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Selenium (Se) is an essential trace element that plays a vital role in various 
physiological functions of the human body, despite its small proportion. Due to 
the inability of the human body to synthesize selenium, there has been increasing 
concern regarding its nutritional value and adequate intake as a micronutrient. 
The efficiency of selenium absorption varies depending on individual biochemical 
characteristics and living environments, underscoring the importance of 
accurately estimating absorption efficiency to prevent excessive or inadequate 
intake. As a crucial digestive organ in the human body, gut harbors a complex 
and diverse microbiome, which has been found to have a significant correlation 
with the host’s overall health status. To investigate the relationship between 
the gut microbiome and selenium absorption, a two-month intervention 
experiment was conducted among Chinese adult cohorts. Results indicated that 
selenium supplementation had minimal impact on the overall diversity of the gut 
microbiome but was associated with specific subsets of microorganisms. More 
importantly, these dynamics exhibited variations across regions and sequencing 
batches, which complicated the interpretation and utilization of gut microbiome 
data. To address these challenges, we  proposed a hybrid predictive modeling 
method, utilizing refined gut microbiome features and host variable encoding. 
This approach accurately predicts individual selenium absorption efficiency by 
revealing hidden microbial patterns while minimizing differences in sequencing 
data across batches and regions. These efforts provide new insights into the 
interaction between micronutrients and the gut microbiome, as well as a 
promising direction for precise nutrition in the future.
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Background

Trace elements, despite their low concentrations in the human body, play a crucial role in 
various physiological processes. The recognition of their nutritional value has grown with the 
improvement of living standards. In recent years, research on trace elements, including iron 
deficiency (Shi et al., 2023), zinc regulation (Kim and Lee, 2021), and iodine-related issues (Yang 
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et al., 2021), has garnered significant attention. Selenium (Se), one of 
these trace elements, is essential for human health (Razaghi et al., 
2021). Selenium acts as an antioxidant and free radical scavenger, and 
it plays a vital role in improving the immune system, thus contributing 
to the prevention and treatment of thyroid disease and cardiovascular 
disease (Ambra et al., 2023). Since the human body cannot synthesize 
selenium, external intake through supplementation is necessary 
(Mojadadi et al., 2021). Typically, dietary sources provide over 20 
inorganic and organic selenium compounds, which are absorbed and 
maintained in the blood through continuous excretion (Kieliszek, 
2019). Consequently, moderate daily selenium supplementation is 
necessary. However, excessive selenium levels can be toxic (Hadrup 
and Ravn-Haren, 2020). Studies have indicated that improper 
selenium intake can lead to acute poisoning, characterized by 
symptoms such as vomiting, diarrhea, pain, and nausea, particularly 
following excessive oral exposure. Severe toxicity can manifest as 
cardiovascular and pulmonary symptoms, ultimately resulting in 
death. Therefore, the recommended daily intake of selenium for adults 
is 60 μg, with a maximum intake of 400 μg (Kipp et al., 2015).

The absorption efficiency of selenium can vary among individuals, 
even when ingesting the same amount of selenium. Factors such as age, 
BMI (body mass index), health status, lifestyle choices (including diet, 
probiotic intake, and medication use), contribute to this variation 
(Rayman, 2020). Therefore, the implementation of precise nutrition 
becomes essential as it enables tailored selenium supplementation 
programs that quantitatively and accurately meet individual needs, thus 
preventing selenium deficiency or overload. Currently, selenium levels 
are primarily determined in human tissues, such as through hair analysis 
(Li et al., 2020). Consequently, the estimation of selenium absorption 
efficiency can only be  assessed after selenium supplementation 
intervention. It is crucial to develop methods that can predict the 
absorption efficiency of selenium in different populations prior to 
supplementation, which would greatly aid in the design of intervention 
schemes and the optimization of precision nutrition for micronutrients.

The intestine constitutes the primary digestive organ in the human 
body, working in conjunction with the gut microbiome to break down 
intricate fibers and polysaccharides, thereby facilitating the absorption 
of glucose, vitamins, fats, and trace elements (Mohn and Johnson, 
2015). Given its critical role in digestion and immunity, the gut 
microbiome has emerged as a focal point of research. Comprising 
thousands of diverse microorganisms, the human gut microbiome 
interacts with the body and participates in various vital physiological 
functions, including immune system modulation, metabolism, 
regulation of the gut-brain axis, as well as nutrient absorption and 
energy regulation (Marchesi et al., 2016). A growing body of evidence 
has elucidated the relationship between the composition of the gut 
microbiome (including taxonomy and function) and various diseases, 
such as obesity (Annapure and Nair, 2022), inflammatory bowel 
disease (Hills et al., 2019), colorectal cancer (Rebersek, 2021), mental 
disorders (Lucas, 2018), etc. The intricate and multifaceted interaction 
between the gut microbiome and the host presents an opportunity for 
predicting selenium absorption efficiency in the context of precision 
nutrition, potentially opening up new avenues for breakthroughs in 
this field. However, the correlation between selenium absorption 
efficiency and microbial pattern remains poorly understood.

