
Frontiers in Microbiology 01 frontiersin.org

Ceragenins exhibit bactericidal 
properties that are independent of 
the ionic strength in the 
environment mimicking cystic 
fibrosis sputum
Karol Skłodowski 1, Łukasz Suprewicz 1, 
Sylwia Joanna Chmielewska-Deptuła 1, Szczepan Kaliniak 2, 
Sławomir Okła 2,3, Magdalena Zakrzewska 1, Łukasz Minarowski 4, 
Robert Mróz 4, Tamara Daniluk 1, Paul B. Savage 5, 
Krzysztof Fiedoruk 1 and Robert Bucki 1*
1 Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 
Białystok, Poland, 2 Holy Cross Cancer Center, Kielce, Poland, 3 Institute of Health Science, Collegium 
Medicum, Jan Kochanowski University of Kielce, Kielce, Poland, 4 2nd Department of Lung Diseases and 
Tuberculosis, Medical University of Bialystok, Bialystok, Poland, 5 Department of Chemistry and 
Biochemistry, Brigham Young University, Provo, UT, United States

The purpose of the work was to investigate the impact of sodium chloride 
(NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial 
peptides (AMPs) against bacterial and fungal pathogens associated with cystic 
fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, 
Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida 
albicans, and Candida tropicalis) were used as target organisms for ceragenins 
(CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the 
tested compounds was assessed using minimal inhibitory concentrations (MICs) 
and bactericidal concentrations (MBCs), as well as by colony counting assays 
in CF sputum samples supplemented with various concentrations of NaCl. Our 
results demonstrated that ceragenins exhibit potent antimicrobial activity in CF 
sputum regardless of the NaCl concentration when compared to LL-37 and 
omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in 
the microenvironments mimicking the airways of CF patients, ceragenins might 
be promising agents in managing CF disease.
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1 Introduction

Cystic fibrosis (CF) is an inherited disorder characterized by the malfunction of the CF 
transmembrane conductance regulator (CFTR) protein, which plays an essential role in 
maintaining the balance of salt and water in airway epithelial cells (Saint-Criq and Gray, 2017). 
Due to the loss or impairment of this function in CF, the passage of chloride and sodium ions 
across the cell membrane is impaired, producing thick, sticky mucus (Boucher, 2004). Compared 
to healthy individuals, CF sputum contains about 5% less water, as well as a higher concentration 
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of several mucins, anionic polyelectrolytes such as DNA, actin, and 
increased concentrations of proteases, resulting in the presence of very 
viscous mucus in the airways (Bhat et al., 1996; Lapierre et al., 2017; 
McKelvey et  al., 2020; Akkerman-Nijland et  al., 2021). The 
accumulation of mucus and impaired mucosal clearance create a 
favorable environment for bacterial and fungal colonization, causing 
chronic and recurrent infections that significantly affect the quality of 
life and survival of CF patients (Bhagirath et al., 2016; Turcios, 2020).

Furthermore, Pseudomonas aeruginosa and other CF pathogens 
produce highly antibiotic-tolerant biofilms that significantly impair 
the treatment of CF patients (Pragman et al., 2016; Simonin et al., 
2019). Up to 95% of CF individuals not treated with CFTR potentiators 
and modulators, struggle with respiratory failure due to chronic 
bacterial infections accompanied by airway inflammation (Lyczak 
et al., 2002; Schaupp et al., 2023).

Cationic antimicrobial peptides (AMPs) are components of the 
innate immune response and serve as the first line of defense against 
pathogens. Broad-spectrum antimicrobial activity and 
immunomodulatory properties make AMPs promising candidates for 
antimicrobial agents (Rossi et al., 2008; Mansour et al., 2014; Lei et al., 
2019). For instance, cathelicidin LL-37 is an endogenous AMP 
released from hCAP-18 protein that is synthesized by a variety of cell 
types, including mucosal epithelial cells, and immune cells, (Majewski 
et  al., 2018) while omiganan is a new synthetic cationic peptide, 
consisting of 12 amino acids (Javia et al., 2022).

However, AMPs have certain limitations, such as susceptibility to 
protease or a high salt concentration, and a high propensity to interact 
with various extracellular matrix components (ECM), compromising 
their antimicrobial activity and widespread use as antimicrobial agents 
(Ng et al., 2017; McKelvey et al., 2020). For example, the high ionic 
strength and decreased pH of the surface liquid in CF lungs, via 
disruption of hydrogen bonding patterns, are potent AMPs inhibitors 
(Anderson and Yu, 2005; Kandasamy and Larson, 2006). Likewise, 
their direct interactions with highly abundant CF sputum and 
negatively charged biopolymers, including DNA, F-actin (Tang et al., 
2005), and mucins (Felgentreff et al., 2006), lead to the formation of 
large and elongated aggregates.

