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Tuberculous meningitis (TBM) poses a diagnostic challenge, particularly

impacting vulnerable populations such as infants and those with untreated

HIV. Given the diagnostic intricacies of TBM, there’s a pressing need for

rapid and reliable diagnostic tools. This review scrutinizes the efficacy of

up-and-coming technologies like machine learning in transforming TBM

diagnostics and management. Advanced diagnostic technologies like targeted

gene sequencing, real-time polymerase chain reaction (RT-PCR), miRNA

assays, and metagenomic next-generation sequencing (mNGS) offer promising

avenues for early TBM detection. The capabilities of these technologies

are further augmented when paired with mass spectrometry, metabolomics,

and proteomics, enriching the pool of disease-specific biomarkers. Machine

learning algorithms, adept at sifting through voluminous datasets like medical

imaging, genomic profiles, and patient histories, are increasingly revealing

nuanced disease pathways, thereby elevating diagnostic accuracy and guiding

treatment strategies. While these burgeoning technologies offer hope for

more precise TBM diagnosis, hurdles remain in terms of their clinical

implementation. Future endeavors should zero in on the validation of these tools

through prospective studies, critically evaluating their limitations, and outlining

protocols for seamless incorporation into established healthcare frameworks.
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Through this review, we aim to present an exhaustive snapshot of emerging

diagnostic modalities in TBM, the current standing of machine learning in

meningitis diagnostics, and the challenges and future prospects of converging

these domains.

KEYWORDS

tuberculous meningitis, machine learning, next-generation sequencing, diagnosis,
infectious diseases, mycobacterium tuberculosis

1. Introduction

Tuberculosis, caused by mycobacterium tuberculosis,
represents one of the major global public health issues (World
Health Organization [WHO], 2022). Although it primarily
infects the lungs, known as pulmonary tuberculosis (PTB), it
can also affect extrapulmonary sites such as the central nervous
system (Ohene et al., 2019). Specifically, TBM is a lethal form of
tuberculosis, especially among infants and untreated HIV-infected
individuals (Heemskerk et al., 2011; Seddon et al., 2019). Despite
TBM accounting for only 1% of new diagnoses, its consequences
are severe, leading to death or disability in nearly half of the
patients (Marais et al., 2010).

Mycobacterium tuberculosis, the causative agent for
tuberculosis, is characterized by slow growth and acid resistance,
features attributed to its complex cell wall that confer survival
advantages within host organisms (Gao et al., 2003). The pervasive
transmission of the pathogen, coupled with the intrinsic difficulties
associated with bacterial culturing, elevates tuberculosis to a
pressing issue in global healthcare. More specifically, these
biological complexities present substantial obstacles in the accurate
diagnosis and effective management of TBM. While the emergence
of drug resistance exacerbates the complexity of treatment
regimens, timely diagnosis and intervention can substantially
reduce mortality rates (World Health Organization [WHO],
2022). However, early diagnosis of TBM is rendered exceptionally
challenging due to the low sensitivity of current diagnostic gold
standards and prolonged culture times (Pormohammad et al.,
2019). Many patients only seek medical intervention at advanced
stages, such as during a mental health crisis or a comatose
state (Yan et al., 2020). Typically, TBM diagnosis is predicated

Abbreviations: TBM, tuberculous meningitis; RT-PCR, real-time polymerase
chain reaction; mNGS, metagenomic next-generation sequencing; PCR,
polymerase chain reaction; NAATs, nucleic acid amplification tests; WHO,
World Health Organization; AFB, acid-fast bacilli; IGRA, interferon-gamma
release assays; 1H-NMR, proton nuclear magnetic resonance; LC-MS,
liquid chromatography-mass spectrometry; GC-MS, gas chromatography-
mass spectrometry; MRI, magnetic resonance imaging; DTI, diffusion
tensor imaging; fMRI, functional magnetic resonance imaging; LR, logistic
regression; DT, decision trees; RF, random forests; NN, neural networks; ML,
machine learning; CART, classification and regression tree; ANN, artificial
neural network; SVM, support vector machines; CSF, cerebrospinal fluid;
AUC, area under curve; BM, bacterial meningitis; NBTrees, naïve bayes
trees; CRP, C-reactive protein; VM, viral meningitis; CDSS, clinical decision
support system; ROC, receiver operating characteristic; DCA, decision
curve analysis; CNN, convolutional neural network; RNN, recurrent neural
network; NLP, natural language processing; LDA, linear discriminant analysis;
KNN, k-nearest neighbors.

on clinical manifestations and empirical treatment rather than
concrete diagnostic evidence (Thwaites et al., 2000; Ssebambulidde
et al., 2022). Alarmingly, commonly employed clinical markers
lack specificity, thereby increasing the risk of misdiagnosing TBM
as other types of meningitis, such as viral or bacterial forms
(Venkatesan et al., 2013; Wang et al., 2019; Xing et al., 2020; He
et al., 2023).