In this study, we aimed to investigate the feasibility of utilizing the 
gut microbiome and innovative bioinformatic modeling for achieving 
precise nutrition in diverse cohorts of Chinese adults. To accomplish 
this, we  employed a hybrid predictive modeling approach that 

incorporated refined features of the gut microbiome and re-encoded 
host variables. This approach not only enabled the establishment of a 
correlation between selenium absorption and the microbiome, but 
also effectively mitigated the variations in sequencing data arising 
from different batches and regions. By leveraging this methodology, 
we  can enhance the implementation of personalized nutrition 
strategies tailored to individual circumstances, thereby reducing the 
risk of selenium deficiency or overload. Our findings highlight the 
potential of integrating gut microbiome analysis and hybrid modeling 
techniques to optimize precision nutrition approaches.

Results

Brief information of cohort design and 
selenium supplementation

In this study, we conducted a selenium nutritional supplementation 
intervention involving 266 adult participants from two cities in China 
(Figure 1). To assess the effectiveness of the intervention, we measured 
selenium content from hair roots and analyzed the gut microbiome using 
16S rRNA gene amplicon sequencing before and after the intervention 
period. Additionally, we  collected comprehensive physiological and 
clinical metadata, including gender, age, BMI, probiotic supplementation, 
and disease status. Following data curation, which involved ensuring the 
completeness of intervention progress and host metadata, 206 subjects 
were kept in the data analysis. These subjects were divided into two 
cohorts based on their resident location (Figure 1; Table 1): Cohort 
I contains 199 subjects recruited from Shijiazhuang City, of which 156 
were sequenced by Batch 1, and 43 were sequenced by Batch 2; Cohort 
II contains 7 subjects recruited from Suzhou City, and they were 
sequenced by Batch 3. Based on our experience with selenium 
supplementation and the distribution of samples, we set the threshold for 
selenium absorption rate at 10% (Hardy et al., 2012). Consequently, all 
subjects were categorized into two groups: the low-efficiency selenium 
absorption group (<10%; LE group) and the high-efficiency selenium 
absorption group (≥10%; HE  group). For further details on the 
experimental design, cohort recruitment, and sequence processing, 
please refer to the Methods and Materials section.

Gut microbiome predicts the selenium 
absorption efficiency by feature 
re-encoding and integration

We initially investigated the dynamics of the microbial community 
during different stages of selenium supplementation and among 
different groups. To minimize potential confounding effects from host 
region and sequencing batch differences, we only used Batch 1 in this 
analysis. While there were changes in beta-diversity observed with the 
progression of selenium intervention (Figure 2A; Adonis R2 = 0.011, 
p = 0.006; p-values threshold for statistical significance set as 0.01), no 
significant differences were observed between the low-efficiency (LE) 
and high-efficiency (HE) absorption groups (Figure  2B; Adonis 
R2 = 0.002, p = 0.609). Additionally, the low correlation coefficients 
(|r| < 0.1, p > 0.01) between the alpha diversity indices (Shannon, 
Simpson, and Chao1) and hair selenium content (Figures  2C,D; 
Supplementary Figure S1) further indicated a weak association 
between the overall gut microbiome and selenium supplementation.
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We further explored the impact of the gut microbiome on 
predicting the efficiency (low or high) of selenium absorption prior to 
supplementation, focusing on Batch 1. Using XGBoost (Chen and 
Guestrin, 2016), we  constructed a predictive model based on the 
relative abundance of genus-level microbial data (49 genera in total; 
refer to Methods and Materials for details). The performance of the 
model was evaluated using the area under the receiver operating 
characteristic curve (AUC). Regrettably, the predictive model yielded 
a modest AUC of only 0.54 (Figure 3A). This limited performance can 
be attributed to the non-significant differences observed between the 
gut microbiomes of the high-efficiency (HE) and low-efficiency (LE) 
absorption groups (Figure 2B).

While the overall structure of the microbiome appeared to 
be unaffected by selenium absorption efficiency, a deeper analysis 
uncovered hidden associations. Initially, all genus-level features were 
ranked based on their contributions to the decision trees in the 
XGBoost model. We identified the top 10 features as ‘biomarkers’ 
(Figure  3B; refer to Methods and Materials for details; 
Supplementary Figure S3) and optimized the model by predicting 
whether subjects could achieve a supplementation rate of 10% or 
higher using only these biomarkers. The results demonstrated an 
improved AUC, albeit only reaching 0.66 (Figure 3C).

