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Introduction: The oral microbial group typically represents the human body’s

highly complex microbial group ecosystem. Oral microorganisms take part

in human diseases, including Oral cavity inflammation, mucosal disease,

periodontal disease, tooth decay, and oral cancer. On the other hand, oral

microbes can also cause endocrine disorders, digestive function, and nerve

function disorders, such as diabetes, digestive system diseases, and Alzheimer’s

disease. It was noted that the proteins of oral microbes play significant roles

in these serious diseases. Having a good knowledge of oral microbes can be

helpful in analyzing the procession of related diseases. Moreover, the high-

dimensional features and imbalanced data lead to the complexity of oral

microbial issues, which can hardly be solved with traditional experimental

methods.

Methods: To deal with these challenges, we proposed a novel method, which

is oral_voting_transfer, to deal with such classification issues in the field of oral

microorganisms. Such a method employed three features to classify the five

oral microorganisms, including Streptococcus mutans, Staphylococcus aureus,

abiotrophy adjacent, bifidobacterial, and Capnocytophaga. Firstly, we utilized

the highly effective model, which successfully classifies the organelle’s proteins

and transfers to deal with the oral microorganisms. And then, some classification

methods can be treated as the local classifiers in this work. Finally, the results are

voting from the transfer classifiers and the voting ones.

Results and discussion: The proposed method achieved the well performances

in the five oral microorganisms. The oral_voting_transfer is a standalone

tool, and all its source codes are publicly available at https://github.com/

baowz12345/voting_transfer.
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oral microorganisms proteins, voting transfer model, bioinformatics, machine learning,
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1 Introduction

Microorganisms are a prominent type of biological group that
are small and closely related to humans, including bacteria, viruses,
fungi, small native creatures, and microalga (Xia et al., 2010;
Ngounou Wetie et al., 2014). The efforts of biology have a history
of more than a century. At the end of the 19th and early 20th
century, Pasteur, Mechnikov, and Corch founded microbiology
and micro-ecology (Zou et al., 2016). Since the discovery of
Microorganisms, scholars have been committed to constructing
and researching microbiological disciplines (Shen et al., 2007). The
concept of Microbiota has become clearer with the in-depth study
of microorganisms (Zhang et al., 2012). Microbial groups refer
to the general name of all microorganisms in a specific time and
specific growth environments, and the sum of the gene sequence
contained in the microbial group contained in a specific time and
specific growth environment is the microbiome group (Brohee and
van Helden, 2006). EDERBERG first proposed the concept of the
Human Microbiome in 2001, referring to all microorganisms living
on the human body, including symbiotic and pathogenic bacteria,
and the genetic sum of the corresponding microbial groups planted
by the human body was called the human microbial group (Wu
et al., 2009; Shen et al., 2019; Zhang and Zou, 2020).

The oral cavity is a complex micro-ecological environment.
There are many types of oral microorganisms (De Las Rivas and
Fontanillo, 2010; Wang et al., 2023). The oral microbial group
is a typical representative of the human body’s highly complex
microbial group ecosystem (Ngo et al., 1994; Whisstock and Lesk,
2003). Most of the oral microorganisms can be related to each
other to form a complex community in the form of biofilm. It has
strong physical resistance and biological resistance. When the host
is balanced, the oral microorganisms can prevent the invasion of
exogenous pathogenic bacteria. When changes in environmental
changes or other oral conditions occur, such as personal oral
hygiene care, They may become pathogenic microorganisms,
which induce a variety of chronic infectious diseases of the oral
cavity, including dental dentalism, pulp root disease, periodontal
disease, wisdom tooth crown weekly Inflammation, mandibular
osteomyelitis, etc., seriously endanger oral health (Godzik et al.,
1995; Whisstock and Lesk, 2003; Peng et al., 2017; Awais et al.,
2019). Studies have shown that the changes in oral microbial groups
and the imbalance of oral micro-ecology are closely related to the
occurrence and development of oral diseases such as oral cancer
and diabetes (Chatterjee et al., 2011; You et al., 2013; Meng et al.,
2023).

The protein function site prediction methods have been
developed utilizing artificial intelligence techniques based on
available data (Sato et al., 1994; Wei et al., 2017). It was
noted that the traditional machine learning ones extract effective
features manually to represent function site information, such
as Shannon entropy, relative entropy, information gain, protein
disordered property, and the average cumulative hydrophobicity
(Schwikowski et al., 2000). With the development of artificial
intelligence, deep-learning approaches with convolutional neural
networks (CNNs) have been proposed to process raw sequence
data without the need for manual feature extraction (Wenya et al.,
2022). TAGPPI extracts multi-dimensional features by employing
1D convolution operation on protein sequences and graph learning

method on contact maps constructed from AlphaFold (Song
et al., 2022). Nguyen-Vo et al. (2022) proposed iPromoter-
Seqvec, which is an efficient computational model to predict
TATA and non-TATA promoters in human and mouse genomes
using bidirectional long short-term memory neural networks in
combination with sequence-embedded features extracted from
input sequences. Robson et al. (2022) utilized ProSE to collect
the custom heterogeneous systolic arrays and special functions.
Several efforts have proposed various approaches for classification
function sites in the field of bioinformatics and computational
biology (Coates and Hall, 2003; Vazquez et al., 2003; Kim and
Subramaniam, 2006; Free et al., 2009; Zhang et al., 2012). Wang
et al. (2017) proposed a two-dimensional attention mechanism to
classify the protein phosphorylation sites (Yang et al., 2020). In
the same year, Wang et al. (2017) proposed a densely connected
convolutional neuron network to identify the same PTM sites
(Gao et al., 2023). Ahmed et al. employed a stacked long short-
term memory recurrent network to deal with the function sites’
classification issue (You et al., 2017). Despite the immense potential
of deep learning, a major challenge in developing classification
methods based on this technology is the need for huge scale of
computational resources. Therefore, the transfer learning has the
ability to save the computing resources and improve computational
reusability.

