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water environmental microHI to 
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Aquatic wildlife health assessment is critically important for aquatic wildlife 
conservation. However, the health assessment of aquatic wildlife (especially 
aquatic wild animals) is difficult and often accompanied by invasive survey 
activities and delayed observability. As there is growing evidence that aquatic 
environmental microbiota could impact the health status of aquatic animals 
by influencing their symbiotic microbiota, we propose a non-invasive method 
to monitor the health status of wild aquatic animals using the environmental 
microbiota health index (microHI). However, it is unknown whether this method 
is effective for different ecotype groups of aquatic wild animals. To answer this 
question, we took a case study in the middle Yangtze River and studied the water 
environmental microbiota and fish gut microbiota at the fish community level, 
population level, and ecotype level. The results showed that the gut microHI of 
the healthy group was higher than that of the unhealthy group at the community 
and population levels, and the overall gut microHI was positively correlated 
with the water environmental microHI, whereas the baseline gut microHI was 
species-specific. Integrating these variations in four ecotype groups (filter-
feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of 
the carnivorous group positively correlated with water environmental microHI. 
Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most 
abundant groups with health-negative-impacting phenotypes, had high positive 
correlations between gut sample group and environment sample group, and 
had significantly higher abundance in unhealthy groups than in healthy groups 
of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using 
water environmental microHI to indicate the health status of wild fish is effective 
at the community level, is effective just for carnivorous fish at the ecotype level. 
In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), 
and Achromobacter (genus level) were the key water environmental microbial 
groups that potentially impacted wild fish health status. Of course, more data 
and research that test the current hypothesis and conclusion are encouraged.
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Introduction

Aquatic environmental microbiota could impact the health status 
of aquatic organisms by influencing their symbiotic microbiota 
(Guivier et al., 2020; Sehnal et al., 2021; Yang et al., 2022). It is well 
known that humans co-evolve with their symbiotic microbiota, which 
plays a critical role in human health (Adak and Khan, 2019; Fassarella 
et al., 2021; Reynoso-García et al., 2022). There is a similar situation 
in aquatic organisms, and the symbiotic microbiota plays a more 
critical role in aquatic organisms (Cabillon and Lazado, 2019; Guivier 
et al., 2020; Lindsay et al., 2020; Sehnal et al., 2021; Luna et al., 2022). 
In aquatic animals, environmental microbiota could strongly influence 
the symbiotic microbiota in the skin, gut, gills, and so on (Reinhart 
et al., 2019; Guivier et al., 2020; Kuang et al., 2020; Elsheshtawy et al., 
2021; Yang et al., 2022), in which the gut microbiota has relatively 
more stable community components and structures (Guivier et al., 
2020), weaker influences from environmental microbiota (Reinhart 
et al., 2019), and higher impacts on the host’s health (Sehnal et al., 
2021) than other symbiotic microbiota (such as the symbiotic 
microbiota in skin, gills, and so on). Therefore, the gut microbiota is 
the key point for studying the processes of aquatic environmental 
microbiota impacting the health status of aquatic animals.

The health status of aquatic animals may be  indicated by 
environmental microHI (Yang et al., 2023). The health of an individual 
always refers to the individual not being disturbed or hurt. The health 
of aquatic animals could be indicated by normal gut microbiota (Sun 
et al., 2020; Tong et al., 2020) and a low abundance of health-negative-
impacting microbes (Qiao et  al., 2019; Himani et  al., 2020). The 
microHI (microbiota health index) is an abbreviation of the microbiota 
health index, which is defined as the average abundance ratio of 
microbes without three health-negative-impacting microbial 
phenotypes (Eq. 1) (Yang et al., 2023). These three health-negative-
impacting microbial phenotypes, respectively, are potential 
pathogenicity, mobile element content, and oxidative stress tolerance 
(Yang et al., 2023). The abundance ratio of microbes with potential 
pathogenicity indicates the potential risk of disease in the host (Himani 
et al., 2020). The abundance ratio of microbes that contain mobile 
elements (such as antibiotic resistance genes) reflects the potential risk 
of antibiotic pollution (Sáenz et al., 2019) or potential threats to host 
health (Himani et al., 2020). The abundance ratio of microbes with 
oxidative stress tolerance indicates the potential risk of host gut tissue 
damage (Qiao et al., 2019; Solomando et al., 2020). The abundance of 
microbes with these microbial phenotypes can be  predicted and 
quantified based on high-throughput sequencing technology and the 
BugBase database (https://bugbase.cs.umn.edu/index.html) (Yang 
et al., 2023). Previous work identified that an individual with a low 
microHI gut microbiota is more likely to have a disordered microbiota 
and is more likely obtained from the water with a low aquatic 
environmental microHI (Yang et al., 2023). As a disordered microbiota 
always indicates an unhealthy host (Sun et al., 2020; Tong et al., 2020), 
the aquatic environmental microHI has the potential to indicate the 
health status of aquatic animals (Yang et al., 2023).
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where microHI denotes the microbiota health index; Pm denotes 
the abundance ratio (percent) of microbes containing mobile 

elements; Po denotes the abundance ratio (percent) of microbes with 
oxidative stress tolerance; and Pp denotes the abundance ratio 
(percent) of microbes with potential pathogenicity (Yang et al., 2023).

