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Q fever is a zoonotic disease caused by Coxiella burnetii, an obligatory intracellular 
bacterial pathogen. Like other intracellular pathogens, C. burnetii is able to 
survive and reproduce within host cells by manipulating host cellular processes. 
In particular, the relationship between C. burnetii infection and host autophagy, 
a cellular process involved in degradation and recycling, is of great interest due 
to its intricate nature. Studies have shown that autophagy can recognize and 
target intracellular pathogens such as Legionella and Salmonella for degradation, 
limiting their replication and promoting bacterial clearance. However, C. burnetii 
can actively manipulate the autophagic pathway to create an intracellular niche, 
known as the Coxiella-containing vacuole (CCV), where it can multiply and evade 
host immune responses. C. burnetii promotes the fusion of CCVs with lysosomes 
through mechanisms involving virulence factors such as Cig57 and CvpF. This 
review summarizes the latest findings on the dynamic interaction between host 
autophagy and C. burnetii infection, highlighting the complex strategies employed 
by both the bacterium and the host. A better understanding of these mechanisms 
could provide important insights into the development of novel therapeutic 
interventions and vaccine strategies against C. burnetii infections.
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1. Introduction

Coxiella burnetii, known as the causative agent of Q fever, is an exceptionally infectious, 
intracellular bacterium that is regarded as a potential bioterrorism agent due to its highly 
contagious nature (Shaw and Voth, 2019). This gram-negative bacterium was first identified in 
the 1930s and was later named after Dr. Frank Burnet and Dr. Cox who were the first to describe 
it (Minnick and Raghavan, 2011). C. burnetii infection in humans ranges from asymptomatic 
to acute or chronic Q fever. Asymptomatic cases are common, and the infection is often 
discovered incidentally through serological testing. Acute Q fever is characterized by sudden 
onset of flu-like symptoms such as high fever, headache, muscle aches, fatigue, and cough (Ullah 
et al., 2022). The diagnosis is confirmed by serological testing, culture, and PCR (Ullah et al., 
2022). In severe cases, acute hepatitis, pneumonia, or endocarditis may occur (Ullah et al., 2022). 
Chronic Q fever develops in less than 5% of infected individuals, usually in those with 
pre-existing heart valve defects, vascular disorders, or immunosuppression (Espana et al., 2020). 
Chronic Q fever can cause endocarditis, hepatitis, osteomyelitis, or vascular infections and 
requires prolonged antibiotic therapy and sometimes surgery (Espana et al., 2020).

Research on C. burnetii has increased in recent years, mainly due to its biodefense potential 
and its unique features as an intracellular pathogen. C. burnetii has a small genome (2.0 Mb) that 
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encodes for approximate 1,800 proteins, including type IV secretion 
system (T4SS), lipopolysaccharides, and other virulence factors (Beare 
et al., 2006; Abou Abdallah et al., 2022). It can survive and replicate 
within the phagolysosome of macrophages and modulate host cell 
pathways to avoid immune recognition and clearance. C. burnetii also 
has the ability to form a dormant spore-like form, known as a small 
cell variant, which has increased virulence and persistence in host 
tissues (Sandoz et  al., 2014). Understanding the molecular 
mechanisms of C. burnetii pathogenesis and host immune responses 
is crucial for developing effective treatment and prevention strategies.

2. Natural hosts of Coxiella burnetii

Coxiella burnetii is known to have a wide range of hosts, including 
mammals, birds, and arthropods, which serve as vectors for its 
transmission to human and animal populations (Celina and Cerny, 
2022). Many different species of ticks, fleas, and lice have been 
identified as potential vectors for C. burnetii, and transmission also 
occurs through direct contact with infected animals or ingestion of 
contaminated food products (Celina and Cerny, 2022). Ticks are 
considered the primary vector host for C. burnetii, with the most 
common species being Dermacentor variabilis and Rhipicephalus 
sanguineus (Cabrera et al., 2022; Celina and Cerny, 2022). These ticks 
are known to feed on many different mammalian and avian hosts, and 
they can transmit C. burnetii to their hosts through their saliva. Fleas 
are another vector host for C. burnetii, with the most common species 
being Xenopsylla cheopis, which is known to transmit the bacterium 
to humans in regions where it is endemic (Eldin et al., 2017). Lice have 
also been identified as potential vector hosts for C. burnetii, although 
their role in transmission is not well understood (Eldin et al., 2017).

