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The interplay between the
microbiota, diet and T regulatory
cells in the preservation of the gut
barrier in inflammatory bowel
disease

Kathryn Prame Kumar*, Joshua D. Ooi and Rimma Goldberg

Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash

Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia

Inflammatory bowel disease (IBD) is becoming more common in the Western

world due to changes in diet-related microbial dysbiosis, genetics and lifestyle.

Incidences of gut permeability can predate IBD and continued gut barrier

disruptions increase the exposure of bacterial antigens to the immune system

thereby perpetuating chronic inflammation. Currently, most of the approved IBD

therapies target individual pro-inflammatory cytokines and pathways. However,

they fail in approximately 50% of patients due to their inability to overcome the

redundant pro inflammatory immune responses. There is increasing interest in

the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions

due to their widespread capability to dampen inflammation, promote tolerance

of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be

engineered for more targeted therapy. Intestinal Treg populations are inherently

shaped by dietary molecules and gut microbiota-derived metabolites. Thus,

understanding how these molecules influence Treg-mediated preservation of the

intestinal barrier will provide insights into immune tolerance-mediated mucosal

homeostasis. This review comprehensively explores the interplay between diet,

gut microbiota, and immune system in influencing the intestinal barrier function

to attenuate the progression of colitis.
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Inflammatory bowel disease

Inflammatory bowel disease (IBD) represents a chronic inflammatory disorder affecting
the gastrointestinal tract. The etiology of IBD involves a complex interplay between genetic
susceptibility, environmental factors, and dysregulated immune responses (Baumgart and
Carding, 2007). Notably, increased intestinal permeability is a latent condition implicated
in various disorders such as type 1 diabetes, multiple sclerosis and rheumatoid arthritis
(Kinashi and Hase, 2021). In IBD, there are cases of increased gut permeability in patients,
occurring alongside incidences of microbial dysbiosis, and chronic inflammation (Hollander
et al., 1986; Hollander, 1988; Adenis et al., 1992; Söderholm et al., 1999; Gitter et al., 2001;
Tamboli et al., 2004; Pochard et al., 2018). The compromised integrity of the mucosal
barrier permits bacterial substances to translocate into the underlying tissues, subsequently
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triggering the immune system. Excessive production of
inflammatory mediators exerts direct detrimental effects on
the intestinal barrier by propagating cellular apoptosis, erosions,
and ulcerations in IBD (Kucharzik et al., 2001; Heller et al., 2005;
Hansberry et al., 2017; Vespa et al., 2022). The management
of IBD typically involves a short course of biologics and small
molecules with corticosteroids or long term administration of
aminosalicylates (Gomollón et al., 2017). However, a significant
proportion of patients experience adverse effects or develop
non-responsiveness, necessitating the consideration of surgical
interventions with the percentage of patients needing surgery
over the course of 1, 5, and 10 years being 4, 8.8, and 13.3% for
patients with ulcerative colitis (UC), and 18.7, 28.0, and 39.5%
for patients with Crohn’s disease (CD), respectively (Tsai et al.,
2021). The emergence of biologic therapies in clinical practice
has provided more targeted and effective immunomodulation,
of which the most common are tumor necrosis factor (TNF)-
α blockers such as infliximab and adalimumab (Rawla et al.,
2018). These biologics have been designed to suppress a
hyperactive immune system, yet up to 30% of patients fail
a biologic due to resistance to treatment or complications
(Papamichael et al., 2016; Moss, 2022). Exclusive enteral nutrition
and partial enteral nutrition are established therapies in IBD
(Yamamoto and Shimoyama, 2023). Therefore, knowing more
about the mechanisms of how dietary therapies manipulate
inflammation in IBD can facilitate the development of targeted and
safer therapies.

There is the question of whether IBD-related mucosal
permeability is a primary event or a consequence of inflammation.
Notably, instances of intestinal hyperpermeability may precede
the onset of IBD, as suggested by a prospective study indicating
that abnormal gut permeability and a disorganized gut barrier
heighten the susceptibility to developing CD (Turpin et al.,
2020). However, it is important to note that IBD does not
solely arise from increased gut permeability, but rather results
from an interplay of multiple risk factors such as genetics,
intestinal microbiota, diet, immune system, and environment
(Tamburini et al., 2022; Noble et al., 2023). Over the last half
century, the contribution of the “Westernized” diet has become
a major concern pertaining to IBD, as urbanization introduced
dietary patterns predominantly characterized by high sugar and
fat content, frequented antibiotic use, and increased exposure
to pollution. Evidently, these factors lead to reduced microbial
biodiversity and heightened risk of IBD (Halfvarson et al.,
2017; Vich Vila et al., 2018; Pittayanon et al., 2020; Pisani
et al., 2022; Adam et al., 2023). While it has been shown that
increased gut permeability precedes IBD onset, it is important to
note that chronic inflammation can exacerbate intestinal barrier
impairment. It is thought that the shift in microflora triggers and
maintains inflammation, leading to the chronicity of the disease.
Consequently, the inefficiency to dampen inflammation leads to
tissue damage and gut permeability (Yacyshyn andMeddings, 1995;
Suenaert et al., 2002). Compelling evidence supports the notion
that resolving inflammation not only mitigates gut permeability
but also ameliorates colitis (Suenaert et al., 2002; Marini et al.,
2003; Arrieta et al., 2009). As such addressing the mechanisms
that drive intestinal inflammation is essential in order to treat
gut hyperpermeability.