Considering that various physiological and lifestyle factors can 
significantly impact the gut microbiome (Chan et  al., 2021), 
we  assessed the influence of different variables on beta-diversity 
(Figure 3D). Interestingly, we observed that age, probiotic intake, 

BMI, and gender exerted a stronger effect on the gut microbiome 
compared to selenium absorption rate. Leveraging this observation, 
we  incorporated host metadata into the predictive model using 
one-hot variable encoding (Figure  3E; refer to Methods and 
Materials for details). Through these comprehensive efforts, our 
model achieved an impressive AUC of 0.86 (Figure 3F), indicating 
the ability to estimate the gut microbial nutrient supplementation 
efficiency by incorporating host metadata.

Reduction of batch effect by hybrid 
modeling

Due to variable factors during the sequencing process, it is 
important to address the compatibility of microbiome-based models 
across different sequencing batches (Chen et  al., 2011; Sun et  al., 
2019). To investigate batch effects within the same region, 
we compared sequencing samples from Batch 1 and Batch 2 of Cohort 
I. Both batches showed no significant differences in microbial 
composition (Adonis R2 = 0.001, p = 0.579; Figure 4A). However, when 
we applied the XGBoost model trained on Batch 1 (Figure 3F) to 
Batch 2 for testing, the AUC decreased to only 0.63 (Figure 4B). In 
other words, although the gut microbiome generated by the two 
batches displayed high similarity, the presence of batch effects still 
introduced confounding factors that affected the classification and 
identification of the absorption status.

FIGURE 1

Cohort design for selenium supplementation.

TABLE 1 Brief information of cohorts.

Cohort Location # of subjects 16S region Sequencing batch Sequencing platform

Cohort I Shijiazhuang 156 V4 Batch 1 Novaseq 6,000 PE150

Cohort I Shijiazhuang 43 V4 Batch 2 Novaseq 6,000 PE150

Cohort II Suzhou 7 V4 Batch 3 Novaseq 6,000 PE150
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Here we implemented a hybrid predictive modeling approach to 
minimize cross-batch and regional sequencing data differences 
(Figure 4C). Specifically, the prediction model developed on Batch 1 
was further calibrated by incorporating samples from Batch 2, which 
were randomly chose with number ranging from n = 5 to 30 (up to 
70% of Batch 2). We then randomly selected n = 13 (30% of Batch 2) 
subjects from the remaining Batch 2 as the testing set. To mitigate any 
potential biases, the modeling and validation procedure was repeated 
5 times with different randomizations. As depicted in Figure  4D, 
we  observed a sheer increase in AUC when mixing n = 15 for 
calibration, which then stayed at a relatively stable level after adding 
n = 20 samples. Ultimately, this cross-batch classification approach 
achieved an optimal AUC of 0.86 (Figure 4E), which is comparable to 
the AUC obtained from the same data batch.

Cross-cohort feature refining expanded 
the classification among regions

Geographical location is a strong influence factor on human gut 
microbiome (Sun et  al., 2019). Our findings also revealed such a 
pattern through beta diversity analysis of different batches from two 
cities (Figure  5A; Adonis R2 = 0.033, p = 0.001; 
Supplementary Figure S2). Therefore, using a model trained on 

microbiomes from one city may result in reduced sensitivity or 
accuracy when applied to another city (Sun et al., 2019). For instance, 
when directly utilizing a model trained on Batch 1 to predict the 
selenium absorption efficiency of Batch 3, the AUC dropped from 0.86 
to 0.46 (Figure 5D). On the other side, a predictive model derived 
from samples of the same region as the training data is ideal (e.g., a 
model built by Cohort II for Batch 3). However, implementing this 
strategy in practical scenarios presents challenges due to sampling and 
sequencing costs, as well as the limited availability of training samples 
at each specific location (e.g., there were only 7 samples in Cohort II).

A comprehensive analysis comparing the biomarker classification 
taxa for selenium supplementation and absorption efficiency across the 
three batches revealed microbial variations among different regions. The 
Venn diagram of Figure 5B highlights the presence of specific markers 
in each batch, indicating the limited applicability of models for cross-
regional classification. For example, among the 10 bacterial genera used 
in Batch 1 model (Figure 3B), some were absent in another batch (Batch 
2) or city (Batch 3). However, we  noticed that three of them (g__
Lachnospira, g__Pantoea, g__Escherichia_Shigella) were region/batch-
specific that commonly shared across all batches. The distribution of 
these shared genera was also significantly associated with the selenium 
intervention process and magnitude (Figure 5C). Hence, we further 
refined the model trained on Cohort I by retaining only the three shared 
microbial features (metadata was still encoded and integrated). 