Even in the face of such challenges, emerging technologies
signal a positive shift in the diagnostic paradigms for TBM. The
application of targeted gene sequencing is increasingly vital for
discerning drug-resistant forms of mycobacterium tuberculosis, an
essential step for tailoring effective treatment regimens (Feuerriegel
et al., 2021). Molecular diagnostic methodologies, such as RT-
PCR and miRNA assays, provide sensitive and specific tools for
the early diagnosis of TBM, allowing for the rapid identification
of both tuberculosis and rifampicin resistance (Nhu et al., 2014;
Hu et al., 2019). Moreover, mNGS is gaining traction as a
diagnostic tool, with its capacity for the unbiased detection of a
diverse array of pathogenic organisms, thereby revolutionizing the
field of infectious disease diagnosis (Lin et al., 2023). Through
the incorporation of high-throughput mass spectrometry, as well
as metabolomic and proteomic analyses, the research landscape
for TBM is expanding to include the identification of specific
biomarkers, such as metabolites and proteins, that may be
intricately linked with the pathophysiology of the disease (Mason
and Solomons, 2021). As a result, these technological advancements
are significantly enhancing diagnostic precision and facilitating
unprecedented monitoring of disease progression. Moreover, MRI
provides distinct advantages, particularly in the assessment of
cerebral structural alterations and inflammatory responses (Dian
et al., 2020).

Machine learning offers a potential solution for improving
the diagnostic processes of TBM and other forms of tuberculosis.
Machine learning is a computational framework designed to make
predictions or decisions by automatically extracting and decoding
complex data patterns (Camacho et al., 2018). Specifically, these
algorithms utilize feature vectors and corresponding labels to
adjust the internal parameters of the model, leveraging a variety
of optimization techniques (Capobianco and Dominietto, 2020).
By analyzing large volumes of medical images, genomic data, or
clinical records, machine learning models can identify complex
patterns of disease that may be imperceptible to human experts
(Greener et al., 2022). This technology has potential advantages
in terms of accuracy and speed and has been widely applied in
the field of infectious diseases to improve the diagnosis, detection
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of complications, treatment, and prognostic stratification (Peiffer-
Smadja et al., 2020). Given its track record in related domains,
the integration of machine learning into TBM research can
thus be both possible and advantageous. Our detailed feasibility
analysis, considering the substantial data volume, complexity, and
interdisciplinary nature of TBM research, further underscores the
significant potential of machine learning techniques. Moreover,
by presenting instances where machine learning has been
implemented in TBM studies, we emphasize its practical viability
and the tangible benefits it brings to the field.

This review aims to provide an overview of new diagnostic
technologies for TBM, the current status and progress of machine
learning in meningitis diagnosis, and the challenges and future
directions when integrating these realms.

2. New diagnostic technologies for
TBM

Diagnosing TBM requires a multi-faceted approach, employing
various advanced technologies and methodologies. Over the years,
advancements in molecular biology, immunology, biomarker
analysis, and imaging technologies have greatly enhanced our
ability to detect and study TBM, providing clinicians and
researchers with a broader toolkit for diagnosis and assessment.
Each technology, from molecular tools like PCR to imaging
modalities like MRI, has its unique advantages and challenges. This
section delves into these various diagnostic technologies, exploring
their capabilities and contributions to the field of TBM research and
diagnosis. A comprehensive schematic illustration is provided in
Figure 1.

2.1. Molecular biology technologies

2.1.1. Polymerase chain reaction (PCR)
Nucleic acid amplification tests (NAATs), such as PCR, hold

particular promise for improving TBM diagnosis. The GeneXpert
MTB/Rif test is a rapid, automated, cartridge-based nucleic acid
amplification test that the World Health Organization (WHO)
recommended in 2015 as the initial microbial diagnostic test for
TBM (World Health Organization [WHO], 2015). In a recent
Cochrane review, the summarized sensitivity of cerebrospinal fluid
(CSF) Xpert against CSF culture was 71.1% (95% CI: 62.8–79.1%),
and the summarized specificity was 96.9% (95% CI: 95.4–98.0%)
(Kohli et al., 2021). Subsequently, GeneXpert MTB/Rif Ultra (Xpert
Ultra) was developed (with a larger specimen volume reaching
the PCR reaction, additional probes for two other DNA targets,
optimized microfluidics, and PCR cycling), featuring enhanced
sensitivity and more reliable rifampicin resistance detection (Bahr
et al., 2018; Donovan et al., 2020). In 2017, the WHO recommended
adopting Xpert Ultra for TBM diagnosis, replacing Xpert as the
first-line test (World Health Organization [WHO], 2017).

2.1.2. Analysis of miRNA
Exosomes, which are microvesicles emanating from viable cells

into the circulatory system and typically ranging between 30–100
nanometers in diameter, harbor RNA and protein constituents

(Wang et al., 2022). Recently, these extracellular vesicles have
ascended as potent instruments for the identification of biomarkers
in a plethora of diseases, with miRNA identified as one of the
most auspicious candidates. A small selection of studies centered
on tuberculosis has illuminated the profiles of exosomal miRNAs.
Research conducted by Singh et al. (2015) and Alipoor et al.
(2017) divulged a differential spectrum of exosomal miRNAs
originating from macrophages infected with mycobacterium
tuberculosis, implicating the regulatory and diagnostic capabilities
of these miRNAs during the infection. Additional studies have
also indicated the feasibility of utilizing exosomal miRNAs for
differentiating tuberculosis patients from healthy states (Lv et al.,
2017).

Further, Hu et al. (2019) discerned six differentially expressed
exosomal miRNAs in tuberculosis cases; three of these exhibited
substantial discriminatory capacity for TBM and were subject
to support vector machine (SVM) modeling. The study also
tentatively amalgamated electronic health records (EHR), a digital
version of patient medical histories, with miRNA data, proposing
the integration of multimodal datasets.