Structure of the gastrointestinal tract
and barrier

The gastrointestinal tract is composed of the oral cavity,
esophagus, stomach, small intestine, large intestine, and anal cavity.
Lining these cavities is a thick mucosal barrier that separates
environmental factors from the host tissues (Vancamelbeke
and Vermeire, 2017). This semipermeable barrier regulates the
absorption of nutrients yet limits the entry of harmful substances
into the tissues. The function of the intestinal barrier is controlled
by cellular, and chemical components including dietary molecules,
microorganisms, immune cells, tissue cells and secreted mucus and
antimicrobials (Okumura and Takeda, 2018). Interactions between
the gut microbiota, immune system and intestinal cells occur
at the mucosal barrier interface, which later shapes host health
and disease.

There are over 10 trillion microbes located in the gut lumen
that are essential for nutrient breakdown (Joller et al., 2014). These
microbes form intricate biochemical niches influenced by various
external factors, including lifestyle and diet. To protect against
potential harm, intestinal epithelial cells (IECs) establish a mucosal
barrier composed of a thick layer of mucus to separate the host
immune cells from the gut microbiota (Beck et al., 2006). Another
line of host defense against microorganisms are intestinal immune
cells such as dendritic cells, macrophages, natural killer cells, B
and T cells, that reside at the mucosal surfaces, lamina propria,
and immune-enriched follicles (Lord et al., 2010; Gibney et al.,
2015). Several factors govern the health of the epithelial barrier,
namely dietary molecules, the microbiome, and inflammation.
As these factors are interdependent, perturbations to any one
of these systems could disrupt the integrity of the gut barrier.
T regulatory cells (Tregs) are enriched in the mucosal layer to
control inflammation caused by immune-bacterial interactions at
the epithelial surface (Atarashi et al., 2011). These cells exert
suppressive effects on adaptive and innate immune cells by limiting
their differentiation, proliferation, effector functions, and initiating
programmed cell death (Sojka et al., 2008). Given the profound
impact of inflammation on the epithelial barrier integrity, Tregs
serve as a vital link connecting diet, gut microbiota, and host barrier
integrity (Arpaia et al., 2013).

Immune dysregulation in IBD

Approximately 70–80% of the body’s immune population is
localized within the gastrointestinal tract (Johnson, 1987; Furness
et al., 2014). The mucosa and lamina propria contain concentrated
clusters of various immune cell types, including dendritic cells
(DCs), innate lymphocyte cells (ILCs), intra-epithelial lymphocytes
(IELs), macrophages, and T and B cells (Lee et al., 1985; Yuan
and Walker, 2004; Zheng et al., 2020). Intestinal immune cells
collectively form a highly functional and efficient immunological
barrier against bacterial invasion by regulating the integrity and
permeability of the intestinal barrier. It is intimately involved
with gut microbiota and together they co-evolve to protect the
host from external dangers. One example is the strengthening of
the mucosal barrier via cytokines, whereby commensal microbes
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stimulate innate lymphoid cells to produce IL-22. This leads to
increases in lipid absorption by epithelial cells and improved
barrier function (Talbot et al., 2020). However, in the initial
stages of IBD, the compromised intestinal barrier allows for
the excessive entry of microbial antigens into the tissue. These
antigens trigger the activation of innate immune cells, including
neutrophils, DCs, and macrophages. However, prolonged immune
activation and impaired bacteria clearance leads to excessive
accumulation of neutrophils within the tissue of IBD patients
(Vespa et al., 2022). Such occurrences could be attributed to genetic
impairments in autophagy observed in IBD patients, whereby
impairment autophagy interferes with Paneth and goblet cells
function and morphology, cytokine secretion by macrophages,
antigen presentation by dendritic cells and epithelial cell stress
response (Saitoh et al., 2008; Cooney et al., 2010; Kaser and
Blumberg, 2011; Lassen et al., 2014; Iida et al., 2017). The
resulting production of inflammatory mediators, which are meant
to eliminate bacteria, ends up damaging the host gut tissue, further
facilitating bacterial invasion, and prolonging the inflammatory
response. In the later stages of the disease, there is a notable
activation and expansion of adaptive immune cells, particularly
conventional T-helper (Th) 1 and Th17 cells, as they are crucial for
combating pathogenic bacteria (Fujino et al., 2003; Cao et al., 2023).
These cells primarily secrete interleukin (IL)-17 and interferon
(IFN)-γ, which play significant roles in inflammation regulation.
One of the key characteristics of IBD is the apparent loss of
anti-inflammatory mechanisms, specifically Tregs (Maul et al.,
2005; Saruta et al., 2007; Wang et al., 2011; Smids et al., 2018).
Tregs represent a distinct subset of CD4+ T cells distinguished
by their expression of the transcription factor forkhead box P3
(Foxp3), CD25 and low expression of CD127 (Liu et al., 2006).
Intestinal Tregs can be further classified into subsets such as
Tr1 (IL-10+ Foxp3+) Tregs, Tr17 (retinoic acid-related orphan
receptor-γt [RORγt]+Foxp3+) Tregs, ICOS+ Tregs, Neuropilin-
1 (Nrp1+GATA-binding protein 3 [GATA3]+Helios+) Tregs and
CD8+ Tregs (Figliuolo da Paz et al., 2021). These cells are
responsible for maintaining peripheral tolerance by secreting
granzymes, perforins, and cytokines such as IL-10, IL-35, and
transforming growth factor-β (TGFβ) (Vignali et al., 2008). They
constitutively express immunoregulatory proteins such as T cell
immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) and programmed cell
death protein-1 (PD-1), whereby engagement of the proteins with
costimulatory molecules present on antigen presenting cells and T
effector cell, leads to effector T cells inactivation and anergy (Levin
et al., 2011; Bin Dhuban et al., 2015; Lord, 2015; Tan et al., 2020;
Hong and Maleki Vareki, 2022).