Synthetic ceragenins (CSAs) are non-peptide analogs of natural 
AMPs that retain their antimicrobial properties while addressing 
some drawbacks, leading to an extended half-life in body fluids and 
tissues (Leszczyńska et al., 2011; Pollard et al., 2012; Sinclair et al., 
2012; Durnaś et  al., 2017). In addition, ceragenins show reduced 
potential for resistance induction, likely due to multiple mechanisms 
of action, including permeabilization of the microbial cell membranes 
and induction of reactive oxygen species. Therefore, ceragenins 
possess a broad spectrum of microorganisms, including multidrug-
resistant (MDR) strains growing in planktonic and biofilm forms 
(Chmielewska et al., 2020; Paprocka et al., 2022; Tokajuk et al., 2022). 
Ceragenins have also demonstrated immunomodulatory and antiviral 
effects, making them promising candidates for versatile therapeutic 
applications (Howell et  al., 2009; Bucki et  al., 2015; Suprewicz 
et al., 2023).

The introduction of CFTR modulators has undoubtedly been a 
groundbreaking achievement in the management of CF, alleviating 
the underlying defect and substantially improving clinical outcomes, 
including reductions in infectious complications (Haq et al., 2022). 
However, continued research into new antimicrobial strategies is 
essential, as not all CF patients respond equally to CFTR modulators, 

and some continue to face persistent and difficult infections (McGarry 
et al., 2022). For instance, individuals with CFTR mutations, such as 
Phe508del, may not experience significant improvements in lung 
function or other symptoms, and infectious complications in the 
airways continue to pose a substantial challenge (Habib et al., 2019). 
Preventing the latter requires the prolonged use of antibiotics, which 
has led to the emergence of drug-resistant strains, underscoring the 
urgency for novel antimicrobial strategies. In addition, CFTR 
modulators may cause side effects, such as gastrointestinal and 
respiratory issues or headaches, impairing patients’ quality of life 
(Dagenais et al., 2020). Moreover, the cost of CFTR modulators may 
be a barrier to access for some patients or healthcare systems, thereby 
limiting this treatment to the world’s wealthiest nations (Zampoli 
et al., 2023). Finally, although short-term studies indicate that CFTR 
modulators improve lung function and quality of life, their long-term 
effects are still under investigation (Taylor-Cousar et  al., 2023). 
Therefore, research and development of innovative antimicrobial 
strategies to ensure the health of individuals with CF is far from 
complete. This study evaluated the antimicrobial efficacy of ceragenins 
and AMPs against CF-associated pathogens in CF sputum samples 
alone and supplemented with NaCl excess.

2 Materials and methods

2.1 Bacterial strains

The following reference bacterial and fungal strains were tested in 
the study: Staphylococcus aureus Xen29, (Caliper Life Science Inc., 
Hopkinton, MA, USA), Pseudomonas aeruginosa ATCC 27853 
(non-mucoid strain) (ATCC, Manassas, VA, USA), and Candida 
albicans ATCC 10231 (ATCC, Manassas, VA, USA). In addition, in 
experiments with artificially contaminated sputum, P. aeruginosa 
PAO1 DSM 19880 strain (mucoid strain) (DSMZ, DSMZ, Germany 
Germany) with inserted pMF230 plasmid encoding a beta-lactamase 
gene ensuring resistance to carbenicillin (Nivens et al., 2001) was used 
to differentiate it from P. aeruginosa (susceptible to carbenicillin) 
present in sputum sample collected from CF patient (see below). The 
pMF230 plasmid (Addgene, Watertown, MA, USA) was electroporated 
into P. aeruginosa PAO1 DSM 19880 using MicroPulser Electroporator 
(BioRad, Hercules, CA, USA) according to the procedure described 
by Choi et al. (2006), and transformants were further selected and 
maintained on LB agar plates with carbenicillin (400 μg/mL).

In addition, single clinical isolates of P. aeruginosa 4B (mucoid 
strain), Ochrobactrum spp. 10B, C. albicans 12B, and C. tropicalis 178 
collected at the Department of Medical Microbiology and 
Nanobiomedical Engineering in Bialystok, Poland, were included in 
the study. S. aureus, P. aeruginosa, Ochrobactrum spp., and Candida 
strains were cultured and maintained on the recommended selective 
media purchased from Biomaxima (Lublin, Poland), i.e., Chapman, 
Cetrimide, and Sabouraud dextrose agar with chloramphenicol, 
respectively.