2.1.3. mNGS
Over recent years, mNGS has ascended as a potent sequencing-

based modality capable of pathogen identification, without the
prior knowledge of the target (Chen et al., 2022). Notably,
in contrast to microorganism-specific PCR techniques, mNGS
exhibits heightened sensitivity for detecting low-abundance
microbial infections in a solitary assay. A seminal pilot investigation
involving 12 tunnel boring machine cases revealed a diagnostic
sensitivity of 67%, surpassing traditional methods like acid-fast
bacilli (AFB) staining, PCR, and microbial culturing (Wang et al.,
2019).

In a retrospective analysis of 51 inpatients without HIV
suspected TBM, CSF mNGS had a sensitivity of 84.4% (38/45, 95%
CI: 69.9–93.0%) and a specificity of 100% (6/6, 95% CI: 51.68-100%)
against consensus case definitions (Yan et al., 2020).

2.2. Immunological technologies

2.2.1. Interferon-gamma release assays (IGRA)
Interferon-gamma release assays, which are founded on T-cell-

based methodologies, serve as diagnostic tools for identifying
infections caused by Mycobacterium tuberculosis (Lalvani et al.,
2001). Currently, two commercial types of IGRAs are available:
T-SPOT. TB (T-SPOT, Oxford Immunotec Ltd., Oxford, UK) and
QuantiFERON-TB Gold (QFT, Cellestis Ltd., Carnegie, Australia
or Qiagen, Hilden, Germany) (Bastian and Coulter, 2017).
These assays employ enzyme-linked immunospot and enzyme-
linked immunosorbent assay techniques, respectively (Uplekar
et al., 2015). A meta-analysis and systematic review from 2016
determined that the overall sensitivity rates for blood and CSF
IGRA were 78 and 77%, accompanied by specificity rates of 61 and
88% (Yu et al., 2016). These data suggest that these assays have only
moderate accuracy. Specificity is enhanced when the assays are used
on CSF, but large volumes are required (>2 ml) and indeterminate
results are common (up to 15%). Consequently, the deployment of
IGRA should be augmented by additional diagnostic modalities and
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FIGURE 1

Comprehensive schematic illustration of current diagnostic technologies for TBM. The figure categorizes the diagnostic modalities into four primary
technological approaches: PCR, miRNA, mNGS, IGRA, protein and metabolite analysis, and MRI. Each technology is represented with corresponding
icons or graphical elements to delineate its unique contribution to the diagnosis of TBM.

comprehensive clinical assessments for a more reliable and precise
diagnosis.

2.3. Biomarker analysis

2.3.1. Protein and metabolite analysis
The analysis of proteins and metabolites leverages advanced

high-throughput technologies to carry out comprehensive and
quantitative assessments of low-molecular-weight metabolites in
biological specimens. These technologies include proton nuclear
magnetic resonance (1H-NMR), which is a technique that
uses the magnetic properties of atomic nuclei for structural
analysis; liquid chromatography-mass spectrometry (LC-MS), a
powerful tool combining the separating capabilities of liquid
chromatography with the quantitative and qualitative analysis
abilities of mass spectrometry; and gas chromatography-mass
spectrometry (GC-MS), which is similar to LC-MS but specializes
in the analysis of volatile compounds. These metabolite profiles
can serve as molecular characteristics of the disease state, offering
valuable information for diagnosis, disease progression, and
treatment efficacy (Qiu et al., 2023). In the context of TBM, the
expression patterns of specific metabolites in cerebrospinal fluid
and blood could be closely related to the onset, development,
and prognosis of the disease (van Zyl et al., 2020; Gao et al.,
2023). Precise analysis of these metabolites not only helps in
enhancing the accuracy of early TBM diagnosis but may also
reveal its pathophysiological mechanisms and contributing factors
(Cao et al., 2022). For example, CSF lactate and CSF glucose,
as the two primary metabolic markers identified from CSF
metabolomics studies, have already been instrumental in the

diagnosis of TBM. Crucially, for the diagnosis of TBM, the observed
concentration ranges are 3.04–17 mmol/L for CSF lactate and
1.6–2.69 mmol/L for CSF glucose (Mason and Solomons, 2021).
Although metabolomics has huge potential in TBM diagnosis,
it also faces the complexity of sample handling, challenges
in data analysis, and the need for more clinical validation
studies.

2.4. Imaging technologies

2.4.1. MRI
As a high-resolution, non-invasive imaging technique, MRI can

provide detailed views of the anatomy and physiological activities
of the central nervous system, including the brain, brainstem,
and spinal cord. In the diagnosis of TBM, MRI is generally used
for detecting inflammation in the meninges, ventricles, and brain
tissues, including manifestations such as meningeal thickening,
brain edema, ventricular dilation, and localized ischemia or
hemorrhage (Pienaar et al., 2009). Advanced MRI technologies like
diffusion tensor imaging (DTI) and functional magnetic resonance
imaging (fMRI) can further assess microstructural changes in
neural conduction and brain function (Mathur et al., 2010;
Ding et al., 2013). This information is highly valuable for early
diagnosis, disease severity assessment, and monitoring treatment
responses.

