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Research progress of novel 
bio-denitrification technology in 
deep wastewater treatment
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Excessive nitrogen emissions are a major contributor to water pollution, posing a 
threat not only to the environment but also to human health. Therefore, achieving 
deep denitrification of wastewater is of significant importance. Traditional biological 
denitrification methods have some drawbacks, including long processing times, 
substantial land requirements, high energy consumption, and high investment 
and operational costs. In contrast, the novel bio-denitrification technology 
reduces the traditional processing time and lowers operational and maintenance 
costs while improving denitrification efficiency. This technology falls within the 
category of environmentally friendly, low-energy deep denitrification methods. 
This paper introduces several innovative bio-denitrification technologies and their 
combinations, conducts a comparative analysis of their denitrification efficiency 
across various wastewater types, and concludes by outlining the future prospects 
for the development of these novel bio-denitrification technologies.
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1. Introduction

With the ongoing advancements in industrialization and urbanization, excessive nitrogen 
emissions from industrial, domestic, and agricultural wastewater have resulted in environmental 
issues like eutrophication, unpleasant odors, and deterioration of water quality in surface bodies 
(Qu et al., 2019; Ceulemans et al., 2023; Xia and Yan, 2023). The primary denitrification methods 
encompass physicochemical and biological approaches. The physicochemical method mainly 
involves ion exchange, adsorption, chemical precipitation, and redox reactions, often requiring 
the addition of adsorbents, catalysts, and ion exchangers to achieve nitrogen removal. However, 
adsorption is sensitive to water quality variations, and adsorbents have a limited lifespan. Ion 
exchangers can lead to secondary pollution, while the use of catalysts increases treatment 
expenses (Soldatov et al., 2007; Tarpeh et al., 2017).

In contrast, the bio-denitrification process has gained popularity due to its cost-effectiveness, 
minimal by-product generation, dependable operation, and environmental compatibility 
(Zhang et  al., 2016). Traditional bio-denitrification technology effectively treats nitrogen-
containing wastewater through bio-nitrification (Eq. 1) and bio-denitrification (Eq. 2) processes. 
However, it necessitates aeration and the addition of organic carbon sources, which not only 
increase costs but can also contribute to secondary pollution, contradicting the low-carbon 
paradigm (Sanjrani et al., 2022). Consequently, the research and application of innovative 
bio-denitrification technologies hold significant importance for environmental preservation, 
ecological equilibrium, wastewater reclamation, energy conservation, and addressing emerging 
environmental challenges. This paper will introduce several novel bio-denitrification 
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technologies and their integration processes, assess their 
denitrification performance, and summarize their research 
advancements in the field of wastewater denitrification.

 NH O H H O NO
4 2 2 32 2
+ + −+ → + +  (1)

 2 10 2 43 2 2NO H electron donor OH H O N
− −+ ( ) → + +  (2)

2. Novel bio-denitrification process

2.1. Novel bio-denitrification technology

2.1.1. Short-cut nitrification denitrification
Voets et  al. (1975) made a pivotal discovery regarding the 

accumulation of nitrite (NO2
−-N) during the nitrification process and 

introduced the concept of short-cut nitrification denitrification 
(SCND) technology. The fundamental principle involves the 
conversion of ammonia nitrogen (NH4

+-N) into NO2
−-N through 

controlled reaction parameters (Eq. 1), followed by direct reduction 
of NO2

−-N to nitrogen (N2) through denitrification (Eq. 2; Huang, 
2021). This innovation results in significant savings, reducing aeration 
requirements by 25% and organic carbon source needs by 40% when 
compared to traditional bio-denitrification processes (Kornaros et al., 
2010). The key to SCND technology lies in regulating the nitrification 
process to stop at the nitrite stage.

It has been demonstrated that the control of reaction temperature, 
pH, dissolved oxygen (DO) concentration, and sludge age can 
effectively modulate the growth conditions of ammonia-oxidizing 
bacteria (AOB) and nitrite-oxidizing bacteria (NOB), thereby 
facilitating NO2

−-N accumulation (Zhu et al., 2008). Currently, SCND 
technology has found practical applications in NH4

+-N removal from 
landfill leachate (Zhang et al., 2020), sludge digestion liquid (Malamis 
et al., 2014), and biogas slurry (Chang et al., 2022; Chen et al., 2022), 
yielding significant results. In a study conducted by Chang et  al. 
(2022) investigating the impact of the carbon-nitrogen ratio (C/N) on 
biogas slurry treatment within an activated sludge SCND system, it 
was observed that even with a reduced C/N ratio, NH4

+-N and total 
nitrogen (TN) removal efficiencies could reach approximately 90%.