There is species variation in the relationship between aquatic 
environmental microbiota and gut microbiota in aquatic animals (Sun 
and Xu, 2021; Yang et al., 2022). As the gut microbiota is driven by 
both host-related deterministic selection and the introduction of 
neutral microbes from the environment (Ringø et al., 2016; Legrand 
et al., 2020), and the majority of the introduced gut microbiota is 
derived from the feeding habits of the host (Yang et al., 2022), the 
correlation between environmental microbiota and gut microbiota is 
ecotype-specific and even species-specific (Yang et al., 2022). In a 
previous work, the possibility of using aquatic environmental microHI 
to indicate the health status of aquatic animals was preliminarily 
identified at the community level (Yang et al., 2023). Is there any 
species or ecotype variation in the effectiveness of using water 
environmental microHI to indicate the health status of aquatic 
animals? Based on the fact that the gut microbiota is driven by host-
related deterministic selection and the introduction of neutral 
microbes from the environment (Ringø et al., 2016; Legrand et al., 
2020), and that the microHI is calculated based on the microbiota 
community structure (Yang et al., 2023), we hypothesized that (1) the 
base value of the gut microHI is species-specific, and (2) the 
correlation between the water environmental microHI and the gut 
microHI has species variation and ecotype variation. In other words, 
we hypothesized that there is effectiveness variation in the use of water 
environmental microHI to indicate the health status of aquatic wild 
animals at the population level and ecotype level.

To identify the effectiveness variation, we took a case study to 
research the water environmental microbiota and fish gut microbiota 
at the fish community level, population level, and ecotype level. As the 
third longest river in the world with rich aquatic biodiversity, the 
Yangtze River has received much attention in wildlife conservation 
(Chen et al., 2020; Zhang et al., 2020). Proposing a convenient method 
to monitor and indicate the health status of wildlife in the Yangtze 
River is urgently needed (Yang et  al., 2023). In the current work, 
we  collected a data set of the fish gut microbiota and water 
environmental microbiota in the middle Yangtze River. Using this data 
set, we further verified that the water environmental microHI could 
be used to indicate the health of aquatic animals at the community 
level. Based on the previous data set and the new data set, we tested 
the effectiveness of using water environmental microHI to indicate the 
health of wild fish at the population level and ecotype level, and 
we  identified the key microbial groups that influenced the health 
status of wild fish. The current study clarifies the effectiveness of using 
water environmental microHI to indicate the health status of wild fish 
and proves a non-invasive method to monitor the health status of wild 
fish without harming the individuals, which would offer a new way of 
understanding and managing the health status of aquatic wild animals 
and provide a new tool for the toolkit of aquatic wildlife conservation.

Materials and methods

Sample collection

From 27 June 2022 to 14 July 2022, we collected gut samples of 
adult wild fish (Table 1) and water environmental DNA samples at the 
Jiang’an section of the middle Yangtze River (N 30°38′52″, E 
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114°20′58″, located in Wuhan City, Hubei Province, People’s Republic 
of China), along with a conventional Yangtze River fishery resources 
investigation. Wild fish were caught using a floating gill net, 
transported to the laboratory in an ice bath, and then dissected. 
Approximately 0.5 g of gut sample, including both tissues and 
contents, was aseptically taken from each individual fish caught. A 
1.5 L surface water sample was collected each day (including two 
transection sample; more details in Supplementary Table S1) using a 
1.5 L sterilized bottle (rinsed three times with sampling water) and 
transported to the laboratory in an ice bath. To obtain eDNA samples, 
each water sample was filtered using a 0.2-μm membrane filter 
(JinTeng, Tianjin, PRC) with purified water as a negative control. All 
samples (including gut samples and eDNA samples) were transported 
on dry ice and then stored at −80°C until DNA extraction. The 
sampling procedures in the current study were similar to the previous 
work (Yang et al., 2023).

Microbiome sequencing

The fish gut microbiota and water environmental microbiota were 
analyzed using 16S rRNA metabarcoding (primers 338F/806R). The 
sequencing technical details followed those in the previous work 
(Yang et  al., 2020, 2021). Microbial DNA was extracted from gut 
samples and water eDNA samples using an E.Z.N.A.® Stool DNA Kit 
(Omega BioTek, Norcross, GA, United  States) according to the 
manufacturer’s protocols. Then, the final DNA concentration and 
purity were determined using a NanoDrop  2000 UV–vis 
spectrophotometer (Thermo Fisher Scientific, Wilmington, 