However, the application of MRI also has certain limitations,
including high cost, limited availability of equipment, and reliance
on patient cooperation. Additionally, the interpretation of MRI
results requires specialized skills and experience. Despite this, MRI
serves as a powerful diagnostic tool indispensable for accurate
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TBM diagnosis, treatment planning, and efficacy assessment, and
may continue to play a crucial role in future research and
clinical practice.

3. Fundamentals of machine
learning

Applications of machine learning in the realm of biomedical
sciences have increasingly captivated scholarly attention.
Fundamentally, machine learning methodologies bifurcate
into two cardinal classifications: supervised and unsupervised
learning (Greener et al., 2022).

Supervised learning is predicated on utilizing expertly
annotated datasets to train computational models for the
extraction of specific, disease-related attributes. Upon rigorous
training, such models acquire the capability to discern and
categorize pertinent attributes within novel, unlabeled datasets,
thereby augmenting clinical diagnostics (LeCun et al., 2015). From
a technical perspective, supervised learning can be subdivided into
classification and regression algorithms. Classification algorithms
strive to categorize data samples, while regression algorithms aim
to predict continuous variables. Specific techniques encompass
logistic regression (LR), decision trees (DT), random forests
(RF), neural networks (NN), and deep learning. Importantly, the
majority of machine learning algorithms feature both classification
and regression variants, rendering the choice of algorithm
contingent upon the task at hand.

Conversely, unsupervised learning seeks to unearth latent
structural or pattern-related nuances in data without the crutch of
pre-labeled datasets. This approach shines in its ability to handle
complex, high-dimensional data, such as gene expression profiles
(Becht et al., 2019). Through unsupervised learning, one can
efficaciously identify co-expression modules in genes, potentially
indicative of common biological mechanisms or pathways (Tawa
et al., 2021). Noteworthy is the emergent interest in semi-
supervised learning methods, which amalgamate the virtues of
supervised and unsupervised paradigms to bolster classification
performance through clustering techniques (Dou et al., 2023).

The integration of machine learning into medical practice
constitutes a multi-stage, interdisciplinary endeavor. Initially,
a dataset that is both large and representative is assembled,
often comprising medical records and biomedical imaging.
The data quality is crucial for model efficacy. Subsequently,
meticulous pre-processing eliminates noise and balances the
dataset, if necessary. Upon dataset preparation, algorithmic model
development commences. Models, ranging from traditional DT
to NN, are trained and fine-tuned on a data subset to optimize
predictive capabilities. Following training, the model undergoes
rigorous validation using an independent dataset and standardized
evaluation metrics such as accuracy, sensitivity, and specificity.
After successful validation, the model transitions to clinical
deployment, serving as an auxiliary tool for clinicians in diagnosis
and treatment planning. Continuous maintenance and periodic re-
validation are imperative for sustained efficacy. The overall process
is encapsulated in Figure 2, providing a roadmap for medical
professionals interested in machine learning applications.

FIGURE 2

General process for applying machine learning in medical diagnosis
and treatment. It outlines crucial steps such as data collection, data
processing, machine learning (ML) development, validation, and
eventual clinical deployment. The figure aims to offer a roadmap for
clinicians and researchers interested in integrating machine learning
into medical practice.

4. Research status of machine
learning in meningitis

As meningitis research grows, more studies are employing
diverse methods, evolving from traditional statistics to machine
learning models, to diagnose the disease in hospital settings. These
studies, especially those using larger datasets and multiple clinical
factors, have shown improved predictive accuracy. Advanced
diagnostic technology has also expanded the variety of features
included in these models. Table 1 summarizes key studies,
reviewing aspects like study population, outcomes, features,
validation methods, and model performance.

4.1. Research based on traditional
statistical methods

Earlier diagnostic models for TBM relied on relatively small
sample sizes and traditionally employed statistical methods such as
logistic regression. Wang et al. (2021) aimed to assess the clinical
features associated with normal CSF protein levels in pediatric
TBM. Conducted retrospectively, their study specifically examined
two clinical features: vomiting and serum glucose levels. The
research indicates that these features are correlated with normal
CSF protein levels in children with TBM. This finding is particularly
significant for diagnosing and managing pediatric TBM, as CSF
protein is often employed as a crucial diagnostic marker for
the disease. However, the study has several limitations, including
a small sample size and the focus on a single research center,
which may restrict its broader applicability. The study also did
not explore the relationships between CSF protein and other CSF
analytes.

Huang et al. (2022) employed ELISA assays to examine the
expression of eight proteins in the CSF of 80 patients, which
included 22 confirmed cases of TBM, 18 probable cases, and
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TABLE 1 Summary of clinical models for meningitis diagnosis.

Modeling technique Data type Number of
patients

Model performance References

LR CSF features 125 Model Hosmer–Lemeshow goodness-of-fit test:
χ2 = 2.486, df = 8, p = 0.962.

Wang et al., 2021

LR CSF features 80 Model AUC was 0.916 (95% CI: 0.857–0.976),
sensitivity was 0.95 and specificity was 0.775.

Huang et al., 2022

LR and CART. Clinical features 205 Model sensitivities were 0.99 (LR) and 0.87
(CART).

Török et al., 2007

LR Clinical features 382 Model AUC was 0.923, sensitivity was 0.858 and
specificity was 0.877.

Lu et al., 2021

LR and CART. Clinical features 508 Model sensitivities were 0.906 (LR) and 0.91
(CART).