 4NH 1.5+ + 2O →2 2 2H NO H O+ −+ +  (3)

 2 c2 (ele tron dono )6 rNO H− + →2 2 2 2OH H N− + +O  (4)

2.1.2. Anaerobic ammonium oxidation
Anaerobic ammonium oxidation (ANAMMOX) technology 

involves the direct conversion of NH4
+-N to N2 under stringent 

anaerobic conditions, facilitated by anaerobic ammonia-oxidizing 
bacteria (AnAOB) utilizing NO2

−-N as the electron acceptor (Eq. 5; 
Kuenen, 2008). Therefore, ANAMMOX is well-suited for treating 
wastewater containing both NH4

+-N and NO2
−-N. Notably, electron 

acceptor NO2
−-N can also be generated through short-cut nitrification 

(Eq. 3), making partial short-range nitrification an ideal precursor 
process for anaerobic ammonia oxidation (Wang J., 2021). The living 
conditions for AnAOB require strict anaerobic conditions, which 
contribute to energy savings by reducing aeration requirements. 
Moreover, the ANAMMOX process operates as an autotrophic 
process, eliminating the need for additional organic carbon sources, 
rendering it particularly suitable for denitrification in wastewater with 
low C/N ratios (Morales et al., 2015; Chini et al., 2019). Additionally, 
the stable pH levels maintained during ANAMMOX can preserve 
alkalinity, while AnAOB exhibits extended generation cycles and 
generates less sludge, substantially reducing the cost associated with 
excess sludge treatment and disposal (Jia et al., 2014; Ma et al., 2016).

 4NH +1.3+ NO H2 0 13
− ++ . 30.066HCO− →+

 1 02 0 066 2 032 2 0 5 0 15 2. . .. .N CH O N H+ + 36O 0.2+ NO−
 (5)

2.1.3. Simultaneous nitrification and 
denitrification

Simultaneous nitrification and denitrification (SND) technology 
involves the bio-denitrification process where nitrification and 
denitrification reactions take place simultaneously in both space and 
time. SND relies on the generation of an oxygen concentration 
gradient due to oxygen diffusion limitations, resulting in the formation 
of hypoxic microenvironments within the core of sludge flocs or 
within biofilms. These microenvironments support the coexistence of 
aerobic and hypoxic metabolic activities (Layer et  al., 2020). This 
technology allows nitrification and denitrification reactions to occur 
in the same spatial domain, significantly reducing the required reactor 
volume (Third et al., 2005; Masoudi et al., 2018). Additionally, SND 
imposes minimal demands for aeration and organic carbon, resulting 
in a reduction of approximately 30% in sludge production compared 
to traditional bio-denitrification processes (Ma et al., 2017; Zhao et al., 
2017). Furthermore, there is no need for sludge reflux, and the 
alkalinity consumed during the nitrification process can 
be replenished by the alkalinity generated during denitrification (Ling, 
2020). This not only maintains reactor pH stability but also reduces 
costs and optimizes process operations.

The core of SND technology is the control of DO concentration, 
which can be categorized into aerobic, low oxygen, and ultra-low DO 
SND denitrification (Ling, 2020; Xiang, 2020). Temperature, pH, and 
the C/N ratio are also pivotal factors influencing SND technology (Ling, 
2020). It’s worth noting that autotrophic bacteria have a considerably 
slower growth and reproduction rate in comparison to heterotrophic 
bacteria. In long-term operation, heterotrophic denitrifying bacteria 
tend to become the dominant microbial community, reducing the 
significance of autotrophic nitrifying bacteria and subsequently affecting 
the denitrification effectiveness of SND (Jia et al., 2020).

2.1.4. Heterotrophic nitrification-aerobic 
denitrification

Robertson et  al. (1985) achieved the successful isolation of a 
denitrifying Paracoccus bacterium, a heterotrophic microorganism 
with the unique ability to directly convert ammonia nitrogen in 
wastewater into gaseous nitrogen. These bacteria possess both 
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heterotrophic aerobic nitrification and heterotrophic aerobic 
denitrification functions, enabling them to utilize organic matter to 
convert NH4

+-N, NO2
¯-N, and nitrate nitrogen (NO3

¯-N) into either 
organic nitrogen or gaseous nitrogen. In recent years, it has become 
evident that such functional microorganisms are widespread in 
nature, including species like Paracoccus pantotrophus, Acinetobacter 
sp., Phytophthora sp., Diaphorobacter sp., Alcaligenes faecalis, among 
others (Robertson et al., 1985; Xian et al., 2016; Jia et al., 2019). This 
denitrification method is known as heterotrophic nitrification aerobic 
denitrification (HN-AD; Robertson and Kuenen, 1990).