United  States), and DNA quality was checked by 1% agarose gel 
electrophoresis. The V3–V4 hypervariable regions of the bacterial 16S 
rRNA gene were amplified with the primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACT 
ACHVGGGTWTCTAAT-3′) by using a PCR thermocycler system 
(GeneAmp 9,700, ABI, United States). The PCRs were performed in 
triplicate 20-μl mixtures containing 4 μL of 5 × FastPfu Buffer, 2 μL of 
2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu 
Polymerase, and 10 ng of template DNA. The PCRs were conducted 
using the following program: 3 min of denaturation at 95°C; 27 cycles 
of 30 s at 95°C, 30 s for annealing at 55°C, and 45 s for elongation at 
72°C; and a final extension at 72°C for 10 min. The quality of PCR 
products was tested using 2% agarose gel electrophoresis. Then, the 
resulting PCR products were extracted from a 2% agarose gel, further 
purified using an AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, United States), and quantified using 
QuantiFluorTM-ST (Promega, United  States) according to the 
manufacturer’s protocol. The standard Illumina tags were added to 
PCR products using another PCR program. Then the tagged PCR 
products were extracted, purified, and checked. The single-stranded 
DNA was prepared. Purified amplicons were pooled in equimolar 
amounts and subjected to paired-end sequencing (2 × 300 bp) on an 
Illumina MiSeq platform (Illumina, San Diego, CA, United States) 
according to standard protocols. All samples were extracted and 
sequenced by Shanghai Majorbio Biopharm Technology Co., Ltd. 
(Shanghai, China).

The data for the current study could be obtained from the China 
National GeneBank DataBase (CNGBdb, https://db.cngb.org/) with 
the accession numbers CNP0002410 and CNP0002411, which are, 

TABLE 1 Wild fish species in the current study.

Group 
label

Species Order Family Ecotype Diet Number of 
samples

L.C. Leiocassis crassilabris Siluriformes Bagridae carnivorous Oligochaetes, little fish, small mollusks, 

shrimp

31

L.L. Leiocassis longirostris Siluriformes Bagridae carnivorous Little fish, shrimp, aquatic insects 41

P.V. Pelteobagrus vachelli Siluriformes Bagridae carnivorous Aquatic insects, shrimp, oligochaetes, little 

fish, small mollusks

4

P.N. Pelteobagrus nitidus Siluriformes Bagridae carnivorous Aquatic insects, shrimp, oligochaetes, little 

fish

11

P.F. Pelteobagrus fulvidraco Siluriformes Bagridae carnivorous Aquatic insects, shrimp, little fish 16

P.T. Pseudobagrus tenuis Siluriformes Bagridae carnivorous Aquatic insects, mollusks, oligochaetes, 

crustaceans, little fish

6

S.A. Silurus asotus Siluriformes Siluridae carnivorous Shrimp, little fish

S.M. Silurus meridionalis Siluriformes Siluridae carnivorous Shrimp, little fish 2

H.M. Hypophthalmichthys 

molitrix

Cypriniformes Cyprinidae filter-feeding Phytoplankton, zooplankton 4

A.N. Aristichthys nobilis Cypriniformes Cyprinidae filter-feeding Zooplankton, phytoplankton 5

C.H. Coreius heterodon Cypriniformes Cyprinidae omnivorous Small mollusks, fish eggs and larvae, 

phytoclasts

35

X.A. Xenocypris argentea Cypriniformes Cyprinidae scraper-feeding Bottom-attached algae, phytoclasts 14

S.C. Siniperca chuatsi Perciformes Serranidae carnivorous Fish, shrimp 9

S.K. Siniperca kneri Perciformes Serranidae carnivorous Fish, shrimp 5

C.B. Coilia brachygnathus Clupeiformes Engraulidae carnivorous Little fish, shrimp 31
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respectively, continually updated aquatic wildlife gut microbiota data 
sets and continually updated aquatic environmental DNA data sets.

Statistical analysis

The sequence data of each sample was analyzed on the Majorbio 
Cloud Platform (https://cloud.majorbio.com/). Raw fastq files were 
demultiplexed, quality-filtered by Trimmomatic (http://www.
usadellab.org/cms/index.php?page=trimmomatic) and merged by 
FLASH (https://ccb.jhu.edu/software/FLASH/index.shtml). 
Operational taxonomic units (OTUs) were clustered with a 97% 
similarity cutoff using USEARCH7-uparse (http://drive5.com/
uparse/), and chimeric sequences were identified and removed using 
UCHIME (http://www.drive5.com/uchime/uchime_download.
html). The abundance of each OTU was analyzed using Usearch 
(http://www.drive5.com/usearch/). The taxonomy of each OTU was 
analyzed using the RDP Classifier Bayesian algorithm (http://
sourceforge.net/projects/rdp-classifier/) against the database of 
silva138/16 s (http://www.arb-silva.de) with a confidence threshold 
of 75%. The phenotypes of each taxon were predicted using the 
phenotype prediction tool of BugBase (https://bugbase.cs.umn.edu/
index.html), in which the unclassified sequences (sequences that 
cannot be annotated as species) were ignored in the analysis. The 
abundance ratios of microbes with the phenotypes of potential 
pathogenicity, mobile element content, and oxidative stress tolerance 
in each sample were obtained. Then, the microHI of each sample was 
calculated following Eq. 1. To identify the samples with disordered 
gut microbiota, hierarchical clustering (along with the column 
diagram of microbiota) of fish gut microbial samples was conducted 
at the microbial species, genus, and family levels based on the Bray–
Curtis distance algorithm and the average linkage method (using 
Qiime http://qiime.org/install/index.html). The normal branches 
could be recognized using a definite species and even species with 
similar ecotypes, as we assumed that most individuals have a normal 
gut microbiota (Yang et al., 2022). The samples clustered in abnormal 
branches (out of normal branches) could be identified as disordered 
ones, which always indicates unhealthy hosts (Tong et al., 2020). The 
statistical analysis processes in the current study followed our 
previous work (Yang et al., 2023).