Dendane et al., 2013

LR and CART. Clinical features 251 Model sensitivities were 0.86 (LR) and 0.88
(CART).

Thwaites et al., 2002

LR CSF features 174 Model AUC was 0.923 (95% CI: 0.867–0.980). Luo et al., 2021

LR Clinical features 167 Model sensitivity, specificity and positive
predictive value was 0.471, 0.951 and 0.909.

Handryastuti et al.,
2023

Ensemble algorithms
(Bagging + NBTree)

Clinical features 26288 Model AUC was 0.95, accuracy, precision, recall
and f-measure was 0.89.

Guzman et al., 2022

ANN Clinical features 1000 Model accuracy was 96.69% Šeho et al., 2022

ANN Clinical features 203 Model AUC was 0.85 (95% CI: 0.79–0.89). Jeong et al., 2021

DT Clinical features 22602 Model AUC was 0.95, precision was 0.942. Lélis et al., 2017

DT Clinical features 26288 Model accuracy was 0.943. Lelis et al., 2020

SVM mNGS of CSF 368 Model AUC was 0.88, sensitivity was 0.889 and
specificity was 0.88.

Ramachandran et al.,
2022

SVM miRNAs and EHRs 370 Model AUC was 0.97 (95% CI: 0.80–0.99). Hu et al., 2019

LR and RF MRI radiological
features

216 Model AUC was 0.954, accuracy was 0.909 and F1
score was 0.928.

Aftab et al., 2021

LR and SVM MRI radiological
features

371 Model AUC was 0.796 (95% CI: 0.744–0.847). Ma et al., 2022

40 non-TBM cases. They discovered significant differences in
the expression of seven proteins between TBM and non-TBM
groups. Through unsupervised hierarchical clustering analysis,
the researchers further identified a pattern composed of these
seven differentially expressed proteins. Logistic regression analyses
validated the high efficacy of a combination of three biomarkers
(APOE, APOAI, S100A8) in distinguishing TBM from non-TBM
cases, with an AUC of 0.916, a sensitivity of 0.95, and a specificity
of 0.775.

In contrast, Török et al. (2007) focused on regions with
high tuberculosis incidence but limited laboratory resources. They
selected a sample of 205 HIV-negative meningitis patients with
lower CSF glucose levels. Employing LRand CART, the researchers
successfully classified patients into TBM and bacterial meningitis
(BM) groups. The LR model achieved a diagnostic sensitivity of 0.99
for TBM and 0.815 for BM, whereas the CART method reached
diagnostic sensitivities of 0.87 for TBM and 0.865 for BM. These
algorithms primarily relied on factors like age, white blood cell
counts in blood and CSF, medical history, and the percentage of
neutrophils in the CSF for diagnosis.

Dendane et al. (2013) used data from 508 patients—comprising
274 cases of TBM and 234 cases of bacterial meningitis—
to apply logistic regression models and CART analyses. They

successfully identified six variables significantly associated with
TBM diagnosis. These variables include female gender, symptom
duration exceeding 10 days, focal neurological signs, blood white
cell count less than 15 × 10ˆ9/L, serum sodium below 130 mmol/L,
and a total CSF white cell count less than 400 × 10ˆ6/L. The
sensitivity and specificity of this algorithm ranged between 0.87 and
0.88, and between 0.95 and 0.96, respectively.

Thwaites et al. (2002) analyzed data from 251 adult patients in a
Vietnamese infectious disease hospital, consisting of 143 TBM cases
and 108 bacterial meningitis cases. The researchers pinpointed
five features strongly correlated with TBM diagnosis: age, length
of illness, white cell count, total CSF white cell count, and the
proportion of neutrophils in the CSF. Based on these key features,
the team formulated a diagnostic rule and evaluated it through
both retrospective and prospective test data methodologies. The
diagnostic rule demonstrated 0.97 sensitivity and 0.91 specificity
in retrospective testing, and 0.86 sensitivity and 0.79 specificity in
prospective testing.

Luo et al. (2021) constructed a diagnostic model based
on multiple CSF markers and the TBAg/PHA ratio. Through
multivariate logistic regression analysis, the model incorporated
four key variables: CSF chloride levels, CSF nucleated cell count, the
proportion of lymphocytes in CSF, and the TBAg/PHA ratio. The
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model achieved a sensitivity of 0.8158 and a specificity of 0.9184,
with an accuracy exceeding 0.85 and an area AUC of 0.949.

While these diagnostic models are high-performing, they
often function as "black boxes," offering limited interpretability
for clinicians. In contrast, clinical scoring tools are generally
more accessible to healthcare professionals, being based on clear,
intuitive variables and scoring systems. To address this, Lu
et al. (2021) introduced a comprehensive new diagnostic scoring
system, which synthesizes 28 clinical, laboratory, and radiological
factors to differentiate TBM from other common central nervous
system infections. This system, validated in a prospective cohort,
excelled in sensitivity and specificity, achieving 0.858 and 0.877,
respectively.

Similarly, Handryastuti et al. (2023) developed a simplified
scoring system for diagnosing pediatric TBM based on a
retrospective analysis and multivariable prediction model.
Although the system has lower sensitivity at the established
threshold, reaching 0.471, its high specificity of 0.951 signifies a
robust accuracy in clinical diagnosis.