3. T4SS of Coxiella burnetii

One of the key virulence factors of C. burnetii is the T4SS. This 
complex apparatus is used by the bacterium to deliver effector proteins 
directly into the host cell cytoplasm. The T4SS of C. burnetii plays a 
crucial role in host-pathogen interactions and is a major determinant 
of the bacterium’s ability to cause disease (Cordsmeier et  al., 2019; 
Thomas et al., 2020). The T4SS of C. burnetii is composed of multiple 
components, including the T4SS core complex, the coupling proteins, 
and the effector proteins. The T4SS core complex is the scaffold that 
supports the entire system, while the coupling proteins provide a bridge 
between the core complex and the effector proteins (Cordsmeier et al., 
2019). The effector proteins of C. burnetii, similar to those of Legionella 
species (Song et al., 2021, 2022; Fu J. et al., 2022), play a crucial role as 
key virulence factors by being transported into the host cell cytoplasm. 
Once inside, they strategically manipulate host cell functions to promote 
bacterial survival and replication (Huang et al., 2022; Zhang et al., 2022).

4. Host autophagy in Coxiella burnetii 
infection

Autophagy is a highly regulated process that involves the 
formation of double-membraned vesicles called autophagosomes, 
which sequester intracellular components and deliver them to the 
lysosomes for degradation (Aman et al., 2021). This process is crucial 

for maintaining cellular homeostasis and plays a role in various 
physiological and pathological conditions, including bacterial 
infections (Yuk et al., 2012; Aman et al., 2021). Several mechanisms 
by which autophagy influences bacterial infections have been 
identified. One important aspect is the selective targeting of bacteria 
by autophagy. Upon infection, autophagy can recognize and engulf 
intracellular bacteria within autophagosomes, leading to their delivery 
to lysosomes for degradation (Sharma et  al., 2018). This process 
restricts bacterial replication and spread, thereby limiting the severity 
of the infection. Examples of bacterial pathogens targeted by 
autophagy include Salmonella, Legionella, Mycobacterium tuberculosis, 
and Group A Streptococcus (Sharma et al., 2018; Thomas et al., 2020).

It is interesting to note that the relationship between host 
autophagy and C. burnetii infection is quite distinct from that of other 
pathogens mentioned above. The Coxiella-containing vacuole (CCV) 
formed during C. burnetii infection accumulates markers commonly 
found in autophagosomes and lysosomes such as Rab7 (Beron et al., 
2002), LC3 (Gutierrez et al., 2005), Beclin 1 (Vazquez and Colombo, 
2010) and LAMP-1/2 (Schulze-Luehrmann et al., 2016). Research has 
indicated that the stimulation of host autophagy, whether through 
nutrients deprivation or the administration of rapamycin, results in a 
rise in C. burnetii replication, viability, and CCV size (Gutierrez et al., 
2005), whereas inhibiting autophagy or preventing vacuole 
acidification impairs CCV development (Beron et  al., 2002; 
Latomanski and Newton, 2018). Essential autophagy genes, such as 
TFEB/TFE3, autophagy-related (ATG) proteins, and STX17, are 
required for the homotypic fusion process, resulting in the formation 
of large CCVs (Mcdonough et  al., 2013; Newton et  al., 2020; 
Padmanabhan et al., 2020; Lau et al., 2022). Therefore, C. burnetii 
benefits from the autophagy process and facilitates autophagosome-
lysosome fusion to establish its distinct parasitophorous niche 
for replication.