The current water environmental microbiota and fish gut 
microbiota data obtained from the Jiang’an section in June 2022 were 
analyzed to verify the relationship between gut microHI and 
disordered gut microbiota and then were combined with the data that 
was collected in 2020 at the sampling sections of Jiayu, Xinzhou, and 
Hukou in a previous study (Yang et al., 2023) to verify the correlation 
between gut microHI and environmental microHI at the fish 
community level. The data that was collected in 2020 includes 219 
adult gut samples (29 from the Jiayu section, 156 from the Xinzhou 
section, and 34 from the Hukou section) from 11 species of fish and 
43 water samples from two water environment groups (13 from the 
Xinzhou section, 30 from 30 sampling transects of the middle Yangtze 
River). Then, the gut microHI base value (average gut microHI of the 
individuals with normal gut microbiota) of each fish species was 
calculated. According to a pairwise comparison, the correlation 
relationship between gut microHI and disordered gut microbiota (the 
pairwise comparison of average gut microHIs from the samples with 

disordered gut microbiota and the samples with normal gut 
microbiota) and the correlation relationship between host growth 
condition (fullness) (Fulton’s condition, Eq. 2) (Bolger and Connolly, 
1989; Hayes et al., 1995) and disordered gut microbiota (the pairwise 
comparison of average fullness between samples with disordered gut 
microbiota and samples with normal gut microbiota) were identified 
at the fish population level. A linear regression identified a correlation 
relationship between the gut microHI and environmental microHI at 
both the fish population level and the fish ecotype level. The gut 
microHI of each fish ecotype was adjusted using the fish community 
structure. In other words, the gut microHI of each fish ecotype was a 
weighted average of the gut microHI, where the individual percentage 
of each species in the fish community is the weighting factor. The key 
groups determining the microHI (with the phenotypes of potential 
pathogenicity, mobile element content, and oxidative stress tolerance) 
were identified using the non-parametric factorial Kruskal-Wallis 
(KW) sum-rank test and LDA (LDA ≥ 3).

 
K m

L
= ×

3
100

 
(2)

where K denotes Fulton’s condition (fullness) of an individual; m 
denotes the weight of an individual; and L denotes the body length of 
an individual (Bolger and Connolly, 1989; Hayes et al., 1995).

Results

The characteristics of the samples’ 
sequences

In the 214 adult fish gut samples from 14 species and 30 water 
environmental eDNA samples, we  obtained 18,260,434 clean 
sequences, which were clustered into 15,247 OTUs and were identified 
as 1 kingdom, 65 phyla, 195 classes, 459 orders, 804 families, 1884 
genera, and 2,409 species. The rarefaction curve (sobs & chaos, 
Supplementary Figures S1–S2) showed that the sequence depth was 
almost sufficient.

The abundance ratios of microbes with the phenotype of 
potential pathogenicity, mobile element content, or oxidative stress 
tolerance were variable in different samples and species 
(Supplementary Figure S3). More than half of the adult fish gut 
samples had a low (lower than 40%) relative abundance of the 
microbes with the phenotype of Potentially Pathogenic, a low 
(lower than 30%) relative abundance of the microbes with the 
phenotype of Contains Mobile Elements, and a low (lower than 
20%) relative abundance of microbes with the phenotype of Stress 
Tolerant. Most of Coilia brachygnathus had a high (>50%) relative 
abundance of the microbes with the phenotypes of Potentially 
Pathogenic, Contains Mobile Elements, and Stress Tolerant. In 30 
water environmental eDNA samples, the relative abundance of the 
microbes with the phenotype of Potentially Pathogenic mainly 
(>93%) ranges from 10 to 30%; the relative abundance of the 
microbes with the phenotype of Contains Mobile Elements mainly 
(90%) ranges from 50 to 70%; and the relative abundance of the 
microbes with the phenotype of Stress Tolerant mainly (>93%) is 
lower than 20%.
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The relationship among host health, gut 
microHI, and water environmental microHI 
at the community level

In the total of 214 fish gut microbial samples, 65 (30%) had 
disordered microbiota (unhealthy) (Supplementary Figures S4–S6). 
Approximately 66% of the fish gut microbial samples had a microHI 
of higher than 0.6, and approximately 15% of the fish gut microbial 
samples had a microHI of lower than 0.4. In the fish gut microbial 
samples with a microHI higher than 0.6, approximately 77% had 
normal microbiota (healthy). As the microHI increased, the 
probability of that the sample was captured from a healthy specimen 
also increased (Figure  1A). The average gut microHI of healthy 
individuals (0.71) was higher than that of unhealthy individuals 
(0.58). Comparing the microbial data from Jiang’an section in 2022 
with the microbial data from Xinzhou section in 2020, the average 
environmental microHI of water samples is 0.71 (n = 30) in 2022, and 
0.83 (n  = 13) in 2020; the average gut microHI of all sampled 
individuals is 0.67 (n = 214) in 2022, and 0.68 (n = 156) in 2020; the 
average gut microHI of all sampled healthy fish individuals is 0.71 
(n = 149) in 2022, and 0.73 (n = 115) in 2020; the percentage of healthy 
individuals was 69% in 2022 and 74% in 2020. Plotting the current 
diagram of the correlation between average fish gut microHI and 
average water environmental microHI with combined data (2020 and 
2022), the positive correlation between the water environmental 
microHI and fish gut microHI at the community level was still 
maintained (Figure 1B).