Numerous studies have emphasized the crucial role of Tregs
in the pathogenesis and progression of colitis. Depletion of Tregs
in animals has been observed to spontaneously induce colitis
(Rubtsov et al., 2008). Administration of IL-2, a vital factor for Treg
proliferation, has shown significant protective effects in preclinical
models of IBD, with modest results in patients (Goettel et al.,
2019; Allegretti et al., 2021). Similarly, preferential expansion of
Tregs via rapamycin prevented colitis development in a CD4T cell
transfer model in mice (Ogino et al., 2012). The cytokines IL-10,
IL-35 and TGF-β produced by Tregs are essential in limiting the

responses of CD4+ T effector cells that drive the progression of
IBD. Conditional knock-out of IL-10 in Tregs does not result in
systemic autoimmunity but leads to inflammation specifically in
the lungs and colon, whereby the unchecked immune response in
the colon manifests as spontaneous colitis (Rubtsov et al., 2008).
Similarly, mice lacking IL-35 expression in Tregs are unable to
limit inflammation in a T cell transfer model of colitis (Collison
et al., 2007). The actions of IL-10 from Tregs effectively restrict the
development of colitis through specific suppression of Th17 cells,
rather than Th1 and Th2 cells (Chaudhry et al., 2011). Whereas
TGF-β produced by Tregs have been shown restrain Th1-mediated
colitis (Powrie et al., 1996), while overexpression of IL-35 inhibits
both Th1 and Th17 responses and facilitates mucosal healing in
colitis (Wirtz et al., 2011). It has been shown that TIGIT expression
by Tregs selectively inhibits Th1 and Th17 responses but not Th2
responses (Joller et al., 2014). Whilst immunotherapies involving
the blockade of CTLA-4 and PD-1 have been associated with the
development of enterocolitis (Beck et al., 2006; Brahmer et al.,
2010; Lord et al., 2010; Gibney et al., 2015; Dahl et al., 2022). This
illustrates the importance of Tregs in regulating Th cell responses
and preventing colitis.

There are paradoxical findings surrounding the Treg
population and function in individuals with IBD and it is possible
that these discrepancies are due to the stage of disease or the
specific T cell population under investigation. In the peripheral
circulation, Treg numbers tend to decrease during active disease
and return to baseline levels upon remission (Maul et al., 2005;
Saruta et al., 2007; Wang et al., 2011; Smids et al., 2018). It is
likely the peripheral Tregs migrate to the inflamed intestines as
evidenced by their accumulation in the mucosal tissue of IBD
patients (Maul et al., 2005; Saruta et al., 2007; Wang et al., 2011;
Smids et al., 2018). Although Foxp3+ Treg populations within
the inflamed intestinal mucosa of IBD patients maintain their
activation markers and expressions of CTLA4 and PD-1, there are
defects in their ability to migrate and repopulate the intestines
(Maul et al., 2005; Goldberg et al., 2019). Even though they retain
their activation markers, these Tregs become anergic and do not
adequately suppress inflammation in IBD (Saruta et al., 2007; Lord
et al., 2015). An additional contributing factor of the insufficiency
of Tregs in IBD, could be due to T effector cell resistance to
Treg-mediated suppression (Fantini et al., 2009).

Naturally, Treg suppression of innate and adaptive immune
cells is important in attenuating immunopathology. However, in
the context of pathogenic infections, T effector cells evade Treg-
mediated suppression to maintain effective immune responses
against pathogens whilst innate immune cells are generally
suppressed (Freeman et al., 2014). In cases of infection, toll-
like receptor (TLR) on T cells are activated leading to the
production of IL-6 and TNF-α and this promotes their resistance
to Treg-mediated suppression (Pasare and Medzhitov, 2003). The
production of these cytokines by T cells alone is insufficient
to confer resistance to suppression, indicating the importance
of TLR activation by bacteria in mediating resistance against
suppression. This would be important in cases of bacterial infection
so that the host is able to mount a sufficient immune response.
However, in IBD, there is prolonged exposure of the microbiome
to inflammatory T cells due to breaches in the gut barrier, further
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promoting the expansion of T effector cells and production of
inflammatory cytokines. In a recent study, the proliferation of Tregs
and elimination of microbiota-specific CD4+ T cell activation
through metabolic checkpoint inhibition protected against colitis
(Zhao et al., 2020). As such, resolving the balance of inflammatory
and anti-inflammatory T cells, as well as the reparation of the
intestinal barrier are essential in limiting chronic inflammatory
responses to prevent further tissue damage.