5. Host autophagy manipulation by 
T4SS substrates

Given the critical role of autophagy in facilitating infection, it is 
unsurprising that C. burnetii has developed intricate mechanisms to 
exploit and manipulate the host’s autophagic machinery for its own 
benefit. Romano et  al. (2007) reported that C. burnetii infection 
resulted in a postponement of the usual arrival of cathepsin D, a 
lysosomal protease, to the CCV, which was further extended by 
autophagy induction by starvation. Under normal circumstances, the 
cargo receptor p62/sequestosome 1 (SQSTM-1) and LC3 interact to 
facilitate the selection of cargo for degradation through autophagy, 
leading to the degradation of p62 and recycling of LC3 (Zhou et al., 
2023). The levels of p62 and LC3 were increased in macrophages in 
response to C. burnetii infection, implying that the pathogen plays a 
role in stabilizing the proteins (Winchell et al., 2014, 2018; Larson 
et  al., 2019). Furthermore, several genes involved in autophagy-
related pathways, specifically membrane trafficking and lipid 
metabolism, were upregulated in C. burnetii Nine Mile phase II 
(NMII) infected cells, while they were downregulated in 
NMI-infected cells (Kumaresan et al., 2022).

The mounting evidence suggests that the functional type IV 
secretion system (T4SS) of C. burnetii is essential for manipulating 
host autophagy. LC3 and p62 were present in the wild-type CCVs but 
not in CCVs containing T4SS mutants of C. burnetii (Winchell et al., 
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2014). In addition, upon activation of the T4SS 24 h post-infection, 
there was a subsequent recruitment of autophagosomes (Winchell 
et al., 2014). TFEB and TFE3 were both activated upon C. burnetii 
infection, as indicated by their movement from the cytoplasm to the 
nucleus (Padmanabhan et  al., 2020). The movement of the 
transcription factors was discovered to depend on the T4SS, as the 
nuclear movement of TFEB and TFE3 was reduced in a Dot/Icm 
mutant (Padmanabhan et al., 2020).

5.1. Coxiella vacuolar protein B (CvpB)

CvpB, also known as Cig2, is one of the key effectors delivered by 
the T4SS of C. burnetii. CpvB plays a crucial role in the modulation of 
host immune responses and the establishment of a favorable 
intracellular niche for C. burnetii replication. Studies have shown that 
CpvB is involved in multiple aspects of C. burnetii infection. One of 
its important functions is interfering with host autophagy. Newton, 
et al. identified mutants displaying a multi-vacuolar phenotype, all of 
which had a transposon insertion in the gene encoding the effector 
protein CvpB (Newton et  al., 2014). In comparison to vacuoles 
containing wild-type C. burnetii, the vacuoles formed by the cvpB 
mutant lacked detectable amounts of the autophagosome protein LC3 
(Newton et  al., 2014). Interestingly, when host autophagy was 
disrupted during infection by wild-type C. burnetii, a similar multi-
vacuolar phenotype was observed, resembling that of the cvpB mutant 
(Newton et al., 2014). CvpB, as well as CvpC, CvpD, and CvpE, label 
the CCV membrane and LAMP1-positive vesicles and deletion 
mutants for any of these substrates show impaired intracellular 
replication and CCV formation (Larson et al., 2015). Furthermore, 
CvpB is crucial for facilitating continuous fusion between the CCV 
and autophagosomes produced through selective autophagy (Kohler 
et  al., 2016). This interaction leads to the formation of an 
autolysosomal vacuole (Kohler et al., 2016). These findings strongly 
suggest that the functional CvpB protein plays a vital role in the 
interaction between the CCV and host autophagosomes.

Another study has reported that CpvB interacts with PI(3)P and 
phosphatidylserine (PS) on CCVs and early endosomes (Martinez 
et  al., 2016). CvpB disrupts the activity of a phosphatidylinositol 
5-kinase called PIKfyve, which plays a crucial role in regulating PI(3)
P metabolism (Martinez et al., 2016). Within CCVs, CvpB’s association 
with PI(3)P derived from early endosomes and autophagy pathways, 
along with the inhibition of PIKfyve, enhances the association of the 
autophagosomal machinery with CCVs (Martinez et  al., 2016). 
However, the molecular mechanisms by which CvpB prevents PIKfyve 
recruitment to PI(3)P-positive membranes remain unknown. Further 
research is required to elucidate the exact mechanisms underlying 
these observations and to fully understand the role of CvpB in 
manipulating PI(3)P metabolism, autophagy and CCV biogenesis.