The relationship among host health, gut 
microHI, and water environmental microHI 
at the population level

In the combined data of the fish gut microbiota from the Jiang’an 
section in 2022 and the Xinzhou section in 2020, 11 fish species with 
more than 10 individuals were analyzed. The average gut microHI of 
healthy individuals was generally higher than that of unhealthy 

individuals in each fish species (Figure 2A). The gut microHI of the 
healthy group was significantly higher than that of the unhealthy 
group in some fish species (with enough samples in both healthy and 
unhealthy groups) (Figure 2B). The average Fulton’s condition of the 
healthy individuals was generally higher than the average Fulton’s 
condition of the unhealthy individuals in the majority of fish species, 
although the difference in Fulton’s condition was less than 9% 
(Figure 2C). As the water environmental microHI in 2020 was higher 
in 2020 than in 2022, the average gut microHI of the healthy fish 
group of a species was higher in 2020 than in 2022 for the majority of 
species (with three exceptions), although there was no significant 
difference between the sample groups in 2020 and 2022 (Figure 2D). 
The average gut microHI of healthy individuals in each species, which 
could be regarded as the base value of this species’ gut microHI, was 
species-specific (Figure 2A, Supplementary Table S2) and influenced 
by environmental microbiota (Figure 2D). Moreover, the degree to 
which the average value of the gut microHI in the healthy fish group 
of a species was higher in 2020 than in 2022 was found to be species-
specific (Figure 2D). In other words, the influence of environmental 
microbiota on the base value of the gut microHI was species-specific, 
although there was a random error observed (Figure 2D).

The relationship between gut microHI and 
water environmental microHI at the 
ecotype level

Considering the species-specific relationship between gut 
microHI and environmental microHI, the community-level fish gut 
microHI of each sampling location (Jiayu, Jiang’an, Xinzhou, and 
Hukou) was corrected using the fish community structure (based on 
the number of individuals, Supplementary Table S3) identified by our 
conventional Yangtze fishery resource investigation. The fish in the 
community were divided into four ecotypes: filter-feeding, scraper-
feeding, omnivorous, and carnivorous (Table  1). The positive 
correlation between water environmental microHI and fish gut 
microHI at the community level was still maintained (Figure 3A), 

FIGURE 1

The correlation between fish gut microHI and water environmental microHI. (A) Distribution of fish gut microHIs in the Jiang’an section of the Yangtze 
River (n =  214). (B) The correlation between fish gut microHI (n =  370) and water environmental microHI (n =  43).
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FIGURE 3

The adjusted correlation between water environmental microHI and fish gut microHI at the community level and ecotype level. The overall community 
level (A), the ecotypes of carnivorous (B), scraper-feeding (C), filter-feeding (D), and omnivorous (E) fish groups.

FIGURE 2

The gut microHIs of each species at the population level. (A) The average gut microHls of healthy (green) individuals and unhealthy (red) individuals for 
each fish species. (B) The gut microHl characters of healthy (_H) individuals and unhealthy (_U) individuals for each fish species. (C), The difference in 
values of average microHl and average fullness (Fulton’s condition) between healthy and unhealthy groups of individuals. (D), The gut microHls of 
healthy individuals for each fish species in 2020 and 2022. Eleven fish species groups: C.B., Coilia brachygnathus; C.H., Coreius heterodon; H.M., 
Hypophthalmichthys molitrix L.C., Leiocassis crassilabris; (L).L., Leiocassis longirostris; (P).F., Pelteobagrus fulvidraco; P.N., Pelteobagrus nitidus; P.V., 
Pelteobagrus vachelli; (S).A., Silurus asotus; S.C., Siniperca chuatsi; (X).A., Xenocypris argentea. *p < 0.05 and **p < 0.01 indicate significant differences.
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while the positive correlation at the ecotype level was only maintained 
in the carnivorous fish group (Figures 3B-E).

The key groups that potentially impact the 
health status of wild fish from water 
environmental microbiota

When analyzing the fish gut microbiota and the water 
environmental microbiota, there were mainly 107 families and 106 
genera that related to the phenotypes of potential pathogenicity, 
mobile element content, and oxidative stress tolerance 
(Supplementary Figures S7–S12). The most abundant groups with a 
negative impact on fish gut microHI were Alcaligenaceae, 
Clostridiaceae, Peptostreptococcaceae, Enterobacteriaceae, and 
Moraxellaceae at the family level, and Achromobacter, Plesiomonas, 
Clostridium, Aeromonas, and Acinetobacter at the genus level 
(Supplementary Figures S7–S12). A total of 26 families and 22 genera 
had high correlations (r2 > 0.6) between the gut sample group and 
environment sample group, among which 17 families and 13 genera 
had positive correlations (slope > 0.1), including Alcaligenaceae, 
Enterobacteriaceae, and Achromobacter (Supplementary Table S4).