Change in the microbial landscape
after IBD

The gut microbiota demonstrates a high degree of adaptability
and can be modified by dietary interventions, thereby offering
a potential avenue for therapeutic manipulation. However, this
adaptability also presents a risk, as an imbalanced or unhealthy
diet can lead to detrimental alterations in the microbiota, rendering
the individual more susceptible to disease. Certain bacterial strains,
such as Bacteroides fragilis, Akkermansia muciniphila, Lactobacillus
plantarum, Bacteroides thetaiotaomicron, and Faecalibacterium

prausnitzii, have been identified to promote gut barrier function,
dampen inflammation via Treg activation and enhance the
expression of tight junction proteins in IECs (Lavasani et al.,
2010; Round et al., 2011; Martín et al., 2015; Wang et al.,
2018). Disruptions to these microbial communities, known as
gut microbial dysbiosis, have been linked to dysregulations in
the immune system, metabolism, and gut hormones (Wu and
Wu, 2012). These dysregulations can ultimately contribute to the
development of inflammatory and autoimmune diseases, such as
colitis (Roy et al., 2017).

The beneficial effects of high-fiber diets have been explored as
a potential therapeutic strategy for managing IBD. Dietary fiber
consists of indigestible carbohydrates naturally found in plant-
based foods. Human digestive enzymes cannot break down certain
carbohydrates, but they can be fermented by the gut microbiota.
The most extensively studied metabolites are short-chain fatty
acids (SCFAs), which include acetate, propionate, and butyrate
(Dai and Chau, 2017). High-fiber diets have demonstrated multiple
beneficial effects in the context of IBD. They promote the growth
of beneficial bacteria, enhance microbial diversity, improve gut
barrier function, and exert anti-inflammatory effects through the
production of SCFAs (Yusuf et al., 2022). IBD is associated with
a westernized diet characterized by decreased fiber intake and
increased consumption of sugars and fats (Li et al., 2020). This leads
to significant shifts in the composition of the microbiome favoring
the growth of Escherichia coli and Fusobacterium and reductions
in beneficial bacteria such as A. muciniphila or specifically within
the Clostridium clusters IV and XIVa, including F. prausnitzii,
Roseburia species, and Eubacterium rectale (Frank et al., 2007;
Louis and Flint, 2009; Ohkusa et al., 2009; Sokol et al., 2009;
Smith et al., 2013; Zhang et al., 2017; Zhu et al., 2018; Earley
et al., 2019; Dubinsky et al., 2022; Liu et al., 2022a). Together,
the gut microbiota and dietary molecules play a crucial role
in maintaining the population and function of intestinal Tregs
through mechanisms such as TLR activation on Tregs or by
recognition of bacterial antigens via its T cell receptor (Lathrop
et al., 2011; Round et al., 2011). As such, significant shifts in

microbial diversity can pose consequences on the individual’s
ability to resolve inflammation. By addressing the mechanisms that
drive post-IBD gut hyperpermeability, the exposure to bacterial
antigens, inflammation and tissue damage can be reduced.

Breakdown of the mucus barrier in IBD

Unlike other organs, the intestinal immune system is constantly
exposed to bacterial and foreign antigens. Goblet cells are
responsible for producing a thick layer of mucus that acts as a
physical barrier separating the microbial-rich lumen from the host
tissue and immune cells (Pelaseyed et al., 2014). This mucus layer
is predominantly composed of the mucin glycoprotein MUC2,
along with secretory immunoglobulin A (IgA) and antimicrobials
(Peterson et al., 2007; Meyer-Hoffert et al., 2008; Johansson
et al., 2013). Mucosal Tregs regulate the integrity of this barrier
by dampening inflammation to auto-antigens and facilitate oral
tolerance, both of which are important for the direct health of
IECs (Cosovanu and Neumann, 2020). Experimental evidence
has illustrated the bidirectional relationship between the mucus
barrier and intestinal inflammation (Van der Sluis et al., 2006;
Gersemann et al., 2009; Shan et al., 2013; Allenspach et al., 2018;
CuŽić et al., 2021). Genetically modified mice deficient in Muc2

spontaneously develop colitis-like symptoms such as loose stools,
diarrhea, and occult (Van der Sluis et al., 2006). These mice also
exhibit elevated Th1 and Th17 cells and fewer Tregs in the lamina
propria (Shan et al., 2013). In both patients, rodent and canine
models of IBD, the destruction of the intestinal tissue leads to the
loss of cells in the crypts and goblet cells (Gersemann et al., 2009;
Allenspach et al., 2018; CuŽić et al., 2021). Even though chronic
UC patients show increased expression of secretory markers and
MUC2-positive goblet cells in the intestinal tissue, these cells were
unable to produce mucin upon stimulation (van der Post et al.,
2019; Singh et al., 2022). This may be due to mucin protein
misfolding seen in IBD (Heazlewood et al., 2008). Thus, the mucus
layer in IBD is not only thinner, but also altered in function
and mucin protein misfolding contributes further to spontaneous
inflammation caused by ER stress (Pullan et al., 1994; Heazlewood
et al., 2008; Strugala et al., 2008; Braun et al., 2009; van der Post
et al., 2019; Kramer et al., 2023).