FIGURE 2

Microbial diversity across supplementation stages and groups. (A) Beta-diversity before and after selenium nutrient supplementation intervention. 
(B) Beta-diversity between LE and HE groups. (C) Correlation between alpha-diversity and hair root selenium content before and after selenium 
supplementation. (D) Correlation between the change of alpha-diversity and supplementation rate of selenium content. Principal coordinates of beta-
diversity were produced by Meta-Storms distances, and alpha-diversity was measured by Shannon index.
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Remarkably, this modified model successfully predicted the selenium 
absorption efficiency of Cohort II, achieving an impressive AUC = 0.92 
(Figure 5E). In this way, the process of cross-cohort feature screening 
and refinement offers a viable strategy to extend the application of the 
data model to different regions.

Conclusion and discussion

Achieving the right balance of selenium intake is vital to human 
health. However, the response to selenium intake can vary among 
individuals due to their unique physiological conditions. Therefore, a 
one-size-fits-all approach to selenium supplementation is not optimal 
for the entire population. In this study, we utilized various strategies 
such as factor selection, feature refinement, variable encoding, and 
prediction modeling to establish the gut microbiome as an indicator 
of selenium absorption efficiency before supplementation begins. This 
personalized approach to managing individual micronutrient needs 
contributes to the advancement of precision nutrition.

Furthermore, the influence of lifestyle and physiological variables of 
the host, as well as biases introduced by sequencing batch effects, can 
significantly impact the classification and identification of microbiome 
data. While it is feasible to minimize these confounding factors in well-
designed cohorts during scientific studies, their impact cannot 
be completely avoided in practical scenarios. To address this challenge, 
we developed a novel machine learning strategy that combines hybrid 
modeling, feature extraction, and integration of host variables, offering a 
solution for detecting microbiome data across different batches and 
cohorts. These approaches also hold promise for future research involving 
microbiome-based health status prediction and disease diagnosis, thereby 
paving the way for broader applications of microbiome research.

It is important to note that our study has limitations in terms of 
sampling region, cohort size and time points, which restricts the 
generalizability of the findings to specific locations and periods. While 
our screening method provides valuable insights, employing advanced 
techniques such as metagenomic high-throughput sequencing on 
time-series samples could yield more robust and stable results, despite 
the potential complexity and cost associated with these methods.

FIGURE 3

Classification of selenium supplementation efficiency on Batch 1. (A) AUC of the model trained from all genus-level bacteria. (B) Top ten most 
contributed genera were used as biomarkers. (C) AUC of the model trained by ten biomarkers. (D) The effect size of physiological factors, selenium 
intervention status and other host variables. (E) Integrating the host metadata in the prediction model by one-hot variable encoding. (F) AUC of the 
model optimized by refined microbial features and encoded host variables.
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Methods and materials

Cohort design and sample collection

A total of 266 adult subjects were recruited from two cities in China 
to participate in this study. Prior to the intervention, all subjects were 
not undergoing high-selenium intervention. The participants then 
underwent a 2-month selenium nutrient supplementation intervention, 
where they were provided with high selenium corn flour at a dosage of 
100 μg/day. During the experiment, we controlled certain confounding 
factors, such as dietary habits, extended cross-regional travel, and hair 
treatments (dyeing/perming), with the consent of the participants. 
However, we refrained from implementing strict controls for other 
factors such as probiotic supplementation and medication use, 

considering ethical considerations. The study protocol, including all 
procedures and data collection, was submitted to the ethical review 
board for approval (refer to Ethics approval for details). All necessary 
informed consent procedures were followed, and the adult participants 
were investigated in accordance with the approved protocol.

Hairs and feces were collected from each participant at both the 
initial stage and after the intervention. Hair samples were collected for 
selenium content measurement, while fecal samples were collected for 
surveying the gut microbiome. In addition, metadata including 
gender, age, BMI, probiotics intake, and health status were recorded 
for each participant (refer to Supplementary Table S1). Age was 
categorized into three groups: Young (≤35), Middle (36–59), and Old 
(≥60). BMI was divided into three categories: Low (<18.5), Middle 
(18.5–23.9), and High (≥24). Participants who failed to follow the 

FIGURE 4

Reduction of batch effect in the classification of absorption efficiency by hybrid modeling. (A) Principal coordinates of gut microbiome of two 
sequencing batches of Cohort I. (B) AUC obtained by directly using the model of Batch 1 to Batch 2. (C) Reduction of batch effect by hybrid modeling. 
(D) Variation of AUC associated with the number of Batch 2 samples mixed for model calibration. (E) The optimal AUC of hybrid modeling.
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selenium supplementation schedule, did not meet the required dosage, 
lacked paired samples during the selenium supplementation progress, 
or had insufficient host metadata were excluded from the analysis. 
After exclusions, a total of 206 subjects were included for the 
data analysis.

