significantly 
improved cotton stem diameter and seed yield, and the effect of the 
biological organic fertilizer on plant growth and yield formation was 
greater than that of ordinary organic fertilizer.
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