Comparing the healthy groups and unhealthy groups of the four 
ecotypes (filter-feeding, scraper-feeding, omnivorous, and 
carnivorous), the percentage of families and genera that related to the 
phenotypes of potential pathogenicity, mobile element content, and 
oxidative stress tolerance was lower in the healthy group than in the 
unhealthy group (Supplementary Table S5). There were 51 families 
and 47 genera that had significant abundance differences between 
healthy and unhealthy groups (Supplementary Figures S13–S16 and 
Supplementary Table S5), among which 10 families and 6 genera 
showed positive correlations (slope > 0.1, r2 > 0.6) between gut sample 
groups and environment sample groups in each ecotype (except the 
omnivorous ecotype) (Figure 4A and, Supplementary Tables S4–S5). 
Additionally, only two families (Alcaligenaceae, Enterobacteriaceae) 
and two genera (Achromobacter, Streptococcus) had significantly 

higher abundance in the unhealthy groups than in the healthy groups 
of the carnivorous, filter-feeding, and scraper-feeding ecotypes 
(Figure 4B). The other families and genera did not have significantly 
higher abundances in unhealthy groups than in healthy groups.

Discussion

Gut microHI could indicate the health 
status of wild fish at both community and 
population levels

The homeostasis of the intestinal system occupies an important 
position in the regulation of the host immune system, health, and 
physiology (Su et al., 2018; Zhong et al., 2019). The metabolites of gut 
microbes can act as energy sources for cell metabolism, as promoters 
of development and immune function, and can prevent colonization 
by pathogenic microorganisms (Honda and Littman, 2012; Butt and 
Volkoff, 2019). The altered gut microbiota composition can affect fish 
health and is often associated with a diseased state (Sartor and Wu, 
2017; Sun et al., 2020; Bozzi et al., 2021). Many studies have shown 
that the gut microbiota can be a monitoring indicator of multiple 
diseases (Xiong et al., 2019; Wang et al., 2022), abnormal physiological 
metabolism (Kraimi et al., 2019; Kim et al., 2020), and general health 
conditions (Borbón-García et al., 2017; Bozzi et al., 2021) in mammals, 
birds, fish, etc.

The gut microHI could reflect the microbial composition 
associated with tissue damage, risk of disease, or potential threats to 
host health (Sáenz et  al., 2019; Himani et  al., 2020). One of our 
previous studies found that, at the community level, most of the fish 
gut samples with low microHI were obtained from specimens with a 
disordered gut microbiota, which is always indicative of an unhealthy 
host, so the gut microHI could potentially be used to evaluate host 
health status (Yang et al., 2023). In the current study, the new data 
showed that, at the community level, (1) the individuals with normal 
gut microbiota were more likely to have a higher gut microHI than the 

FIGURE 4

Differentially abundant bacterial taxa from the healthy and unhealthy groups in four ecotypes. (A), A plot showing taxa that were significantly 
differentially abundant between the healthy (blue) and unhealthy (red) groups, as determined using the Kruskal-Wallis test. The LDA score (effect size) 
indicates significant differences in bacterial taxa (LDA score  >  3.0; alpha value p <  0.05). (B), Relative abundance of indicator taxa in the healthy (blue) 
and unhealthy (red) groups. *p <  0.05 and **p <  0.01 indicate significant differences.

https://doi.org/10.3389/fmicb.2023.1293342
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fmicb.2023.1293342

Frontiers in Microbiology 08 frontiersin.org

individuals with disordered gut microbiota, and (2) the individuals 
with a higher gut microHI were more likely to have normal gut 
microbiota than the individuals with a lower gut microHI (Figure 1A). 
In addition, the average gut microHI of healthy individuals was higher 
than that of unhealthy individuals. Thus, the current data support the 
idea that the gut microHI could be used to indicate host health status 
at the community level.

In the 11 fish species analyzed, the average Fulton’s condition of 
healthy individuals was found to be generally higher than that of 
unhealthy individuals in the majority of fish species, although the 
difference in Fulton’s condition was small (Figure  2C). Generally 
speaking, in a given species, a higher Fulton’s condition in an adult fish 
individual always indicates a more healthy status (Nash et al., 2006), 
although the Fulton’s condition index has some limitations (Bolger 
and Connolly, 1989; Hayes et al., 1995). Therefore, the delineation of 
a healthy group based on normal gut microbiota is supported by the 
growth status of individuals as indicated by Fulton’s condition. 
Moreover, the average gut microHI of healthy individuals was 
generally higher than that of unhealthy individuals in each species, 
although there was individual variation (Figures 2A–B). This suggests 
that the gut microHI can be used to indicate host health status at the 
population level.