The HN-AD process, akin to SND, offers structural integration, 
reduced footprint, and simplified operational management. Moreover, 
heterotrophic microorganisms exhibit higher growth rates and 
denitrification capabilities (Yang Y. et al., 2017; Zhang H. H. et al., 
2019; Zhang M. Y. et al., 2019), bestowing HN-AD technology with 
the advantages of rapid start-up, stable operation, and resilience to 
oxygen and organic substrates. However, the reaction process requires 
a higher organic carbon source and aeration rate compared to 
traditional biological denitrification. Therefore, it is most suitable for 
denitrification and decarbonization treatment of wastewater with a 
high C/N ratio, albeit with increase energy consumption and 
operational costs (Chen et al., 2014; Huang et al., 2021).

2.1.5. Granular sludge
Granular sludge is generally considered to be granular activated 

sludge that gradually forms a stable structure after condensing into 
flocs by free bacteria (Sarma et al., 2017). There are five theoretical 
mechanisms for its formation, including the filamentous bacteria 
hypothesis, selective pressure-driven hypothesis, extracellular polymer 
hypothesis, microbial self-aggregation hypothesis, and crystal nucleus 
hypothesis (Li, 2020). Depending on whether microorganisms require 
oxygen for growth, they can be divided into anaerobic granular sludge 
and aerobic granular sludge (AGS), with AGS being the more 
commonly used. Mature AGS typically exhibits an orange-yellow 
color, a smooth surface, and a spherical or ellipsoidal shape, with 
particle sizes ranging from 0.5 to 1.5 mm (Moy et  al., 2002). The 
structure of AGS is dense and regular, with strong settling capabilities. 
Thanks to microorganisms’ inherent self-solidification properties, 
AGS maintains its structural integrity even under dynamic conditions, 
forming agglomerated organisms without swelling or negatively 
affecting water quality (Mota et al., 2014). This characteristic enables 
AGS to efficiently remove high concentrations of toxic organic 
substances, nitrogen, and phosphorus (Kishida et al., 2009; He et al., 
2020; Chen H. Y. et al., 2023).

In practical applications, the key to this technology lies in the 
domestication and cultivation of AGS. Factors significantly affecting 
AGS formation and performance include fluid shear force, COD load, 
DO, settling time, particle size, temperature, hydraulic retention time, 
sludge age, and the presence or absence of induced nuclei (Pishgar 
et al., 2020).

2.1.6. Other bio-denitrification technologies
In addition to the aforementioned technologies, novel 

bio-denitrification technologies also encompass sulfur autotrophic 
denitrification (Song et al., 2023), iron autotrophic denitrification 
(Zhao et al., 2022), hydrogen autotrophic denitrification (Dong et al., 
2021), and other methods. While these autotrophic bio-denitrification 
technologies offer numerous advantages over heterotrophic 

bio-denitrification processes, such as conserving organic carbon 
sources, being suitable for treating low C/N ratio wastewater, and 
reducing sludge production, they do present some practical challenges 
in their application in wastewater treatment.

The research on sulfur autotrophic denitrification technology 
traces its origins back to the 1970s. Compared to other autotrophic 
denitrification methods, the reduced sulfides (S0, S2−, Na2S2O3) used 
as electron donors are cost-effective and readily available, less sensitive 
to water quality variations, and easy to utilize. Moreover, due to the 
inclusion of S oxidation and N reduction in the sulfur autotrophic 
denitrification process, there is significant potential for waste resource 
utilization (Kosgey et  al., 2022). However, the sulfur autotrophic 
denitrification reaction generates H+, lowers the system’s pH, and 
produces a substantial amount of environmentally polluting sulfate 
that must be  controlled. High concentrations of sulfides can also 
impact microbial activity, hinder autotrophic denitrification efficiency, 
and especially affect the conversion of nitrate to nitrite (Beristain et al., 
2006). Some studies have combined sulfur autotrophic denitrification 
with microbial fuel cell technology to achieve simultaneous organic 
matter removal and electricity generation. However, the deposition of 
elemental sulfur can lead to electrode poisoning or scaling, posing 
challenges to the further advancement of this technology (Lin et al., 
2018; Wang and He, 2020).

