AUTHOR=Glaser Karin , Kammann Sandra , Plag Niklas , Dressler Mirko TITLE=Ecophysiological performance of terrestrial diatoms isolated from biocrusts of coastal sand dunes JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1279151 DOI=10.3389/fmicb.2023.1279151 ISSN=1664-302X ABSTRACT=

Terrestrial diatoms are widespread in a large variety of habitats and are regularly recorded in biocrusts. Although diatoms have long been known to live in terrestrial habitats, only a few studies have focused on their diversity of ecophysiology. Here we present a study on the ecophysiological performance of five terrestrial diatom cultures from biocrusts, which were collected in sand dunes of the German coast of the Baltic Sea. The sampling sites were selected along a gradient of human impacts on the dunes. The richness of diatom species, roughly estimated from permanent slides, was around 30 species per sampling site. The species abundance was calculated in the same way revealing a high proportion of broken diatom frustules. All diatom cultures established in the laboratory showed no photoinhibition and high oxygen production along a light gradient. The desiccation tolerance differed among the strains, with high recovery observed for Hantzschia abundans and Achnanthes coarctata and low to no recovery for Pinnularia borealis and Pinnularia intermedia. The maximum growth rate for most strains was between 25 and 30°C. These temperatures can be easily reached in their natural environments. Nevertheless, during short-term exposure to elevated temperatures, oxygen production was recorded up to 35°C. Interestingly, two of five diatom cultures (Hantzschia abundans and Pinnularia borealis) produced mycosporine-like amino acids. These UV-protective substances are known from marine diatoms but not previously reported in terrestrial diatoms.