There is also a greater expansion of mucolytic bacterial strains
such as Ruminococcus gnavus and Ruminococcus torques in the
gut mucosae of UC and CD patients, potentially contributing to
thinning of the mucus layer (Png et al., 2010; Hall et al., 2017). The
thinner mucus barrier makes the epithelial tissue more accessible
to commensal bacteria, as rectal biopsies from IBD patients exhibit
a greater number of bacteria residing within the mucus layer when
compared to healthy individuals (Schultsz et al., 1999). This leads
to increased exposure of pathogen-associated molecular patterns
(PAMPs) to the immune system, chronic inflammation, and the loss
of tolerance to commensal bacteria. In patients with IBD, there were
seroreactive antibodies to Escherichia coli, Pseudomonas fluorescens,
Saccharomyces cerevisiae, and neutrophilic antigens (Landers et al.,
2002). Accordingly, there were changes to the relative abundances
of Enterobacteriaceae, Proteobacteria, and S. cerevisiae in the gut
microbiota of individuals with IBD (Kaakoush et al., 2012; Sokol
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et al., 2017; Khorsand et al., 2022). Although experimental studies
that have explored the use of oral tolerance to antigens as a form
of therapy in IBD have shown success in increasing Treg numbers
and reducing colitis, this efficacy has not translated into clinical
settings (Kraus et al., 2004; Ino et al., 2016; Paiatto et al., 2017). The
authors argue that the defective oral tolerance mechanisms in IBD
individuals may be attributed to genetic abnormalities, rather than
a specific neoantigen (Kraus et al., 2004).

Breakdown of the epithelial barrier in IBD

Beneath the mucus layer, is a physical barrier composed of
specialized IECs (Boudry et al., 2004). Serving as the interface
between the luminal environment and the body, this barrier must
be adaptable to the ever-changing intestinal environment during
digestion. Intestinal stem cells located in the basal crypts regularly
proliferate and differentiate into specialized IECs that replenish the
villus tip (Creamer et al., 1961; Umar, 2010). These specialized
IECs include the anti-microbial producing enterocytes, mucus-
producing goblet cells, secretory Paneth cells, enteroendocrine cells
that monitor and regulate intestinal activity during digestion, and
M cells that sample foreign antigens in close proximity to lymphoid
tissues (Hooper, 2015). Nutrient exchange can occur via passage
through the cells or in-between cells, termed transcellular, or
paracellular transport, respectively (Edelblum and Turner, 2015).

Paracellular permeability is regulated by the rearrangement
of tight junction proteins (TJPs), adherens and gap junctional
proteins (Shah and Misra, 2011; Yu and Li, 2014). TJPs are located
closest to the lumen and mainly consist of claudins, occludin,
and zona occludens (ZO) proteins (Ulluwishewa et al., 2011).
Below that are adherens and gap junctions, such as catenins and
cadherins, involved with intracellular communication and cell-
cell adhesion (Farquhar and Palade, 1963). Redistribution of these
paracellular transport constituents can be observed in IBD (Landy
et al., 2016; CuŽić et al., 2021; Hu et al., 2021). In dogs with
idiopathic IBD, there are no changes to the expression of claudin
and β-catenin proteins, but a reduction in E-cadherin (Ohta et al.,
2014). Distribution of claudin-2 was varied throughout the colonic
intestinal crypts of IBD patients and there was decreased claudin
expression adjacent to the mucosal ulcerations, erosions and at sites
of neutrophil infiltration (CuŽić et al., 2021). TJP rearrangement
was accompanied with augmented epithelial cell proliferation and
cell differentiation, and there he was also a loss of tricellulin, a
tricellular TJP, in active UC and was restored during remission
(CuŽić et al., 2021; Hu et al., 2021). Altered claudin expression in
the colon was replicated in mouse models of IBD, with increased
expression of claudin-8 in the IECs and claudin-2 in the crypt
proliferative zones following dextran sodium sulfate (DSS)-induced
colitis (CuŽić et al., 2021). It is conceivable that the loss of TJP in
IBD is a consequence of inflammation and rearrangement of IECs
to accommodate the influx of immune cells.

T regulatory cell influence on the
mucus barrier

Recent evidence has shown that microbial dysbiosis can disrupt
the function of mucosal DCs and disrupt oral tolerance (Fukaya