Iron autotrophic denitrification technology is an autotrophic 
bio-denitrification method that employs Fe0 or Fe2+ as electron 
donors (Zhao et  al., 2022). Fe (II) is widely distributed in the 
environment and is cost-effective, but it presents challenges in 
maintaining system stability for continuous operation. Fe0, on the 
other hand, offers superior electron-donating potential compared to 
Fe (II), leading to a significant reduction in the redox potential of 
denitrification sludge and improved system stability (Zhang 
Y. H. et al., 2014; Yu Y. et al., 2022). Currently, nano zero-valent iron 
is a key area of research in the field of iron autotrophic denitrification 
(Mofradnia et al., 2019). Various factors influence iron autotrophic 
denitrification, including temperature, pH, and the Fe/N ratio 
(Johnson et  al., 2007; Oshiki et  al., 2013; Yu Y. et  al., 2022). pH 
regulation is particularly impactful, although it can increase the 
operational complexity of the iron autotrophic denitrification 
process. Moreover, the understanding of the denitrification process 
mechanism in this technology remains somewhat limited, especially 
regarding the relationship between its biological and chemical 
aspects (Yu Y. et al., 2022). Additionally, the microbial population 
and metabolic pathways in the iron autotrophic denitrification 
process are not yet fully understood, and further exploration is 
required to comprehend the reaction mechanism between iron ions 
and other compounds.

Hydrogen autotrophic denitrification involves the use of hydrogen 
bacteria to denitrify and remove nitrogen using H2 as an electron 
donor (Dong et  al., 2021). It boasts advantages such as high 
denitrification efficiency, rapid reaction rates, environmental 
cleanliness, and the ease of removing residual H2 from water without 
requiring additional treatment. However, there are safety concerns 
associated with the flammability and explosiveness of H2 when mixed 
with air, leading to transportation risks and elevated operation and 
maintenance costs. Additionally, the low solubility of H2 in water, with 
only 1.6 mg H2 dissolved per liter of water at 20°C, results in low 
utilization rates (30–50%). These factors have restricted the 
widespread adoption of this technology, and current research on 
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hydrogen autotrophic denitrification remains largely in the laboratory 
stage (Zhang Y. B. et al., 2014).

2.2. Novel bio-denitrification coupling 
technology

In recent years, most researchers have coupled new biological 
denitrification technologies to maximize their individual advantages 
and compensate for the limitations of independent use. This has 
resulted in the development of economically and environmentally 
friendly bio-denitrification technologies that hold great promise. 
Examples include partial short-cut nitrification ANAMMOX 
(PN-ANAMMOX; Qiu et al., 2021; Wang Z., 2021; Shang et al., 2023; 
Yuan et  al., 2023), ANAMMOX-SND (Yu Y. et  al., 2022), sulfur 
autotrophic-iron autotrophic denitrification (Yang et al., 2023), iron 
autotrophic-hydrogen autotrophic denitrification (Liang et al., 2022), 
and bioelectrochemical denitrification (Huang et  al., 2020a; 
Prarunchaya et al., 2021). In this context, the focus will primarily 
be  on the short-range nitrification anaerobic ammonia oxidation 
process and the bioelectrochemical system.

2.2.1. PN-ANAMMOX
PN-ANAMMOX is a novel coupled biological denitrification 

process discovered at a waste leachate treatment plant in the 
Mechernich region of Germany (Hippen et al., 1997). It combines the 
ANAMMOX process with the short-cut nitrification process, often 
uniting them within a single reactor (Lu et al., 2012; Wang Z., 2021). 
Short-cut nitrification entails the control of ammonia oxidation to 
the nitrite stage (Eq. 3), ensuring a continuous and stable supply of 
nitrite, the essential oxidation substrate for ANAMMOX. The ideal 
NO2

−-N to NH4
+-N ratio is recognized as 1.3 (Eq. 3), though practical 

applications typically achieve a ratio of approximately 1, reflecting the 
challenge of controlling the short-cut nitrification process (Wang Z., 
2021). In comparison to traditional bio-denitrification, short-cut 
nitrification inherently reduces aeration energy consumption, while 
AnAOB necessitates strict hypoxia. Consequently, this process can 
save nearly 60% of the energy demand for aeration compared to 
traditional bio-denitrification (Zaborowska et  al., 2018). The 
estimated energy consumption for traditional bio-denitrification 
stands at approximately 2.4 kW·h·kg−1, whereas the energy 
consumption of the PN-ANAMMOX process is approximately 
1.0 kW·h·kg−1 (Figueroa et al., 2012; Liang et al., 2016). Furthermore, 
both short-cut nitrification and ANAMMOX are autotrophic 
processes, eliminating the need for additional organic carbon sources, 
making them highly suitable for denitrifying wastewater with low 
C/N ratios. Additionally, PN-ANAMMOX significantly reduces 
sludge production by around 90% (Morales et al., 2015; Zaborowska 
et al., 2018; Chini et al., 2019).