2.2 Compounds and experimental settings

Ceragenins were synthesized as described previously (Ding et al., 
2002), whereas LL-37 and omiganan were commercially purchased 
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from Lipopharm company (Gdańsk, Poland). The ceragenins and 
AMPs were dissolved in deionized water to ensure the absence of 
NaCl in the solution. The impact of NaCl concentrations on the 
antimicrobial activity of ceragenins and AMPs against the bacteria 
and fungi was analyzed using Mueller–Hinton (MH) broth, RPMI 
medium supplemented with D-(+)-glucose, and MOPS and deionized 
water. To that end, NaCl (Chempur, Piekary Śląskie, Poland) was 
suspended in these media to the final concentrations of 20 mM, 
60 mM, 100 mM, 150 mM, and 300 mM. In addition, sputum samples 
from four cystic fibrosis patients, one positive for P. aeruginosa, one 
positive for S. aureus, the third positive for P. aeruginosa, Aspergillus 
and methicillin-resistant Staphylococcus aureus (MRSA) and the 
fourth positive for C. albicans, were included in the respective 
experiments in conditions mimicking CF lungs. For this purpose, 
sputum samples were diluted with deionized water to obtain 10 and 
20% sputum solutions and used alone or supplemented with 150 mM 
or 300 mM NaCl.

2.3 Susceptibility testing

Microbial susceptibility testing was carried out using the serial 
microdilution method by current EUCAST (European Committee on 
Antimicrobial Susceptibility Testing) recommendations on 96-well 
microtiter plates with final volumes of 200 μL. For bacteria, minimum 
inhibitory concentrations (MICs) were determined in Mueller-Hinton 
broth (Sigma-Aldrich, Burlington, MA, USA), and minimum 
bactericidal concentrations (MBCs) were determined by placing 10 μL 
dilutions with no visible growth in the MIC test on the appropriate 
selective agar medium. For fungi, MIC was determined in 2xRPMI 
medium (Sigma-Aldrich, Burlington, MA, USA) supplemented with 
D-(+)-glucose (Sigma-Aldrich, Burlington, MA, USA) and MOPS 
(Sigma-Aldrich, Burlington, MA, USA) diluted twice with deionized 
water, while minimum fungicidal concentration (MFC) was 
determined by plating each sample (10 μL) on Sabouraud dextrose 
agar with the chloramphenicol. The final microbial concentration in 
the well was approximately 5 × 105 CFU (colony-forming units)/
mL. MIC, MBC, and MFC values were determined after 
24 h incubation.

2.4 Killing assay

A killing assay (colony counting assay) was performed to 
determine the bactericidal and fungicidal activity of LL-37, 
omiganan, CSA-13, and CSA-131 against selected clinical strains of 
P. aeruginosa and C. tropicalis. Briefly, individual colonies of 
bacteria and fungi were resuspended at ~108 CFU/mL and diluted 
to 105 CFU/mL in sterile deionized water. Tests were performed 
using the AMPs and ceragenins in the 1–100 μg/mL concentration 
range. After 60 min of incubation at 37°C, the plates were 
transferred to ice, and samples were serially diluted from 10 to 
1,000 times. Then 10 μL aliquots of each dilution were placed on 
Luria-Bertani (LB) low-salt agar containing 400 μg/mL carbenicillin 
(Sigma-Aldrich, Burlington, MA, USA) or on Sabouraud dextrose 
agar with chloramphenicol and incubated overnight at 37°C to 
determine the number of visible colonies. The addition of 
carbenicillin to LB agar selected P. aeruginosa PAO1 (resistant to 

carbenicillin) and inhibited the growth of carbenicillin-susceptible 
to P. aeruginosa present in the sputum. The colony-forming units 
(CFU/mL) of each sample were determined by the dilution factor.

Furthermore, the above procedure was repeated using sterile 
deionized water with 150 mM and 300 mM NaCl as well as 10 and 20% 
sputum collected from CF patients alone and supplemented with 
150 mM and 300 mM NaCl. Due to higher bacterial survival in the 
presence of 20% compared to 10% sputum, the 20% sputum was 
selected for further experiments. After incubating the sputum samples 
2 μL of Sputasol (Oxoid, Basingstoke, Hampshire, UK) was added to 
liquefy them, followed by the pathogens counting on the 
selective agars.

2.5 Optical microscopy and DNA 
measurement

DNA concentration was quantified by absorbance at 260 nm using 
a NanoDrop One spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). In our study of sputum samples from cystic 
fibrosis patients, YOYO-1 staining (Invitrogen, Carlsbad, CA) was 
used to visualize DNA at a final concentration of 1 μM. Additionally, 
F-actin was visualized using Rhodamine Phalloidin (Thermo Fisher 
Scientific, Waltham, MA, USA) at a final concentration of 
0.15 μM. Fluorescence images were recorded using a Leica DMi8 
microscope (Wetzlar, Germany).