DNA extraction, sequencing and data 
processing

Totally 412 fecal samples (206 subjects, 2 stages) were enrolled for 
DNA extraction and 16S rRNA amplicon sequencing. DNA of each 

sample was extracted at Hangzhou Guhe Information Technology Co., 
LTD. using a GUHEF100 kit according to the manufacturer’s 
recommendations, and then DNA concentrations were quantified using 
Qubit 2.0 Fluorometer (Invitrogen). The V4 hypervariable region of the 
16S rRNA was amplified using the common primers 515F (5′ 
-GTGCCAGCMGCCGCGGTAA −3′) and 806R (5′- 
GGACTACHVGGGTWTCTAAT −3′). The purified PCR products 
were constructed with a short fragment library with a 2 × 150 paired-end 
(PE) configuration and sequenced using the Novaseq 6,000 platform. 
Raw sequences were pre-processed by Parallel-Meta Suite (PMS, version 
3.7) (Chen et al., 2022), including data quality control, chimera removal, 
reads double-end merging, and ASV (amplicon sequence variant) 

FIGURE 5

Cross-cohort prediction of selenium supplementation efficiency. (A) Principal coordinates of multiple cohorts and sequencing batches. (B) Venn plot 
of biomarkers for the three batches. (C) Distribution of biomarkers in different stages and groups. (D) AUC was obtained by directly using the model of 
Cohort I to Cohort II. (E) AUC of cross-cohort classification after shared feature screening.
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denoising. Taxonomy was annotated against GreenGenes database 
(version 13–8) (DeSantis et al., 2006) by 99% similarity.

Diversity and statistical analysis of gut 
microbiome

The Shannon index, Simpson index and Chao1 index of alpha-
diversity were calculated using the genus-level profiles (Liu et al., 2021). 
Statistical significance between groups was measured by the Wilcoxon 
rank sum test, and the Spearman correlation coefficient was used for 
correlation analysis. Distances among samples were calculated using 
weighted Meta-Storms algorithm (Su et al., 2014; Jing et al., 2019), and 
statistical significance on beta-diversity and effect sizes of host variables 
were measured by the Adonis analysis (also named as Permutational 
multivariate analysis of variance, PERMANOVA). We set 0.01 as the 
threshold of statistical significance for p-values. All analytical procedures 
were performed by Parallel-Meta Suite (version 3.7).

Machine learning and prediction modeling

We utilized the XGBoost module from Scikit-learn (Pedregosa 
et  al., 2011) to construct our machine learning model. The 
performance evaluation was based on the area under the receiver 
operating characteristic curve (AUC). Through a heuristic search 
(Supplementary Table S2), we fine-tuned the parameters during a 
5-fold cross-validation on Batch 1. Initially, we trained an XGBoost 
model using all features, and obtained weight importance score of 
each feature in classification. Then all features were ranked in a 
descending order based on their importance score. After that, 
we  re-built the model by top n feature iteratively to perform 
classification and conducted the learning curve. In the learning curve 
(Supplementary Figure S3), prediction accuracy stabilized around the 
n = 10 features and experienced a sharp decline thereafter. 
Consequently, we selected the top 10 ranked features as biomarkers 
for further modeling.

To incorporate host variables, including gender, age, BMI, 
probiotics intake, and health status, into the model training, 
we  utilized one-hot coding to integrate them with the microbial 
features (Falony et al., 2016). Firstly, all host variables were discretized 
and categorized. Then, each variable was encoded using a binary 
vector, where each category was represented by a binary bit. For 
instance, gender was divided into two categories, Male and Female, 
encoded as ‘(1, 0)’ and ‘(0, 1)’ respectively, occupying two columns in 
the data table. Similarly, age was divided into three categories, Young 
(≤35), Middle (36–59), and Old (≥60), encoded as ‘(1, 0, 0)’, ‘(0, 1, 0)’, 
and ‘(0, 0, 1)’ respectively, and so on Supplementary Table S3. After 
encoding the metadata, we combined it with microbial characteristics 
using L2 regularization and normalization techniques to prevent 
overfitting (Laarhoven, 2017).
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