However, it’s important to note that the initiation and 
domestication of anaerobic ammonia-oxidizing bacteria are relatively 
time-consuming. AOB and NOB often coexist, and the removal of 
NOB from the system is one of the challenges of this process. 
Moreover, the denitrification efficiency of PN-ANAMMOX is 
generally influenced by process parameters such as DO concentration, 
COD concentration, heavy metals, temperature, pH value, and sludge 
age, contributing to the complexity of its operation (Lotti et al., 2012; 
Zuo et al., 2020).

2.2.2. Bioelectrochemical systems
Bioelectrochemical systems (BESs) have emerged in recent 

years as a technology that combines microbiology with 
electrochemistry to achieve wastewater treatment and energy 
recovery (Liu and Logan, 2004). BESs rely on electrically active 
microbial catalytic electrodes, where oxidation reactions occur at 
the anode and reduction reactions happen at the cathode (Chang 
et  al., 2016; Huang, 2021). Due to its sustainability (Yang 
W. L. et  al., 2017), strong pollutant removal capability (Cao 
M. J. et al., 2020), and low sludge production (Wang and He, 2020), 
it has become a new type of low-energy-consumption water 
treatment technology that has attracted significant attention 
(Nguyen and Babel, 2022). Currently, many studies have used BESs 
to enhance various bio-reaction processes, including the removal 
of pollutants like nitrogen (Cecconet et  al., 2020), phosphorus 
(Elmaadawy et al., 2020), organic matter (Cao et al., 2021), and 
heavy metals (Cao L. B. et al., 2020) that are challenging to degrade. 
Some studies have also employed BESs to improve denitrification 
in low C/N ratio wastewater treatment. The enhancement 
mechanisms involve the positive effects of bioelectricity on 
microbial functional enzymes and genes, as well as the direct 
provision of electrons by bioelectricity to the denitrification 
process, achieving electro autotrophic denitrification (Huang et al., 
2020a, 2022). In addition, for denitrification in wastewater 
containing high concentrations of hard-to-degrade organic matter, 
BESs can break down these complex compounds into simpler 
organic matter, providing an organic carbon source for 
denitrification (Huang et al., 2020b). However, it’s important to 
note that BESs are primarily used for medium to low concentration 
nitrogen loads, and this technology is currently mainly under 
laboratory research, with the potential to become a mainstream 
nitrogen removal process in the future.

3. The denitrification performance

3.1. The denitrification performance of 
novel bio-denitrification technology

Section 2.1 introduces several emerging biological denitrification 
technologies while providing brief explanations of their application 
scope, advantages, disadvantages, and the factors influencing each 
technology. Among these aspects, the denitrification performance is 
a central concern for these innovative denitrification technologies. 
Table 1 presents the performance data related to nitrogen and carbon 
removal during the application of some of these novel biological 
denitrification technologies.

As shown in Table 1, these novel bio-denitrification technologies 
have been employed in various wastewater treatment processes, 
including membrane bioreactors (Chang et al., 2022; Chen et al., 2022) 
and biofilters (Song et al., 2023). Remarkably, these technologies are 
not limited to synthetic wastewater treatment (Francesca et al., 2021; 
Chang et al., 2022; Zhao et al., 2022; Jiang et al., 2023; Roumi and 
Debabrata, 2023; Sun et al., 2023) but have also demonstrated their 
effectiveness in treating practical wastewater sources such as landfill 
leachate (Zhang et al., 2020, 2023), biogas slurry (Chen et al., 2022), 
urban domestic sewage (Dong et al., 2021; Li Y. et al., 2023), secondary 
effluent from sewage treatment plants (Song et al., 2023), aquaculture 
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TABLE 1 The denitrification performance of a novel bio-denitrification technology.