2.6 Statistical analysis

All statistical analyses were conducted using Graph Pad Prism, 
version 8 (GraphPad Software, Inc., San Diego, CA). The data 
collected were reported as the mean ± standard deviation (SD) of 
three experiments. The significance of differences was determined 
using the two-tailed Student’s test and a p-value ≤0.05 was 
considered to be statistically significant. All results were compared 
to the control, which were samples treated only with CSAs: CSA-13 
and CSA-131, and AMPs: LL-37 and omiganan for each 
inducible concentration.

3 Results

3.1 The antimicrobial activity of ceragenins 
is not affected by high NaCl concentration

The antimicrobial activity of CSA-13 and CSA-131 against all 
tested bacterial and fungal strains was not affected by increasing 
NaCl concentration (Table 1 and Table 2), since variation in the 
MIC and MBC values was limited to only one dilution. On the 
contrary, NaCl at a concentration of 300 mM elevated 8-fold MIC 
and ≥ 8-fold MBC values for LL-37 and P. aeruginosa PAO1 as well 
as 8-fold MIC and ≥ 16-fold MBC values for Ochrobactrum 
spp. 10B (Table 1). A similar increase in MIC/MBC values was also 
noted for omiganan and C. tropicalis 178 (Table 2), where the MIC 
value increased from 16 μg/mL in the absence of salt concentration 
to 64 μg/mL at 300 mM NaCl, and the MFC increased from 32 μg/
mL to 128 μg/mL, respectively.
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3.2 Ceragenins retain antimicrobial activity 
in CF sputum and NaCl excess

A killing assay was performed to evaluate the potential inhibitory 
effect on ceragenins and AMPs of CF sputum (diluted to 10 and 20%) 
alone and supplemented with 150 mM and 300 mM NaCl.

The highest NaCl concentration was obtained by combining 
20% sputum (containing on average 65 mM NaCl; data not shown) 
and 300 mM NaCl, yielding an approximate concentration of 
340 mM NaCl. As shown in Figure 1, 20% sputum from Patient A 
decreased the antimicrobial activity of CSA-131 against all 
P. aeruginosa. In contrast, in the presence of 10% sputum, the 
antibacterial activity of CSA-131 against P. aeruginosa 1,414 
remained unchanged but decreased four-fold for both P. aeruginosa 
ATCC 27853 and P. aeruginosa 4B. Moreover, in 20% of sputum, 
the antibacterial activity of CSA-131 decreased four-fold across all 
strains (Figure  1). Nevertheless, this inhibitory effect was not 
augmented by 150 mM and 300 mM NaCl (Figures 2A,B). Similar 
results were obtained for CSA-13, CSA-131, and Candida tropicalis 
178 (Figures 3A,B). On the contrary, the antimicrobial activity of 
LL-37 and omiganan was significantly attenuated in the presence 
of both sputum and NaCl (Figures 2F, 3F, 4C, 4F, 5C, 5F). Briefly, 
NaCl alone resulted in ≥2.5-fold increase of the killing dose 
(concentrations at which all pathogens are effectively eradicated) 
for LL-37, i.e., from 40 μg/mL to over 100 μg/mL, against 
P. aeruginosa PAO1 DSM19880 strain (Figure 2C), and ≥ 5-fold 

increase of the killing dose for omiganan, i.e., from 20 μg/mL to 
over 100 μg/mL, against C. tropicalis 178 (Figure 3C). Furthermore, 
in 20% sputum from Patient B, the killing doses against 
P. aeruginosa increased from 10 to 40 μg/mL for CSA-13, and from 
5 to 20 μg/mL for CSA-131 (Figures 2D,E). Similarly, the killing 
doses against C. tropicalis increased from 20 to 100 μg/mL for 
CSA-13 and CSA-131 (Figures 3D,E). In Patient D’s 20% sputum 
solution, the killing doses of both P. aeruginosa and C. tropicalis 
were unchanged for CSA-13 and CSA-131 (5 μg/mL) (Figures 4A,B, 
5A,B), while in 20% of the sputum of Patient C, the killing doses 
against the test strains increased (Figures 4D,E, 5D,E). In addition, 
the presence of 20% solutions of sputum samples from each patient 
increased the lethal doses from 40 to 100 μg/mL for LL-37 and 
from 20 to 100 μg/mL for omiganan for the tested strains 
(Figures 2F, 3F, 4C, 4F, 5C, 5F). It should be noted that omiganan 
was ineffective against C. tropicalis in the presence of 20% sputum 
(regardless of the patient sample) and 300 mM (Figures 3F, 5C, 5F), 
while the log (CFU) for LL-37 increase from ~4.8 to ~5.05 
(Figures 2F, 4C, 4F).