4.2. Research based on machine learning
methods

In light of increasing dataset sizes, several studies have been
published over the past few years that employ machine learning
methods with larger data set requirements, such as SVM and
tree-based models. Guzman et al. (2022) scrutinized a substantial
dataset consisting of 26,228 patients, characterized by 19 primary
variables related to symptoms and initial CSF laboratory results.
The central aim of their research was to identify the most effective
classifier for meningitis etiology. Toward this goal, they explored
a myriad of feature selection, dataset sampling, and classification
model techniques, based predominantly on ensemble methods
and DT. Following experimentation with 27 classification models,
19 of which employed ensemble methods, they found that the
ensemble methods yielded the most optimal classifiers. Specifically,
the union of Bagging and naïve bayes trees (NBTrees) resulted in
peak performance metrics, boasting an F-measure of 0.89, along
with an accuracy, recall, and AUC of 0.95 each. Their study also
illustrated that, compared to using DT alone, the incorporation of
ensemble methods substantially enhanced the model’s diagnostic
efficacy.

Šeho et al. (2022) deployed a dataset of 1,000 instances,
where 800 were meningitis patients and 200 were healthy
individuals. Factors used in diagnosing meningitis included body
temperature, protein levels, CSF-to-blood glucose ratio, CSF white
cell counts, lactate, glucose, erythrocyte sedimentation rate, and
C-reactive protein (CRP). They developed a classifier that utilized
ANN for instance categorization. When tested on the employed
dataset, the proposed system exhibited a classification accuracy of
0.9669.

Jeong et al. (2021) applied a range of machine learning models,
including Naive Bayes, LR, RF, SVM, and ANN, to differentiate
between TBM and viral meningitis (VM). The study cohort
consisted of 203 patients, incorporating data from 143 confirmed
cases of VM and 60 cases of confirmed or probable TBM. Among
all tested machine learning techniques, ANNs using imperative

estimators yielded the highest AUC registering at 0.85 with a 95%
confidence interval ranging from 0.79 to 0.89.

Lélis et al. (2017) compiled a dataset of 22,602 potential
meningitis cases in Brazil. Utilizing input data from nine symptom
categories, alongside other patient information like age, gender,
and location, they applied seven classification techniques and
validated their models using 10-fold cross-validation. Their results
indicated that the deployed methods could appropriately diagnose
pneumococcal meningitis.

Further extending the scope, Lelis et al. (2020) developed
an integrated clinical decision support system (CDSS) aimed at
assisting physicians in making early stage meningitis diagnoses
based on observable symptoms. Built on explainable, tree-
based machine learning models and knowledge engineering
techniques, this system integrated three intelligent components.
The system was constructed and assessed on a Brazilian dataset
encompassing 26,228 meningitis patients and demonstrated
exemplary classification performance, particularly for the more
severe type of meningitis, termed as MD-type, with an accuracy
rate as high as 94.3%. Further experimentation corroborated that
the system could accurately diagnose 88% of meningitis cases in a
real-world database. This research holds particular importance for
regions lacking financial resources and advanced medical facilities,
as it offers an accurate, economical, and actionable methodology for
early stage diagnosis.

In recent years, novel multimodal data types such as
metagenomic sequencing of CSF, exosomal miRNAs, and electronic
health records have enriched the data resources available for
machine learning models. This data diversity enables models
to learn from multiple perspectives, thereby augmenting their
diagnostic and predictive capabilities.

Ramachandran et al. (2022) sought to enhance the diagnostic
accuracy of TBM and its mimic diseases through an integrated
machine learning classifier that combines metagenomic sequencing
of CSF and host gene expression. Conducted in the sub-Saharan
African region—a zone where TBM is prevalent yet challenging to
diagnose—the study employed methods including the extraction of
total nucleic acids from CSF samples followed by RNA and DNA
sequencing, which were then analyzed using a machine learning
classifier. Overall, the study found that this combined approach
demonstrated high sensitivity and specificity in diagnosing TBM.
In the test set, the diagnostic accuracy was 0.88, with sensitivity
and specificity rates at 88.9 and 88%, respectively. Notably, the
study also showed that this approach performs reliably in resource-
constrained settings.

Hu et al. (2019) employed a combination of exosomal
miRNA and electronic health data to conduct diagnostic studies
on tuberculosis among 351 individuals, which included both
active tuberculosis patients and a control group. The authors
utilized an ExoQuick Kit and thrombin D to isolate exosomes
from plasma samples, which were subsequently validated through
nanoparticle tracking analysis, transmission electron microscopy,
and protein blotting. In the exploratory phase, 102 exosomal
miRNAs exhibited differential expression between tuberculosis
patients and the healthy control group. Ten of these differentially
expressed exosomal miRNAs were selected for further analysis.
This study not only introduced new biomarkers but also optimized
existing diagnostic methods, attaining an AUC of 0.97 (95% CI:
0.80–0.99) in diagnosing TBM.
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With the emergence of imaging genomics, an increasing
number of investigators are harnessing the power of machine
learning algorithms in conjunction with a diverse array of
radiological features derived from MRI scans to enhance the
diagnostic precision of brain tuberculosis.