et al., 2023). In the case of IBD, it can be argued that rather
than being presented by tolerogenic DCs to Tregs, the damaged
epithelium allows luminal antigens enter the host tissue to directly
activate immune cells. This highlights the importance of regulated
antigen exposure to the mucosal immune system and the role
of the mucus barrier. In Muc2−/− mice, which lack an intact
mucus barrier, there was difficulty in inducing oral tolerance,
and this was only restored following the reintroduction of MUC2
into the body (Shan et al., 2013). Ingestion of bacterium coated
in MUC2 by DCs mitigates their inflammatory response and
induced IL-10 production (Shan et al., 2013). These tolerized
DCs inhibited Th1 and Th17 cell proliferation, while promoting
Treg Foxp3 expression and expansion (Shan et al., 2013; Parrish
et al., 2022). In turn, Treg-derived IL-10 maintain the mucosal
immune homeostasis by restraining IL-17-producing cells and
lamina propria lymphocytes which contribute to tissue destruction
in IBD (Chaudhry et al., 2011; James et al., 2016; Globig et al.,
2022). The direct interactions between Tregs and goblet cells
may also play a crucial role in maintaining mucosal integrity
in IBD. Animals deficient in IL-10 characteristically develop
spontaneous colitis and these animals also display a diminished
goblet cell population and mucin secretion (Xue et al., 2016;
López Cauce et al., 2020; López-Cauce et al., 2023). As mentioned
above, one of the issues with the mucus barrier in IBD patients
is the phenomenon of mucin protein misfolding and a study
done in an animal model of spontaneous colitis revealed that
IL-10 administration can preserve mucin protein folding and
mucus secretion by goblet cells (Hasnain et al., 2013). As such,
establishing a robust population of mucosal Tregs may be key
in restoring the gut barrier, regulating antigen presentation, and
limiting inflammation.

T regulatory cell influence on the
epithelial barrier

Tregs have been found to promote the integrity of tight
junctions, which are crucial for maintaining the barrier function
of the intestinal epithelium. Adoptive transfer of Tregs into
Rag1 −/− mice protected against gut permeability in experimental
cirrhosis through the restoration of ZO-1, occludin, claudin 1,
and claudin 2 expression (Juanola et al., 2018). In canines with
idiopathic IBD, treatment with the probiotic cocktail containing
Lactobacillus, Bifidobacterium, and Streptococcus sulivarius

significantly reduced clinical symptoms by reducing CD4+

cell infiltrate, increasing the population of Foxp3+ Tregs, and
increasing occludin and claudin 2 expressions in the intestinal
mucosal tissue (Rossi et al., 2014). Administration with a probiotic
mixture containing Bifidobacterium, Lactobacillus acidophilus, and
Enterococcus showed success against experimental and clinical
IBD, which was attributed to the restoration of the TJP structure,
upregulation of colonic Tregs and reduction of colonic TNF-α,
IFN-γ, and CD4+ cells (Cui et al., 2004; Zhao et al., 2013; Zhang
et al., 2018). It is likely that Tregs act to reduce inflammation
which alleviates the inflammation-mediated rearrangement
of TJPs.

Foxp3+ Tregs preserve the balance and stability of IECs by
supporting the renewal of epithelial stem cells. In vitro organoid
studies have demonstrated that Treg cells produce IL-10 to promote
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of stem cell renewal (Biton et al., 2018). As mentioned above, IL-
10 production by Tregs limits tissue pathology and inflammation
at the mucosal surface of the colon (Rubtsov et al., 2008). One
mechanism by which it does this is by reducing the susceptibility of
IECs to inflammatory mediators such as TNF-α and IFN-γ, as well
as to T cell-mediated apoptosis via the Fas/Fas ligand (Bharhani
et al., 2006). Treg depletion in vivo has been linked to reduced
proportions of intestinal stem cells and an increase in the rate of
IEC differentiation (Biton et al., 2018). Additionally, IL-10−/−mice
display reduced numbers of specialized IECs such as Paneth cells
and the diminished population of these cells observed in IBD can
impair the host anti-microbial defense against pathogens, nutrient
absorption and alter microbial compositions (Schopf et al., 2002;
Simmonds et al., 2014; Xue et al., 2016; Shimizu et al., 2020;
Wehkamp and Stange, 2020).

Signals sent from IEC also influence Treg population and
function. IEC-derived factors such as TGF-β and retinoic
acid induce a tolerogenic phenotype in DCs, leading to the
differentiation of Tregs capable of protecting against colitis
(Iliev et al., 2009). Compared to Tregs found within the lymph
nodes, Foxp3+ Tregs residing with the epithelial barrier lose the
requirement for IL-2 to survive, have reduced CD25 expression
and upregulate CTLA4, thereby enhancing their suppressive
capabilities (Prakhar et al., 2021). Maintenance of the IEC
population is essential as apoptotic IECs leads to the loss of Foxp3+

Treg cells (Nakahashi-Oda et al., 2016). As such, the destroyed
tissue barrier and reduction of IECs in IBD would inevitably
have negative consequences on the intestinal Treg population and
anti-inflammatory immune response.

Nutrition, the microbiome, and T
regulatory cell interactions

Effective IBD therapy needs to be able to concomitantly address
the breakdown in the microbial populations, gut permeability,
mucus barrier, and Treg populations. Given the association
between microbial dysbiosis and chronic intestinal inflammation,
it is understood that diet plays a crucial role in the management
of disease. Multiple clinical studies of IBD have demonstrated that
fiber supplementation helped in reducing inflammatory cytokines,
microbial dysbiosis and improving remission rates (Faghfoori et al.,
2011, 2014; Chiba et al., 2015; Fritsch et al., 2021). Due to its
anti-inflammatory effects, it is recommended that patients slowly
introduce fiber back into their diet in tolerable doses. Dietary
factors not only directly affect the Treg population but may also
exert indirect effects through the gut microbiota (Smith et al.,
2013; Geirnaert et al., 2014; Biton et al., 2018; Nie et al., 2021;
Yoshimatsu et al., 2022; Bourdeau-Julien et al., 2023). In turn, Tregs
can greatly enhance the anti-inflammatory potential of dietary
fiber for the treatment of IBD (Gaudier et al., 2004; Pérez-Reytor
et al., 2021). IBD-associated microbial dysbiosis that compromises
the breakdown of dietary fiber, could significantly influence the
individual’s capacity to control inflammation (Frank et al., 2007;
Louis and Flint, 2009; Sokol et al., 2009; Smith et al., 2013; Zhang
et al., 2017; Zhu et al., 2018; Earley et al., 2019; Liu et al., 2022a).
As such, the impact of nutrition should be explored for its role in

reshaping the population and function of Tregs in IBD in order to
restore the intestinal barrier (Figure 1).