3.3 CF sputum contains high 
concentrations of DNA

Among the sputum samples analyzed, the one containing 
P. aeruginosa, MRSA, and Aspergillus exhibited the highest DNA 

TABLE 1 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of CSA-13, CSA-131, and LL-37 against 
Staphylococcus aureus Xen29, and Pseudomonas aeruginosa ATCC 27853 and DSM 19880, and two clinical isolates – P. aeruginosa 4B and 
Ochrobactrum spp. 10B in the presence of NaCl concentration (0–300  mM).

Compound NaCl 
[mM]

MIC/MBC [μg/mL]

Staphylococcus 
aureus Xen29

Pseudomonas 
aeruginosa 

ATCC 27853

Pseudomonas 
aeruginosa PAO1 

DSM 19880

Pseudomonas 
aeruginosa 4B

Ochrobactrum 
spp. 10B

CSA-13

0 0.5/0.5 2/4 2/2 1/2 1/2

20 0.5/0.5 2/4 2/2 1/2 1/2

60 0.5/0.5 2/4 2/4 1/2 1/2

100 0.5/0.5 2/4 2/4 1/2 1/2

150 0.5/0.5 2/4 2/4 1/2 1/2

300 0.5/0.5 2/4 2/4 1/4 1/4

CSA-131

0 0.5/1 2/4 1/1 2/2 0.5/1

20 0.5/1 2/4 1/1 2/4 0.5/1

60 0.5/1 2/4 1/1 2/2 0.5/1

100 0.5/0.5 2/4 1/2 2/2 0.5/1

150 0.5/0.5 2/4 1/1 2/4 0.5/0.5

300 0.5/0.5 2/4 1/1 2/4 0.5/1

LL-37

0 >256/>256 128/128 16/32 128/128 8/16

20 -* - 16/64 - 8/32

60 - - 16/64 - 8/32

100 - - 32/64 - 16/32

150 - - 64/128 - 16/64

300 - - 128/>256 - 64/>256

* - not determined.
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concentration, with a value of 6.66 ± 0.38 mg/mL. In contrast, lower 
DNA concentrations were observed in sputum samples containing 
only P. aeruginosa (3.86 ± 0.43 mg/mL), and the lowest DNA 
concentrations were found in samples with C. albicans (1 ± 0.01 mg/
mL) and S. aureus (0.75 ± 0.21 mg/mL) (Figure  6B). The 
representative images show highly condensed bundles containing 
DNA and F-actin, which is characteristic of the sputum of CF 
patients (Figure 6A) (Sheils et al., 1996; Tomkiewicz et al., 1998; 
Tang et al., 2005).

4 Discussion

This study presents a comparative analysis of the 
antimicrobial efficacy of ceragenins and AMPs in the context of 
CF sputum and varying NaCl levels. The investigation aimed to 
reveal the potential of these agents as alternative therapeutic 
options for managing CF-associated infections, where 
conventional antibiotics frequently face limitations due to 
microbial resistance and the challenging CF microenvironment 
(López-Causapé et al., 2015).

Respiratory colonization and infection by P. aeruginosa are the 
leading causes of morbidity and mortality in CF patients. It is 
noteworthy that around 80% of patients are chronically colonized with 

P. aeruginosa by the age of 20 (Koch, 2002). Additionally, CF patients 
are commonly colonized by other bacterial and fungal pathogens, 
including methicillin-resistant Staphylococcus aureus, Mycobacterium 
abscessus complex, Burkholderia cepacia complex, Aspergillus 
fumigatus, and Candida species (Chotirmall et al., 2010; Bhagirath 
et  al., 2016). Although Ochrobactrum infections are relatively 
uncommon in CF patients, this pathogen deserves attention due to its 
inherent resistance to antibiotics, the potential to cause chronic 
infections with clinical implications, and problems with identification 
(Carvalho Filho et al., 2018). Ochrobactrum spp. isolates have been 
found to exhibit high resistance to beta-lactam antibiotics, except 
carbapenems, due to the presence of an AmpC-like β-lactamase. 
Additionally, resistance to aminoglycosides and fluoroquinolones is 
an emerging issue that further complicates treatment efforts (Alonso 
et al., 2017; Yagel et al., 2020).