Bio-denitrification 
technology

Denitrification system Wastewater Average nitrogen 
load

Influent C/N 
ratio

Average nitrogen and carbon 
removal efficiency

Ref

COD NH4
+-N /NO3

¯-N TN

SCND

Activated sludge Landfill leachate 100 mg NH4
+-N·L−1 4.0–8.0 89% 99% 82% Zhang et al. (2020)

Membrane aerated biofilm reactor Synthetic wastewater 62 mg NH4
+-N·L−1 4.0 97% 96% 72% Chang et al. (2022)

Moving-bed biofilm reactor Synthetic wastewater 48 mg NH4
+-N·L−1 3.6 - - 81–88% Francesca et al. (2021)

Fixed biofilm-activated sludge (IFAS) Biogas slurry
400–800 mg NH4

+-N·L−1 11.7 - 94% 92%
Chen et al. (2022)

600–800 mg NH4
+-N·L−1 6.2 - 91% 86%

ANAMMOX
Activated sludge Pharmaceutical wastewater 100 mg NH4

+-N·L−1 1.3 - - 87% Chen H. Y. et al. (2023)

Expanded granular sludge bed Synthetic inorganic wastewater 1,200 mg N·L−1 1.1 - - 95% Jiang et al. (2023)

SND

Fixed bed folded plate bioreactor Mariculture wastewater 120 mg NH4
+-N·L−1 4.0 - 99% - Guo et al. (2023)

New air lift bioreactor Urban sewage 40 mg NH4
+-N·L−1 3.8 - - >90% Li Y. et al. (2023)

Composite sequencing batch biofilm reactor High salinity wastewater 40 mg NH4
+-N·L−1 10 96% 99% 91% Li M. et al. (2023)

Moving bed biological reactor Synthetic wastewater 500 mg NH4
+-N·L−1 1.28 - 85–90% 91%

Roumi and Debabrata 

(2023)

HN-AD
Activated sludge

Chemical wastewater and pig 

farming wastewater
200–1,600 mg NH4

+-N·L−1 3, 5, 10, 15, 20, 25 - >98% - Chen P. P. et al. (2023)

Activated sludge High salinity wastewater 94 mg NH4
+-N·L−1 5–15 - 98% - Huang et al. (2023)

AGS Dehydrated sludge particles as inoculant
Artificially synthesized urban 

sewage
11 mg NH4

+-N·L−1 19 90% 95% 70% Sun et al. (2023)

Other

Sulfur autotrophic denitrification filter
Secondary effluent from sewage 

treatment plant
12 mg NO3

¯-N·L−1 1.8 - 95% - Song et al. (2023)

sulfur autotrophic denitrification filter Landfill leachate 125 mg NO3
¯-N·L−1 0.1 - - 90% Zhang et al. (2023)

Hydrogen autotrophic membrane bioreactor Domestic wastewater 80 mg NO3
¯-N·L−1 2 - 88% - Dong et al. (2021)

FeS2 autotrophic denitrification filter Synthetic wastewater 20 mg NO3
¯-N·L−1 0.5 - 90% - Zhao et al. (2022)
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wastewater (Chen H. Y. et al., 2023; Guo et al., 2023), and chemical 
wastewater (Chen H. Y. et al., 2023; Chen P. P. et al., 2023). These novel 
bio-denitrification technologies exhibit versatility in handling a wide 
range of nitrogen concentrations, with initial nitrogen loads ranging 
from as high as 1,600 mgN·L−1 (Chen P. P. et al., 2023) to as low as 11 
mgN·L−1 (Sun et al., 2023). Importantly, they consistently achieve 
robust denitrification effects, with denitrification efficiencies 
surpassing 70%, and in most cases, approaching 100%.

As shown in Table  1, autotrophic biological denitrification 
technology is primarily employed for the advanced treatment of low 
C/N ratio wastewater and has demonstrated significant advantages. 
Anaerobic ammonia oxidation technology, sulfur autotrophic, 
hydrogen autotrophic, and iron autotrophic biological denitrification 
technologies all exhibit treatment efficiencies exceeding 85% when 
applied to wastewater with a C/N ratio less than 3 (Dong et al., 2021; 
Zhao et al., 2022; Chen H. Y. et al., 2023; Jiang et al., 2023; Song et al., 
2023; Zhang et al., 2023). Even in the study by Zhao et al. (2022), 
where iron autotrophic biological denitrification technology was 
employed to treat wastewater with an extremely low C/N ratio of 0.5, 
a denitrification efficiency of 90% was achieved. The widespread use 
of these autotrophic bio-denitrification technologies has the potential 
to effectively reduce chemical costs (related to organic carbon sources) 
and expenses associated with excess sludge treatment, aligning with 
the global low-carbon concept that has gained prominence in 
recent years.