The correlation between gut microHI and 
water environmental microHI is positive at 
the community level, but variable at the 
population and ecotype levels

Environmental microbiota (Zhang et al., 2021; Zhou et al., 2021), 
diet composition (Gajardo et al., 2017; Wilkes Walburn et al., 2019), 
host genetics (Zhang et  al., 2019; Callens et  al., 2020), and 
environmental pollutants (Li et al., 2022; Zhang et al., 2023) have been 
demonstrated to play important roles in defining the composition of 
the gut microbiota of the host. In aquatic animals, the introduction of 
environmental microbes is known to be an extremely important force 
in constructing the gut microbiota (Zhang et al., 2021; Zhou et al., 
2021; Yang et al., 2022). One of our previous studies found that there 
were low fish gut microHIs in the Yangtze River sections with low 
aquatic environmental microHI (Yang et al., 2023), which is consistent 
with the current results of a positive correlation between the gut 
microHI and the water environmental microHI at the community 
level. The current results support the idea that the water environmental 
microHI could be used to indicate the gut microHI at the community 
level. Moreover, the adjusted average fish gut microHI of the sampling 
locations still maintained a positive correlation between the water 
environmental microHI and fish gut microHI (Figure 3A). Therefore, 
considering that the gut microHI could indicate the health status of 
wild fish and that there is a positive correlation between the water 
environmental microHI and the fish gut microHI at the community 
level, the water environmental microHI could serve as a useful 
indicator of the health status of the wild fish community unit.

The base values of the gut microHI for each species, indicated by 
the mean gut microHI of healthy individuals, were species-specific at 
the population level (Figure 2A and Supplementary Table S2), and the 
water environmental effects were similarly species-specific 
(Figure 2D). These species variations are impacted by the combined 
effects of host-genetic deterministic selection and the introduction of 

neutral microbes (Ley et al., 2011; Ringø et al., 2016; Legrand et al., 
2020). The host-genetic deterministic selection depends on the host 
digestive system structures (Yan et al., 2016; Wilkes Walburn et al., 
2019; Xiao et al., 2021). The introduction of neutral microbes depends 
on the habitats and diet conditions of the hosts (Ringø et al., 2016; 
Kashinskaya et al., 2018; Sun et al., 2019; Heys et al., 2020). Of course, 
part of the variations in the current work may have been caused by 
individual random errors. The correlation between fish gut microHI 
and water environmental microHI is variable at the population level.

Host-mediated environmental factors such as diet, lifestyle, 
xenobiotic exposure, and medications can induce substantial shifts 
in microbiome composition (Yatsunenko et al., 2012; Schroeder et al., 
2016). Multiple studies have indicated associations between long-
term diet and host microbiota (Turnbaugh et al., 2009; Albenberg and 
Wu, 2014; Cresci and Bawden, 2015). Diet was also the main force 
influencing gut microbial diversity (Falony et al., 2016; Turpin et al., 
2016; Zhernakova et al., 2016). However, it only explained a small 
percentage of the variation in the microbiota. Thus, given the 
importance of diet on the gut microbiota composition, we combined 
the populations into four ecotypes (filter-feeding, scraper-feeding, 
omnivorous, and carnivorous, Table 1). The results showed that only 
the carnivorous group maintained a positive correlation between gut 
microHI and water environmental microHI (Figures 3B-E), whereas 
the filter-feeding, scraper-feeding, and omnivorous groups did not. 
Perhaps driven by the extensive and longer intestinal system (filter-
feeding, 5.0–6.0 times body length; scraper-feeding, 1.5–5.0 times 
body length; omnivorous, 0.9–1.1 times body length) (Chen, 1998), 
there was a relatively stable gut microbiota structure in filter-feeding, 
scraper-feeding, and omnivorous species that was seldom or weakly 
influenced by environmental microbiota (Figures 3C-E). In contrast, 
the short (0.3–0.7 times body length) intestinal system of carnivorous 
fish (Zheng, 1987; Zhu et  al., 1999) was strongly influenced by 
environmental microbiota; therefore, there was a positive correlation 
between gut microHI and water environmental microHI (Figure 3B). 
Of course, it is possible that the effects of sediment environmental 
microbiota on the gut microbiota structure of the scraper-feeding and 
omnivorous groups (Zhang et al., 2021; Zhou et al., 2021; Yang et al., 
2022) caused the weak correlation between the gut microHI of the 
scraper-feeding and omnivorous species and water 
environmental microHI.

Alcaligenaceae, Enterobacteriaceae (family 
level), and Achromobacter (genus level) are 
the key groups that may impact the health 
status of wild fish from environmental 
microbiota in water

The groups that have a negative influence on the health status of 
wild fish are general in both the gut microbiota and the environmental 
microbiota (Al-Hisnawi et al., 2016). The aquatic habitat, as a living 
matrix, supports various microbes (Legrand et al., 2020; Sehnal et al., 
2021). The gut of aquatic wild animals, due to sharing a large amount 
of microbes with the environment (Yang et al., 2022), also harbors 
various microbes. In the current results, there were mainly 107 
families and 106 genera that related to the phenotypes of potential 
pathogenicity, mobile element content, and oxidative stress tolerance, 
and a large amount of these groups were present in most samples 
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(including from both healthy and unhealthy individuals) 
(Supplementary Figures S7–S12).