CF sputum is a complex milieu consisting of DNA, mucins, 
inflammatory cells, and various proteins (Morrison et al., 2019). It also 
contains varying levels of sodium chloride, a critical electrolyte. 
Studies have reported that CF sputum shows elevated levels of sodium 
chloride compared to this healthy individuals. In detail, the 
concentration of NaCl in the sputum of CF patients and healthy 
individuals is approximately 179.66 mM (10.5 g/L) and 126.62 mM 
(7.4 g/L), respectively. It is consistent with in vivo measurements in 
animal models of CFs in mice and in vitro in human bronchial 
epithelial models (Zabner et al., 1998; Jayaraman et al., 2001; Lapierre 
et al., 2017). Similarly, according to Joris et al., NaCl concentration in 
the airway surface fluid (ASF) of CF patients was 120–170 mM 
compared to 80 mM in subjects without cystic fibrosis (Joris et al., 
1993). On the other hand, the average DNA concentration in CF 
sputum was found to be within the range of 0.2–20 mg/mL (White 
et  al., 1985; Brandt et  al., 1995; Lewenza, 2013; Sarkar, 2020), 
consistent with our findings.

The decreased antimicrobial activity of ceragenins against 
P. aeruginosa strains in the sputum may result from the presence of 
S. aureus, which was isolated from the sputum used in the study. 
Indeed, in the case of chronic CF infection, the number of 
microorganisms in the sputum of the respiratory tract reaches 107–
109 CFU/mL, resulting from the inoculum effect, which substantially 
affects antimicrobial susceptibility testing results (Turner et al., 2015). 
Furthermore, while charge-based interactions can influence the 
antimicrobial activity of ceragenins in the presence of abundant in 
sputum linear polyelectrolytes, like actin or DNA, they are notably 
weaker compared to their impact on cationic AMPs, such as LL37, 
HB71, and WLBU2 (Bucki et al., 2007).

A widespread application of AMPs as antimicrobial agents is 
hindered by their sensitivity to several physicochemical factors 
frequently present in infected sites, such as a high salt concentration 
in the CF airway surface fluid (Goldman et al., 1997). For instance, 
in patients with cystic fibrosis, the activity of AMPs is significantly 
lower in the ASL than in normal ASL (Smith et  al., 1996; 
Hiemstra, 2007).

Indeed, our results show that the antimicrobial activity of both 
LL-37 and omiganan against CF-associated pathogens is NaCl 
concentration-dependent. Similarly, Bals et  al. and Tanaka et  al. 
demonstrated that the antimicrobial activity of LL-37 diminishes with 
rising NaCl concentrations (Bals et al., 1998; Tanaka et al., 2000). 
Several studies have highlighted the limitations of AMPs in their 
antimicrobial activity. A high-salt environment has been found to 

TABLE 2 Minimum inhibitory concentration (MIC) and minimum 
fungicidal concentration (MFC) values of CSA-13, CSA-131, and omiganan 
against Candida albicans ATCC 10231, and two clinical isolates – C. 
albicans 12B and C. tropicalis 178 in the presence of NaCl concentration 
(0–300  mM).

Compound NaCl 
[mM]

MIC/MFC [μg/mL]

Candida 
albicans 

ATCC 
10231

Candida 
albicans 

12B

Candida 
tropicalis 

178

CSA-13

0 4/4 4/4 0.25/0.5

20 4/4 4/4 0.25/0.25

60 4/4 4/4 0.5/0.5

100 4/4 4/4 0.5/0.5

150 4/8 4/4 0.5/0.5

300 4/8 4/4 0.5/0.5

CSA-131

0 1/1 2/2 0.5/0.5

20 1/1 2/2 0.5/0.5

60 1/2 2/2 0.5/0.5

100 1/1 2/2 0.5/0.5

150 1/2 2/2 0.5/0.5

300 1/1 2/2 0.5/0.5

Omiganan

0 >256/>256 >256/>256 16/32

20 -* - 16/32

60 - - 16/32

100 - - 16/32

150 - - 32/64

300 - - 64/128

* - not determined.
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impair the effectiveness of AMPs, as observed in the case of peptides 
like indolicidin, human beta-defensin-1, histidine-rich peptide P-113, 
gramicidins, magainins, and bactenecins (Goldman et al., 1997; Lee 
et al., 1997; Wu et al., 1999; Rothstein et al., 2001). In CF sputum, the 
presence of bacterial endotoxin lipopolysaccharide (LPS) is one of the 
factors leading to the inhibition of LL-37 antimicrobial activity (Bucki 
et  al., 2007). Additionally, the secretion of two zinc-dependent 
metalloproteases, ZmpA and ZmpB, by Burkholderia cepacia can lead 
to the inactivation of AMPs, such as human beta-defensin-1 and 
LL-37 (Kooi and Sokol, 2009). These findings shed light on the 
challenges in utilizing AMPs as effective therapeutic agents in 
CF patients.