3.2. The denitrification performance of 
novel bio-denitrification coupling process

Section 2.2 introduces several novel bio-denitrification 
coupling technologies, and Table 2 provides data on denitrification 
and carbon removal performance during the application of selected 
coupling denitrification technologies. As demonstrated in Table 2, 
the actual wastewater treated by these new biological denitrification 
coupling processes includes landfill leachate (Wang Z., 2021), 
domestic wastewater (Huang et al., 2020a; Prarunchaya et al., 2021; 
Qiu et al., 2021; Liang et al., 2022; Shang et al., 2023; Yang et al., 
2023; Yuan et al., 2023), and chemical wastewater (Wang et al., 
2022; Yu D. Y. et al., 2022; Jia et al., 2023), closely resembling the 
wastewater types addressed by the new biological denitrification 
technologies in Table 1. PN-ANAMMOX technology has emerged 
as the most prevalent coupling method in recent years, showcasing 
its versatility in handling a wide range of nitrogen loads and 
consistently achieving robust denitrification efficiency exceeding 
90% (Qiu et  al., 2021; Wang Z., 2021; Shang et  al., 2023; Yuan 
et al., 2023).

The granular sludge technology primarily involves introducing 
granular sludge into the system, which, while shortening the 
reactor’s startup time, does not exhibit high adaptability or 
resistance to sewage impact (Sun et  al., 2023). Consequently, 
researchers have explored its combination with other 

TABLE 2 The denitrification performance of a novel bio-denitrification coupling technology.

Novel bio-
denitrification coupling 
technology

Wastewater Average 
nitrogen 
load

Influent 
C/N ratio

Average nitrogen and carbon 
removal efficiency

Ref

COD NH4
+-N/ 

NO3
¯-N

TN

PN-ANAMMOX Landfill leachate
1,454 mg NH4

+-

N·L−1
3.0 - 93% - Wang Z. (2021)

PN-ANAMMOX
Rural domestic 

sewage

121 mg NH4
+-

N·L−1
2.0 86% - 90% Yuan et al. (2023)

PN-ANAMMOX Urban sewage 60 mg NH4
+-N·L−1 2.8 >76% - 92% Qiu et al. (2021)

PN-ANAMMOX Domestic sewage 50 mg NH4
+-N·L−1 3.0 - 78% - Shang et al. (2023)

SND-ANAMMOX
Collagen sleeve 

wastewater

79–208 mg NH4
+-

N·L−1
1.0–1.8 - 94% 80% Yu Y. et al. (2022)

Hydrogen autotrophic 

denitrification in 

bioelectrochemical systems

Synthetic 

wastewater
20 mg NO3

¯-N·L−1 1.0 - 74% 54%
Prarunchaya et al. 

(2021)

SND in the multi-anode microbial 

fuel cells

Synthetic 

wastewater
64 mg NH4

+-N·L−1 3.5 94% - 71%
Huang et al. 

(2020a)

Heterotrophic nitrification aerobic 

denitrification coupled AGS

Synthetic petroleum 

wastewater
65 mg NH4

+-N·L−1 1.5–12.3 - 92% 80% Wang et al. (2022)

Enhanced iron and hydrogen 

autotrophic denitrification by 

biofilm coupled microelectrolysis of 

iron scrap

Synthetic 

wastewater
28 mg NH4

+-N·L−1 19 91% 93% 80% Liang et al. (2022)

Sulfur autotrophic coupled iron 

autotrophic denitrification system

Synthetic 

wastewater
50 mg NO3

¯-N·L−1 0 - - 90% Yang et al. (2023)

Anaerobic nitrification coupled 

SND

Pharmaceutical 

wastewater

200 mg NH4
+-

N·L−1
52.5 97% 96% 85% Jia et al. (2023)
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bio-denitrification technologies to cultivate specific granular 
sludge for wastewater treatment (Wang et al., 2022). However, the 
TN removal efficiency of this process has proven to be less than 
ideal. For instance, in a study by Sun et al. (2023), isolated AGS was 
applied to treat artificially synthesized urban wastewater, achieving 
a 95% removal efficiency for ammonia nitrogen, but only a 70% 
removal efficiency for TN. Similarly, Wang et al. (2022) utilized 
“heterotrophic nitrification aerobic denitrification” in conjunction 
with AGS to treat synthetic petroleum wastewater, attaining a 92% 
removal efficiency for ammonia nitrogen, while the TN removal 
efficiency reached only 80%. Therefore, whether used 
independently or in conjunction with other technologies, its TN 
removal efficiency falls short of that for ammonia nitrogen. Further 
investigation is needed to better understand the underlying reasons 
and explore potential enhancement measures.