Few of the groups showed the possibility of originating from water 
environmental microbiota and potentially impacting the health status 
of wild fish. In the groups that related to the phenotypes of potential 
pathogenicity, mobile element content, and oxidative stress tolerance, 
the abundance of 26 families and 22 genera in gut sample group was 
strongly correlated with that in environment sample group (r2 > 0.6), 
and the abundance correlations were positive for 17 families and 13 
genera (slope > 0.1) (Supplementary Table S4). Comparing the healthy 
groups and unhealthy groups of four ecotypes, 10 families and 6 
genera (part of previous 17 families and 13 genera) had significant 
abundance difference between healthy groups and unhealthy groups 
(Supplementary Figures S13–S16 and Supplementary Table S5), and only 
two families (Alcaligenaceae, Enterobacteriaceae) and two genera 
(Achromobacter, Streptococcus) had significantly high abundance in the 
unhealthy group of the carnivorous or filter-feeding ecotypes. 
Furthermore, Alcaligenaceae, Enterobacteriaceae (family level), and 
Achromobacter (genus level) were found to be the most abundant groups 
among the 107 families and 106 genera. Alcaligenaceae, including the 
genus Achromobacter, as opportunistic pathogens, are significantly more 
abundant in hosts with certain diseases (Swenson and Sadikot, 2015; Pan 
et  al., 2020), and can be  a bacterial bio-indicator of environmental 
pollution (Zolkefli et al., 2020). Enterobacteriaceae are an important 
normal flora in the intestine. However, some species can become 
opportunistic pathogens and cause infections after the host’s immunity 
declines, resulting in a variety of diseases (Satlin and Walsh, 2017; Skuja 
et al., 2018; Pisani et al., 2021). In the current results, Alcaligenaceae, 
including the genus Achromobacter, are associated with potential 
pathogenicity and oxidative stress tolerance. Enterobacteriaceae are 
related to potential pathogenicity, mobile elements, and oxidative stress 
tolerance. Therefore, we believe that Alcaligenaceae, Enterobacteriaceae 
(family level), and Achromobacter (genus level) are the key water 
environmental microbial groups that potentially impact the health status 
of wild fish in the middle Yangtze River.

A weighted microHI, based on scientific 
rationale, should be a better indicator of 
the health status of wild fish

In one of our previous works, microHI was defined as the 
unweighted average abundance ratio of microbes without three 
health-negative-impacting microbial phenotypes, i.e., potential 
pathogenicity, mobile element content, and oxidative stress tolerance 
(Eq. 1) (Yang et al., 2023). MicroHI has shown its ability to evaluate 
the health status of wild fish and the possibility of using water 
environmental microbiota to indicate the health status of wild fish 
(Yang et al., 2023). However, the current unweighted microHI is only 
a primary indicator (microHI-1.0). The correlation between fish gut 
microHI and the delineation of healthy and unhealthy individuals in 
a species is not very accurate (little exceptions) and strong (high r2) 
(Figure  1A). The correlation between fish gut microHI and 
environmental microHI is also not very accurate (little exceptions) 
and strong (high r2) (Figure 3). Perhaps a weighted microHI based on 
scientific evidence would be the best way forward.

Although Potentially Pathogenic, Contains Mobile Elements, 
and Stress Tolerant are identified as health-negative-impacting 

microbial phenotypes, in practice, the microorganism with these 
phenotypes could be beneficial if it had low abundance and low 
health-negative-impacting (Wiles and Guillemin, 2019). Using 
the microHI-1.0, this situation cannot be  taken into account 
when assessing the health status of fish using the fish gut 
microHI. Then, the effectiveness of using water environmental 
microHI to predict the health status of wild fish could also 
be impacted. Therefore, an updated microHI (microHI-2.0) that 
considers these influences might be  better. To obtain the 
microHI-2.0, sufficient scientific data and knowledge are needed 
to determine the weighting factors and adjustment parameters. 
More studies in this field are necessary. We hope that microHI-
2.0 can be realized in the future.

Conclusion

The current work showed that the gut microHI could indicate the 
community health status of wild fish and had a positive correlation 
with water environmental microHI. In other words, the current results 
support the idea that the water environmental microHI could be used 
to indicate the health status of wild fish at the community level. 
Moreover, the current study indicated that the gut microHI could 
indicate the population health status of wild fish, although it showed 
a variable correlation with water environmental microHI. When fish 
species were grouped into four ecotypes, only carnivorous fish 
retained the positive correlation between fish gut microHI and water 
environmental microHI. Furthermore, Alcaligenaceae, 
Enterobacteriaceae (family level), and Achromobacter (genus level) 
were the key groups introduced from the water environmental 
microbiota and potentially impacted the health status of wild fish in 
the middle Yangtze River. Therefore, this study comprehensively 
verifies the effectiveness of water environmental microHI as an 
indicator of the health status of wild fish. Our work provides a 
non-invasive method for the health monitoring of wild fish, offers a 
new path for understanding and managing aquatic wild animals’ 
health status, and provides a new tool for the aquatic wildlife 
conservation toolkit. Of course, more research to develop the 
microHI-2.0 with weighting factors and adjustment parameters 
is welcome.
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