Aftab et al. (2021) utilized patient data from Aga Khan
University Hospital in Pakistan, encompassing not only
demographic information but also radiological features derived
from MRI. To address class imbalance during data preprocessing,
the study employed various oversampling techniques for the
minority class, such as SMOTE, SMOTE-TOMEK, SMOTE-ENN,
and ADASYN. Two primary classification models, LR and RF, were
tested. The LR model in combination with SMOTE + TOMEK
techniques yielded the highest diagnostic performance, achieving
an accuracy of 90.9%, an AUC of 95.4%, and an F1 score of
92.8%. These findings underscore the significant accuracy and
effectiveness of this machine learning approach in the diagnosis
of brain tuberculosis, particularly in emergency or clinical settings
where rapid and accurate diagnosis is imperative.

Ma et al. (2022) developed an automated, non-invasive
diagnostic tool for early detection of basal cistern changes in
TBM using deep learning and radiomics methods on a multi-
center MRI dataset. The authors initially employed an nnU-
Net-based model for the automatic segmentation of the basal
cistern region, achieving an average dice coefficient of 0.727.
Subsequently, radiomics features were extracted from FLAIR
and T2W images and subjected to independent sample t-tests
and pearson correlation coefficient analyses for feature selection.
Finally, radiomics signatures were constructed using SVM and
LR, and their performance was evaluated using receiver operating
characteristic (ROC) curves, calibration curves, and decision
curve analysis (DCA). Test results indicated that the AUCs for
SVM classifiers based on T2W and FLAIR features were 0.751
and 0.676, respectively, signifying good discriminative ability.
This integrated method demonstrated considerable potential in
the early identification of subtle basal cistern changes in TBM,
promising improvements in the early diagnosis and treatment of
the disease.

5. Discussion

As illustrated in Figure 3, logistic regression emerges as
the most favored statistical approach, extensively adopted in the
domain of TBM research. In contrast, machine learning algorithms
such as SVM and tree models are the second most frequently
utilized methodologies for model construction. Notably, a marked
uptick in research articles using machine learning for model
creation has been observed since 2022, while studies relying
on traditional statistical approaches like logistic regression were
predominantly concentrated prior to 2021. This trend may signal
the growing acceptance and proliferation of machine learning in
the field.

Given its data-centric nature, machine learning offers
significant potential in the diagnosis of TBM, especially in the
last decade, where advancements in novel diagnostic technologies
have supplied a variety of data types. As shown in Table 2, these
include genomic data, transcriptomic data, fluorescent markers,

FIGURE 3

The frequency of modeling techniques employed for diagnosing
TBM.

TABLE 2 Summary of available data type from new
diagnostic technologies.

New diagnostic
technologies

Available data type

Molecular biology technologies Genomic data, transcriptome data

Immunological technologies Fluorescent labeling information

Biomarker analysis Metabolome data, protein data

Imaging technologies Radiographic image

Other traditional technologies Routine clinical data, laboratory
testing and EHR.

metabolomic data, proteomic data, radiographic images, and
standard clinical and EHR. Such diverse data types not only
enhance diagnostic accuracy but also serve as rich resources for
training and validating machine learning models. Specifically, the
amalgamation of these data types with advanced machine learning
and deep learning techniques could pave the way for innovative
diagnostic pathways. Some potential applications are outlined
below.

5.1. Molecular biology data

Deep learning algorithms such as convolutional neural network
(CNN) and recurrent neural network (RNN) have the capacity
to process high-dimensional and complex data structures. This
enables them to accurately identify genes and transcription factors
associated with TBM from extensive genomic or transcriptomic
data. Compared to traditional machine learning and statistical
methods, these deep learning algorithms are better equipped
to handle data of higher dimensions and complexity, making
them more suitable for identifying key elements within intricate
biological networks and pathways (Zou et al., 2019; Kleppe
et al., 2021; Wang et al., 2023). For instance, deep learning
has already been successfully employed in cancer diagnostics to
analyze transcriptomic data for the identification of specific gene
expression patterns related to certain types of cancer (Coudray
et al., 2018; He et al., 2020; Meng et al., 2023). This approach
could be similarly applied to the study of TBM, wherein deep
learning-based analyses of gene expression data could potentially
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unveil underlying biological changes in TBM patients, thus aiding
in diagnosis and treatment.

5.2. Immunological data

The utilization of immunological data offers significant
prospects in researches of TBM. High-dimensional immunological
datasets can be adeptly navigated using unsupervised and
semi-supervised algorithms, such as k-means clustering and
autoencoders (Tanner et al., 2013). These computational techniques
not only enable the recognition of TBM-associated immune
response configurations but also disclose potentially determinative
immunological markers and subpopulations of cells that are
impactful in the course and responsiveness of treatments.
Through the application of high-throughput methodologies
like immunohistochemistry and flow cytometry, scholars have
effectively pinpointed specific subpopulations of immune cells that
correlate with prognostic and therapeutic outcomes (Zhang Z. et al.,
2019; Kim et al., 2021; Ye et al., 2022). In a parallel vein, the
aggregate analysis of TBM immunological data through similar
unsupervised and semi-supervised machine learning algorithms
may unearth key immunological metrics pertinent to the dynamics
of disease and treatment. Such advanced analytical processes
could contribute to the refinement of diagnostic frameworks and
could potentially catalyze the formulation of more individualized
treatment strategies.