The structure of an AMP plays a vital role in determining its 
antimicrobial activity. It is believed that the helical, oligomeric 
conformation of LL-37 is crucial to the protein’s antimicrobial 
activity. Hence, the highest LL-37 antimicrobial activity is observed 
with maximum helix content, while intermediate and low activity 
corresponds to lower helix content and a disordered secondary 
structure. These findings suggest that the optimal antimicrobial 
activity of LL-37 necessitates an oligomeric α-helical structure before 
its interaction with the bacterial membrane (Johansson et al., 1998). 
Studies have demonstrated that increased NaCl concentration can 
induce conformational changes in LL-37. Specifically, at higher NaCl 
concentrations, LL-37 may undergo structural alterations and adopt 
a more random or disordered conformation resulting in decreased 
antimicrobial activity (Park et al., 2004; Huang et al., 2014).

In contrast, omiganan does not display a helical structure. 
However, the presence of positively charged sodium ions affects 
electrostatic interactions of this cationic AMP with microbial cell 
membranes (Mojsoska and Jenssen, 2015; Ghosh et al., 2021). Hence, 
in high-salt environments, the antimicrobial activity of omiganan may 
decrease, rendering it less effective against certain microorganisms. 
This dependence on salt concentration can affect its efficacy in 
physiological conditions where salt levels fluctuate, such as respiratory 
tract or skin infections (Brown, 2021).

On the other hand, the antimicrobial activity of ceragenins is 
independent of the concentration of NaCl, likely due to their unique 
structural properties. The smaller size of CSA-13 and CSA-131 than 
LL-37 and omiganan, along with distinct charge densities and lower 
positive charges, ensure their stability and resistance to changes in the 
ionic environment, including fluctuations in NaCl concentration and 
anionic polyelectrolytes, such as extracellular DNA (eDNA), F-actin, 
and mucin (Hashemi et al., 2018). In addition, the direct targeting of 
membrane lipids by ceragenins makes them less vulnerable to salt 
concentration compared to the highly charge-based AMPs mechanism 
of action (Epand et al., 2007).

Mucoid strains of P. aeruginosa that produce a thick alginate 
biofilm are typically more resistant to antimicrobials than non-mucoid 
strains due to the protective nature of the biofilm, which limits their 
penetration and, consequently, their efficacy (Nichols et  al., 1989; 
Meluleni et al., 1995; Stewart, 1996; Hentzer et al., 2001). P. aeruginosa 
is well-known for its ability to develop antibiotic resistance, for 
example, through upregulation of genes encoding efflux pumps, which 
effectively remove antibiotics from the cell (Tomás et al., 2010). The 
favorable biocompatibility of CSA has been reported in previous work 
(Piktel et al., 2020; Paprocka et al., 2021; Suprewicz et al., 2023). For 

FIGURE 1

Bactericidal activity of CSA-131 against Pseudomonas aeruginosa 
ATCC 27853 (A) and P. aeruginosa PAO1 DSM 19880 (B) and clinical 
isolate P. aeruginosa 4B (C) in 10 and 20% solution of CF sputum 
collected from Patient A. Results show the mean  ±  SD, n  =  3; * 
indicates statistical significance at p  ≤  0.05, ** p  ≤  0.01, and *** 
p  ≤  0.001 by Student’s t-test.

https://doi.org/10.3389/fmicb.2023.1290952
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Skłodowski et al. 10.3389/fmicb.2023.1290952

Frontiers in Microbiology 07 frontiersin.org

CSA-13 and CSA-131, the viability of human basal alveolar epithelial 
adenocarcinoma cells (A549) at a concentration of 10 μg/mL CSA-13 
and CSA-131 was maintained at approximately 60 and 80%, 

respectively (Piktel et al., 2020; Paprocka et al., 2021; Suprewicz et al., 
2023). Additionally, the problem of cytotoxicity can be effectively 
solved by the incorporation of Pluronic, a compound that increases 

FIGURE 2

Bactericidal activity of CSA-13 (A,D), CSA-131 (B,E), and LL-37 (C,F) against Pseudomonas aeruginosa PAO1 DSM 19880 strain. Bacterial survival was 
evaluated in sterile deionized water (CT) (A–C), and in 20% solution of CF sputum collected from Patient B (D-F), without NaCl and with NaCl at a 
concentration of 150  mM and 300  mM. Results show the mean  ±  SD (n  =  3). * indicates statistical significance at p  ≤  0.05, ** ≤0.01, and *** ≤0.001 by 
Student’s t-test.
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cell viability and alleviates the hemolytic effects of CSAs while 
maintaining their antimicrobial activity (Leszczyńska et  al., 2011; 
Paprocka et al., 2021).