Transportation safety risks associated with H2 limit the 
application of hydrogen autotrophic denitrification (Zhang 
Y. H. et al., 2014). However, BES with external electric fields can 
produce hydrogen in situ, providing a local source of H2 for 
hydrogen autotrophic denitrification (Prarunchaya et al., 2021). 
Nevertheless, the extra electricity needed for this coupled 
technology increases its operational costs, to some extent, 
restricting its large-scale practical application. Additionally, sulfur 
autotrophic denitrification faces challenges such as low pH values 
and secondary pollution due to sulfate by-products. The sulfur 
autotrophic coupled with iron autotrophic denitrification system 
effectively reduces sulfate by-products and exhibits robust 
denitrification performance (Yang et al., 2023).

4. Application prospect

4.1. Upgrading and renovation of urban 
sewage treatment plants

The novel bio-denitrification technology represents a promising 
sewage treatment approach with broad engineering applications. It 
effectively addresses the challenges associated with traditional 
denitrification processes, such as lengthy processing, substantial land 
requirements, high energy consumption, and significant financial 
investments (Zhang et  al., 2022). In comparison to conventional 
biological denitrification methods, this innovative technology offers 
superior efficiency and adaptability. It can cater to the treatment 
requirements of various wastewater types and achieve efficient deep 
denitrification in low C/N ratio wastewater without the need for 
additional external carbon sources. Therefore, in light of current 
domestic and international policies aimed at improving effluent 
standards in urban sewage treatment plants, the novel 
bio-denitrification technology emerges as a favorable 
low-carbon choice.

4.2. Coupling with other technologies

The novel bio-denitrification technology not only compensates 
for the limitations of independent use through self-coupling but 
also pairs effectively with non-biological methods to provide 
reference parameters that are challenging to regulate in practical 

engineering. For instance, in treating highly concentrated toxic and 
hazardous wastewater, physical and chemical techniques such as 
adsorption, membrane separation, electrochemistry, and oxidation–
reduction can be employed as pretreatment. Subsequently, they can 
be  combined with biological denitrification technology for 
advanced treatment, thereby further expanding the practical 
application range and improving sewage treatment efficacy. The 
greater challenge for the future is to explore low-energy, cost-
effective technologies while maximizing process coupling to 
overcome constraints in real-world wastewater scenarios and enable 
large-scale applications. This development direction aligns with the 
low-carbon concept and introduces innovative ideas for 
environmentally friendly denitrification.

4.3. The reduction of greenhouse gases 
emission

Chan-Pacheco et al. (2021) explored the substantial potential 
of combining new bio-denitrification technologies for the 
purification and reduction of denitrification gas pollutants, 
including N2O, CH4, and H2S, which are presently significant 
greenhouse gases of global concern. This suggests that future 
research could delve into additional technology coupling 
approaches for greenhouse gas emission reduction, further 
contributing to the low-carbon concept.

4.4. Smart water management

In the practical application of novel bio-denitrification 
technologies, the cultivation and regulation of microbial communities 
are key factors for achieving efficient denitrification. However, 
challenges can arise, such as unstable environmental conditions or 
increased operating costs due to the need for adjustments in 
temperature, pH, and other parameters when cultivating these 
microorganisms. Therefore, it is worth considering the utilization of 
novel bio-denitrification technologies within the realm of smart water 
management, where the integration of automation, computer 
technology, and other advancements can standardize the 
domestication and cultivation of microorganisms. Simultaneously, 
this approach can help reduce the reliance on human resources and 
propel the advancement of new biological denitrification technology 
towards broader practical implementation.

5. Conclusion

This paper reviews the denitrification performance of novel 
bio-denitrification technologies and their combined applications, 
analyzes the recent research situation, and summarizes the future 
development direction and challenges of these technologies. Novel 
bio-denitrification technology is environmentally friendly and holds 
vast application prospects, aligning with the sustainable low-carbon 
development concept. With ongoing technological progress, novel 
bio-denitrification technologies are expected to expand their presence 
in various fields, contributing significantly to environmental 
protection and sustainable development.
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