5.2. Coxiella vacuolar protein F (CvpF)

CvpF belongs to the Cvp family of effectors, which are secreted by 
the Dot/Icm secretion system of C. burnetii. Upon screening a 
C. burnetii transposon mutant library, researchers found that 
mutations in the cvpF gene resulted in defects in intracellular 
replication and vacuole formation (Siadous et  al., 2021). CvpF 
localizes to vesicles with autolysosomal characteristics, as well as 

CCVs. CvpF was found to interact specifically with the host protein 
RAB26, a small GTPase involved in regulating endosomal trafficking 
(Siadous et al., 2021). This interaction leads to the recruitment of 
MAP1LC3B/LC3B, a marker protein for autophagosomes, to the 
CCVs (Siadous et  al., 2021). Importantly, studies using cvpF::Tn 
mutants showed that these mutants were highly attenuated and less 
virulent compared to wild-type C. burnetii in a mouse model of 
infection (Siadous et al., 2021). This highlights the significance of 
CvpF in C. burnetii’s ability to cause disease and establish infection 
within the host.

5.3. Coxiella plasmid effector B (CpeB)

Another C. burnetii effector protein CpeB, which is encoded by 
the QpH1 plasmid, was found to localize on the membrane of the 
CCVs and interact with LC3 and LAMP1, respectively (Voth et al., 
2011). This interaction promotes the accumulation of LC3-II, a 
lipidated form of LC3 that is associated with autophagosomal 
membranes (Fu M. et al., 2022). When the QpH1 plasmid was absent 
in C. burnetii strains, there was reduced LC3-II accumulation, smaller 
CCVs, and lower bacterial loads in host cells (Fu M. et al., 2022). 
Furthermore, expression of CpeB in the QpH1-deficient strain 
restored LC3-II accumulation, indicating that CpeB plays a significant 
role in promoting LC3-II accumulation (Fu M. et al., 2022). The study 
also found that CpeB targets a host protein called Rab11a to promote 
LC3-II accumulation (Fu M. et  al., 2022). Rab11a is involved in 
regulating membrane trafficking pathways, including those associated 
with autophagy. When Rab11a was conditionally knocked out in mice 
and subsequently infected with C. burnetii, notable reductions in 
bacterial burdens and the development of milder lung lesions were 
observed (Fu M. et al., 2022), suggesting that Rab11a plays a role in 
C. burnetii infection and virulence.

5.4. Others

Apart from the aforementioned proteins, such as CpeB, additional 
C. burnetii effector proteins like Cig57, CvpA, CvpC, and others are 
believed to contribute to the intricate interplay between C. burnetii 
infection and autophagy (Thomas et al., 2020).

6. Conclusion and perspective

In conclusion, C. burnetii has a sophisticated set of tactics to 
subvert the host autophagic pathways, allowing it to survive and thrive 
within host cells. The bacterium’s ability to manipulate this innate 
cellular process and evade immune detection contributes to its 
pathogenesis in humans and animals. Looking forward, it is important 
to note that there are still gaps in our understanding of C. burnetii’s 
subversion of autophagy, particularly in identifying and characterizing 
autophagy-related effectors with explored biochemical activities. 
Future research should aim to fill these knowledge gaps by further 
investigating the specific virulence factors involved in C. burnetii’s 
manipulation of autophagy. This research may provide valuable 
insights into potential targets for antimicrobial interventions. 
Additionally, exploring strategies to modulate the host immune 
response to C. burnetii infections could enhance immune clearance of 

https://doi.org/10.3389/fmicb.2023.1281303
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2023.1281303

Frontiers in Microbiology 04 frontiersin.org

the bacterium. Ultimately, a comprehensive understanding of the 
host-pathogen interactions and the biochemical activities of 
autophagy-related effectors will be crucial for developing effective 
treatments and control measures to combat C. burnetii infections.
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