Understanding the disparate modes of action and resistance to 
changes in salt concentration provides valuable insights into the 
therapeutic potential of ceragenins as effective antimicrobial agents, 

FIGURE 3

Fungicidal activity of CSA-13 (A,D), CSA-131 (B,E), and omiganan (C,F) against the clinical strain of Candida tropicalis 178. Fungal survival was evaluated 
in distilled water supplemented with NaCl (A–C), and in 20% solution of CF sputum collected from Patient B (D-F) alone and supplemented with NaCl 
at a concentration of 150  mM and 300  mM. Results show the mean  ±  SD (n  =  3). * indicates statistical significance at p  ≤  0.05, ** ≤0.01, and *** ≤0.001 
by Student’s t-test.
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FIGURE 4

Bactericidal activity of CSA-13 (A,D), CSA-131 (B,E), and LL-37 (C,F) against Pseudomonas aeruginosa PAO1 DSM 19880 strain. Bacterial survival was 
evaluated in 20% solution of CF sputum collected from patient D (A-C), and from Patient C (D-F), without NaCl and with NaCl at a concentration of 
150  mM and 300  mM. Results show the mean  ±  SD (n  =  3). * indicates statistical significance at p  ≤  0.05, ** ≤0.01, and *** ≤0.001 by Student’s t-test.
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FIGURE 5

Fungicidal activity of CSA-13 (A,D), CSA-131 (B,E), and omiganan (C,F) against the clinical strain of Candida tropicalis 178. Fungal survival was evaluated 
in 20% solution of CF sputum from Patient D (A-C), and from Patient C (D-F), alone and supplemented with NaCl at a concentration of 150  mM and 
300  mM. Results show the mean  ±  SD (n  =  3). * indicates statistical significance at p  ≤  0.05, ** ≤0.01, and *** ≤0.001 by Student’s t-test.
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particularly in managing infections in complex biological environments, 
such as CF lungs. Further research in this area is critical to elucidate the 
intricacies of ceragenin activity and its implications for clinical 
applications. The intrinsic stability and resistance to changes in NaCl 
concentration make ceragenins promising candidates for combating 
infections in complex environments like the CF sputum (Bucki et al., 
2007; Leszczyńska et al., 2011).

5 Conclusion

Our study provides a comprehensive comparative analysis of the 
efficacy of ceragenins and AMPs in the context of CF sputum and 
varying NaCl concentrations. We  investigated the antimicrobial 
activity of CSA-13, CSA-131, LL-37, and omiganan against 
CF-associated pathogens, evaluating their performance under 
different conditions. Our findings revealed that ceragenins, specifically 
CSA-13 and CSA-131, exhibited remarkable antimicrobial efficacy, 
surpassing natural (LL-37) and synthetic (omiganan) AMPs. Notably, 
the antimicrobial activity of ceragenins remained consistent across a 
wide range of NaCl concentrations, underscoring their resistance to 
changes in ionic environments. In contrast, the antimicrobial activity 
of LL-37 and omiganan was reduced in high-salt environments, 
potentially compromising their performance in CF sputum, a 
condition where NaCl levels can vary. The structural properties of 
ceragenins and their lipid-based mode of action likely contribute to 
their stability and sustained antimicrobial activity, even under salt 
excess condition. These properties highlight the potential of ceragenins 
as promising candidates for combating CF-associated infections and 
overcoming limitations observed in natural and synthetic AMPs.

Scope statement

The study investigated the effect of sodium chloride (NaCl) on the 
antimicrobial efficacy of the cathelicidin LL-37, and their synthetic 
mimetic ceragenins (Ceragenins), which are considered as potential 
therapeutic agents in cystic fibrosis (CF) lung infections. The 
susceptibility of cystic fibrosis-associated bacterial pathogens 
(Pseudomonas aeruginosa, Ochrobactrum spp. and Staphylococcus 
aureus) and fungal pathogens (Candida albicans and C. tropicalis) to 
these compounds was determined using Minimum Inhibitory 
Concentrations (MIC) and Bactericidal Concentrations (MBC) tests 
in sputum samples collected from patients diagnosed with 
CF. Furthermore, a colony-counting assay was used to assess the effect 
of varying NaCl concentrations on tested agents’ antimicrobial 
activity. The findings reveal that ceragenins exhibit potent 
antimicrobial activity in CF sputum, regardless of the NaCl 
concentration when compared to LL-37 and omiganan. Given the 
broad-spectrum antimicrobial activity of ceragenins in 
microenvironments resembling the airways of CF patients, they 
represent promising agents for managing CF disease. This manuscript 
aligns with the journal’s scope as it contributes to the field of 
microbiology and infectious diseases. The investigation provides 
valuable insights into the development of effective antimicrobial 
strategies to combat CF-associated infections.
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FIGURE 6

Representative microscopic images of sputum collected from CF patients. Top left image shows sputum from Patient A, top right image – Patient B, 
bottom left image – Patient C, bottom right image – Patient D. The DNA are shown green and F-actin in red. Scale bar 100  μm (A). (B) Mean DNA 
concentration in CF sputum. Results show the mean  ±  SD (n  =  3).
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