Short-term modifications in dietary patterns can have an
impact on the composition of gut microbiota. Studies in individuals
have demonstrated significant shifts in the bacterial and metabolic
profiles involving SCFA-producing bacteria Butyricicoccus and
Roseburia within a period of 3 days following extreme dietary
changes (Geirnaert et al., 2014; Nie et al., 2021; Bourdeau-Julien
et al., 2023). The gut microbiota can directly modulate Treg
differentiation, function, and survival, but they can also have
indirect effects via the metabolites they produce. Notably, colonic
Tregs have high expressions of the gene encoding G coupled
protein receptors (GPRs), and aryl hydrocarbon receptor (AhR)
(Smith et al., 2013; Ye et al., 2017; Rothhammer and Quintana,
2019; Jiang and Wu, 2022). This enables Tregs to effectively sense
and respond to dietary andmicrobial metabolites. However, genetic
defects in IBD individuals such as in the CARD9 susceptibility gene,
can impair their ability to produce AhR agonists (Lamas et al.,
2016). This interferes with their ability to appropriately respond to
bacterial metabolites and could explain the significant influence of
diet on the development of this disorder and the persistence gut
barrier disruptions and permeability. Studies have demonstrated
that stimulation of AhR can promote the recruitment of colonic
Tregs which facilitate the proliferation of intestinal stem cells
(Biton et al., 2018; Yoshimatsu et al., 2022). Specifically, dietary
changes can alter the population of the B. thetaiotaomicron bacterial
species, which in turn in is able to activate AhR to promote Treg
differentiation (Wegorzewska et al., 2019; Li et al., 2021). Treatment
with an AhR ligand have been found to alleviate TNBS colitis by
increasing the population of IL-10 secreting Tregs (Goettel Jeremy
et al., 2016). However, clinical use of AhR agonists for treating
refractory UC has not been widely recommended due to potential
adverse effects such as pulmonary arterial hypertension (Naganuma
et al., 2018; Yoshimatsu et al., 2019; Saiki et al., 2021).

Given the diverse range of beneficial effects, dietary fiber ease
of access, and more importantly, its safety profile, dietary fiber can
be highlighted as an important contributor to epithelial barrier
integrity and Treg function. Indeed, SCFAs supplementation
promotes the expansion of colonic Tregs in germ-free mice
and subsequent propionate challenge significantly increases Foxp3
and IL-10 expressions in these Tregs (Smith et al., 2013). In
turn, Treg treatment can help maintain SCFA concentration in
the intestines, which would typically be diminished following
bacterial challenge (Juanola et al., 2018). Under homeostatic
conditions, mucin-adherent microbiota, including bacterial species
from the Clostridium cluster XIVa, and Roseburia intestinalis

and E. rectale produce butyrate near the epithelium (Van den
Abbeele et al., 2013). The decrease of these microbial species
in IBD could potentially be due to the reduction in available
mucus for their adhesion. Consequently, this would decrease
the bioavailability of SCFAs to IECs and hence compromise the
regeneration of the gut barrier. Whilst SCFAs have been described
to elicit direct effects on goblet cells and IECs to improve mucus
secretion and epithelial health, it is insufficient to downregulate
the overwhelming inflammatory status of the intestines without the
aid of Tregs (Gaudier et al., 2004; Pérez-Reytor et al., 2021). In
an animal model of gut inflammation caused by Candida albicans,
treatment with SCFAs in Treg-depleted mice could not resolve
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FIGURE 1

Impact of dietary fiber on inflammatory bowel disease (IBD). IBD coupled with a low fiber diet leads to microbial dysbiosis. Microbial antigens

released into the intestinal milieu are recognized by immune cells, leading to immune activation and recruitment of T cells such as T helper (Th) 17

cells. Overproduction of inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-6, IL-23, IL-17, and interferon (IFN)-γ damages

the epithelial barrier, leading to tight junction protein (TJP) loss, goblet cell loss, decreased mucus production and increased gut permeability.

Elevated gut permeability perpetuates microbial exposure and immune activation, leading to chronic inflammation and tissue damage. Conversely,

consumption of dietary fiber leads to the expansion of short-chain fatty acid (SCFA)-producing bacteria from the Clostridium clusters IV and XIVa.