5.3. Biomarker data

The value of metabolomics in the diagnosis of TBM has drawn
the attention of researchers. Reduced glucose concentrations and
elevated levels of proteins in the CSF have long been the two
biochemical indicators used to diagnose TBM (Zhang et al., 2018;
Zhang P. et al., 2019). However, a lot of information hidden in
high dimensional data is often overlooked. To extract valuable
information from these high-dimensional and variable biomarker
data sets, machine learning algorithms like RF and SVM could be a
solution (Reel et al., 2021; Sen et al., 2021; Sun et al., 2022). These
algorithms exhibit exceptional feature selection and classification
capabilities, enabling the identification of key metabolites and
protein markers correlated with the diagnosis and prognosis of
TBM.

5.4. Radiological imaging

The past few years have seen research initiatives that employ
radiomics to manually extract features related to TBM (Aftab et al.,
2021; Ma et al., 2022). However, the advent of CNN offers an
automated, end-to-end analytical approach that achieves accuracy
levels that meet or even surpass those of human experts (Hosny
et al., 2018). For example, Jang et al. (2018) exemplified that
CNN could autonomously identify glioblastoma features in MRI
scans with a remarkable 0.87 AUC, significantly outperforming
traditional image analysis methods. Therefore, employing this end-
to-end approach to the analysis of radiological images may be

helpful in the diagnosis of TBM. Not only can complex biomarkers
be automatically identified and analyzed, but more personalized
treatment options are also possible. Such a fusion is expected
to dramatically improve the accuracy of early diagnosis and
disease surveillance, thereby optimizing treatment outcomes and
improving patient quality of life.

5.5. Routine clinical data and EHR

In the realm of healthcare informatics, routine clinical data
along with EHRs play an indispensable role. These expansive,
multifaceted datasets typically include a wide range of information
from clinical narratives and laboratory outcomes to imaging data
and individual patient histories. While traditional methods of
mining and analyzing these datasets have been laborious and
error-prone, requiring manual scrutiny and specialized expertise,
recent breakthroughs in natural language processing (NLP) and
time-series analytics have revolutionized the process (Esteva et al.,
2019). For example, Kehl et al. (2019) demonstrated the successful
application of NLP techniques like text classification and entity
recognition for the automatic extraction of oncologic outcomes
from EHRs. Moreover, the application of time-series analysis has
yielded valuable insights for evidence-based clinical decisions,
especially in monitoring patient health and forecasting disease
trajectories. When applied to TBM (Malo et al., 2021), this method
enables the real-time monitoring of patient vitals, pharmacological
responses, and disease advancement, thereby facilitating more
individualized and prompt healthcare interventions.

6. Limitations of the application of
machine learning in TBM

Although the past decade has seen increasing research on
machine learning-based diagnostic tools for TBM, the field
remains relatively nascent. Applying machine learning to the
diagnosis of TBM presents several challenges, encompassing data
collection, model training, diagnostic accuracy, and practical
clinical implementation. The majority of predictive models have
been validated using retrospective data, but only a few have been
trained and tested on prospective data sets. Another crucial issue is
the clinical heterogeneity of TBM, which manifests in symptoms
ranging from mild headaches to severe neurological damage
(Garg, 2010). This complexity complicates the task of machine
learning models in capturing a comprehensive array of variables
and clinical presentations that influence disease progression.
Consequently, high-quality, and reliable machine learning models
necessitate validation through large-scale, multi-center data that
span different healthcare systems. Such validation not only
enhances model accuracy but also deepens our understanding
of the mechanisms of TBM and various prognostic factors.
Additionally, data heterogeneity arising from different regions,
hospitals, or equipment can introduce variations that may affect
the model’s generalizability. However, the scarcity of such multi-
center data, combined with the inherent data heterogeneity,
currently limits the model’s generalizability and precision. Lastly,
it’s worth noting that many emerging machine learning-based TBM
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diagnostic tools and algorithms are patented or commercialized,
resulting in opacity regarding their specific algorithms and datasets.
This lack of transparency hampers comprehensive and rigorous
evaluations, further impeding advancements in diagnostic accuracy
research.

7. Conclusion

This review provides a thorough overview of state-of-the-
art diagnostic technologies and machine learning methodologies
for the diagnosis of TBM. Our principal aim is to encapsulate
extant research and scrutinize its application in the domain
of TBM. For the purpose of this review, we bifurcate the
research landscape into two primary categories: machine learning
approaches and classical statistical methods. In the domain
of machine learning, the literature is further segmented into
categories of supervised and unsupervised learning, featuring
key algorithms like SVM, linear discriminant analysis (LDA),
k-nearest neighbors (KNN), ANN, boosting algorithms, RF, and
k-means clustering. Conversely, traditional statistical methods
mainly involve linear regression, logistic regression, chi-square
testing, and CART. Overall, SVM is identified as the most widely
applied machine learning tool for TBM diagnosis, whereas logistic
regression remains the statistical method of choice. In recent years,
machine learning has showcased enormous potential for elevating
the diagnosis and treatment of TBM, outclassing traditional
methods by excelling in the analysis of intricate biomedical data,
including genomic sequencing, metabolomics, and proteomics.
Future studies could explore integrating various machine learning
algorithms into robust ensembled models and empirically validate
these against human benchmarks in controlled trials. Additionally,
assessing the integration of traditional diagnostics like MRI with
emerging machine learning techniques offers a promising avenue
for a more holistic diagnostic approach. Such advancements
could significantly improve both TBM diagnosis and treatment,
ultimately enhancing patient outcomes.
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