AUTHOR=Gao Yun , Zhao Yulong , Li Ping , Qi Xuebin TITLE=Responses of the maize rhizosphere soil environment to drought-flood abrupt alternation stress JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1295376 DOI=10.3389/fmicb.2023.1295376 ISSN=1664-302X ABSTRACT=
Changes in the soil environment in the root zone will affect the growth, development and resistance of plants. The mechanism underlying the effect of drought and flood stress on rhizosphere bacterial diversity, soil metabolites and soil enzyme activity is not clear and needs further study. To analyze the dynamic changes in bacteria, metabolites and enzyme activities in the rhizosphere soil of maize under different drought-flood abrupt alternation (DFAA) stresses, the barrel test method was used to set up the ‘sporadic light rain’ to flooding (referring to trace rainfall to heavy rain) (DFAA1) group, ‘continuous drought’ to flooding (DFAA2) group and normal irrigation (CK) group from the jointing to the tassel flowering stage of maize. The results showed that Actinobacteria was the most dominant phylum in the two DFAA groups during the drought period and the rewatering period, and Proteobacteria was the most dominant phylum during the flooding period and the harvest period. The alpha diversity index of rhizosphere bacteria in the DFAA2 group during the flooding period was significantly lower than that in other stages, and the relative abundance of Chloroflexi was higher. The correlation analysis between the differential genera and soil metabolites of the two DFAA groups showed that the relative abundance of