SCFAs strengthen the gut barrier by serving as fuel to colonocytes and tolerize dendritic cells (DCs), leading to production of anti-inflammatory

cytokines such as IL-10 and transforming growth factor-β (TGFβ). These cytokines promote the growth of T regulatory cells (Tregs) which dampen

inflammatory cells as well as promote goblet cell function and mucus secretion, providing an opportunity for reconstitution of the epithelial barrier

(Created with BioRender.com).

inflammation alone, but found that SCFAs induced Foxp3+ Tregs
which mediated protective effects during mucosal inflammation
(Bhaskaran et al., 2018). Similarly, in a T cell transfer model of
colitis, mice lacking in T and B cells were treated with SFCAmix or
propionate in the absence of Tregs. They showed no improvement
in disease severity, but it was only through the combination of Tregs
and SCFAs added to the system that the colitis was healed (Smith
et al., 2013). Sun et al., showed that SCFA-treated CD4+ T cells
produced more IL-10 and lessened the severity of colitis (Sun et al.,
2018). These SCFA-mediated effects were diminished following

treatment with an anti-IL-10R antibody, further highlighting the
importance of immune-related mechanisms for the abrogation of
inflammation post-IBD (Sun et al., 2018). These findings highlight
the key interplay between bacterial metabolites and Treg activity.

Shifts in the gut microbiota significantly affect the individual’s
ability to regulate inflammation. IBD is marked by a reduction of
SCFA-producing bacteria such as A. muciniphila or Clostridium

species including F. prausnitzii, Roseburia species, and E. rectale

(Frank et al., 2007; Louis and Flint, 2009; Sokol et al., 2009;
Smith et al., 2013; Zhang et al., 2017; Zhu et al., 2018; Earley
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et al., 2019; Liu et al., 2022a). The depletion of SCFA-producing
microbial populations has detrimental effects on the ability of the
intestinal immune system to regulate inflammation. These SCFA-
producing bacterial strains play a crucial role in maintaining the
population of colonic Foxp3+ Tregs for the protection against
colitis (Atarashi et al., 2011). More specifically, A. muciniphila

supplementation has been proven beneficial against CD4T cell
transfer model of colitis in animals through the upregulation of
RORγt+Foxp3+ T regulatory 17 cells (Liu et al., 2022b). These
RORγt+Foxp3+ Tregs also express immunoregulatory markers
and can effectively suppress intestinal inflammation (Yang et al.,
2016). Colonization by commensal bacterial species from the
Clostridium clusters IV and XIVa promotes the differentiation
and accumulation of Tregs in the mucosal tissues of mice with
DSS-induced colitis (Atarashi et al., 2011; Smith et al., 2013).
Colonization by E. rectale facilitates Treg differentiation and
function (Islam et al., 2021). Both F. prausnitzii and R. intestinalis

have demonstrated the ability to increase Treg populations and
alleviate 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis
in animals (Qiu et al., 2013; Zhu et al., 2018). The bacteria not only
enhance the population of Tregs, but also their functions via their
metabolites. It was shown that Tregs from individuals treated with
butyrate showed increased secretion of IL-10 and adoptive transfer
of butyrate-induced Tregs possess the ability to ameliorate colitis
in mice (Furusawa et al., 2013; Mamontov et al., 2015). Apart from
its influence on Tregs, the bacteria F. prausnitzii can promote IL-10
and TGF-β secretion by human peripheral bloodmononuclear cells
(PBMCs), while R. intestinalis inhibits the LPS-induced production
of IL-17 by human colonocytes (Qiu et al., 2013; Zhu et al., 2018).
As such, the loss of these microbial species in IBD may contribute
to the excessive inflammatory responses and the impaired ability of
Tregs to suppress such inflammation.

Current studies exploring the use of Tregs for the treatment
of IBD has shown promise. Preclinical data have demonstrated
the efficacy of these cells using in vivo models of colitis (Ogino
et al., 2012; Goettel et al., 2019). With similar beneficial findings
seen in a phase 1b/2a clinical trial involving infusion with low
doses of the Treg growth factor IL-2 (Allegretti et al., 2021).
Allegretti et al. (2021), trialed several doses of IL-2, with the lowest
dose successfully leading to peripheral Treg expansion, but also
activation of T effector cells. Upon increasing IL-2 dose and Treg
population, over 38% of patients were able to achieve a clinical
response or remission. Direct treatment with autologous Tregs was
tested in a 1/2a clinical trial involving patients with CD and in
this study, Treg treatment was well tolerated and elicited beneficial
effects, albeit transient (Desreumaux et al., 2012). This may be due
to issues with phenotypic stability and initial screening of the cells
used for treatment. As such, there are still unanswered questions to
the expansion, homing properties, site-specific activation, survival,
and phenotypic stability of Tregs that need to be assessed clinically.

This would be important to guarantee the safety and efficacy of
Tregs as a form of treatment. Overall, Treg-focused therapies may
serve as a promising approach for treating IBD, with more research
needed to determine the optimal treatment protocol.

Conclusion

Regulatory T cells play a central role in maintaining gut
barrier integrity. Reciprocal interactions occur between the host
microbiota, dietary molecules, and T regulatory cells for the
preservation of oral tolerance, the mucus barrier, epithelial
cells, and regulated immune responses. They prevent excessive
inflammation characteristic of IBD and can therefore protect the
gut barrier from ongoing inflammatory damage. By understanding
the interplay between nutrition, the microbiome, and its impact
on Tregs for the regulation of the intestinal barrier, one can better
address the mechanisms that drive IBD pathogenesis.
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