In this work, we proposed a novel method, which is
oral_voting_transfer, to deal with such classification issues
in the field of oral microorganisms. In detail, we utilized the
highly effective model, which successfully classifies the organelles
proteins and transfer to deal with five microorganisms, including
streptococcus mutans, staphylococcus aureus, abiotrophia
adjacens, bifidobacterial and capnocytophaga. It was noted that the
transfer classifiers can hardly meet the need. On the other hand,
some classification methods can be treated as the local classifiers
in this work. And then, the final results are voting from the
transfer classifiers and the voting ones. It was pointed out that the
voting method employed three deep learning features, including
TAGPPI, SeqVec, and ProSE. The detailed steps demonstrated in
the following sections.

2 Materials and methods

2.1 Dataset

The identified datasets for this experiment was obtained from
a protein-specific database website, which provides corresponding
sequences and feature information for oral microorganisms (Guo
et al., 2008; Torrey and Shavlik, 2010; Niu et al., 2020). In this
experiment, we conducted qualitative analysis on the active sites
and binding sites of five oral microorganisms. The details of each
species are shown in Table 1.

The active proteins are the identified proteins with active
sites in their sequences. And the non-active proteins are the
proteins without any active sites. The terms, including binding
and non-binding proteins, follow a similar procession in this work.
Meanwhile, it is noted that there are three employed features in this
work, including SeqVec, ProSE, and TAGPPI. Therefore, there are
30 identified datasets have been constructed.
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TABLE 1 The information of the potential classify oral microorganisms.

Dataset Active proteins Non-active proteins Binding proteins Non-binding proteins

Streptococcus mutans 111 357 222 246

Staphylococcus aureus 203 860 496 567

Abiotrophia adjacens 283 3524 471 3336

Bifidobacterial 203 860 496 567

Capnocytophaga 283 4882 455 4710

2.2 Feature extraction based on deep
learning datasets

2.2.1 TAGPPI
This feature can be treated as a neural network algorithm

called TAGPPI (TextCNN-based Approach for Gene-Protein
Interaction Prediction), an end-to-end deep learning approach in
computational proteomics. The feature utilizes a one-dimensional
convolutional neural network (CNN) known as TextCNN,
commonly used in natural language processing (NLP) tasks to
capture the relationships between adjacent words in a sentence for
classification purposes (Koike and Takagi, 2004).

The SCNN (Stacked Convolutional Neural Network) model in
TAGPPI consists of six alternately stacked CNN and max-pooling
layers (You et al., 2015b). The three combination layers are then
stacked together. The architecture diagram of the sequence feature
extraction and learning module.

The first step of this feature is to represent the entire amino acid
sequence as a matrix, denoted as X ∈ RL

∗M , where M represents
the number of selected feature dimensions (set to 1024), and L
represents the maximum length of the given protein sequence
(set to 1200) to ensure a fixed size of the output vector from the
TextCNN module. For sequences shorter than 1200, zero padding
is applied to the matrix before input. Therefore, the input matrix is
denoted as X ∈ R1200∗1024 .

The SCNN model consists of a stack of six-layers CNN and
max-pooling layers. In the first convolutional layer, 128 filters of
length 3 are applied to the input matrix 1191× 128, resulting in
feature maps of 399× 128. This is followed by a max-pooling layer
with a pooling stride of 3, resulting in feature maps of the output
matrix. These steps are repeated twice, resulting in a feature map of
size 1× 128. We have modified it to have six layers stacked, so the
final obtained dataset is denoted as Rn×768, with a fixed dimension
of 768 for all data.

With the above-mentioned processions, the input protein
sequences are transformed into a matrix representation, which
is then processed by the stacked CNN and max-pooling layers
to extract sequential features. The output feature maps undergo
further stacking and dimension reduction, resulting in a final
dataset Rn×768 with a fixed dimensionality of 768.

2.2.2 SeqVec
This feature can be regarded as a self-attentive deep learning

algorithm based on ELMO for protein sequence generation. Since
the ordered arrangement of amino acids in proteins follows a
specific pattern, combining CharCNN and two LSTM layers is
used to capture the surrounding words and context. The CharCNN
converts all characters in a word into a vector space through

an embedding layer and runs multiple CNNs to fix the vector
dimensions (Dudoit et al., 2002; Lee et al., 2005). The first
bidirectional LSTM takes the output of CharCNN as input, and the
second bidirectional LSTM takes the output of the first LSTM as
input.

The second layer, CharCNN, maps each amino acid to a
fixed-length latent space of 1024 dimensions. The third layer,
LSTM_1, introduces context-specific information by sequentially
processing the protein sequence. The fourth layer, LSTM_2,
directly operates on the output of LSTM_1 and attempts to
predict all previous words in the protein sequence. During
training, the forward and backward channels are independently
optimized to reduce information leakage. Each layer ultimately
generates a 1024-dimensional vector. The method add these
vectors together to form a 1024-dimensional feature vector.
Finally, the results of each protein sequence are combined
to form the dataset Rn×1024, where the dimension of each
data point is fixed at 1024. The variable n represents the
number of identified datasets for the five oral microorganisms in
this work.

2.2.3 ProSE (protein sequence embeddings)
This feature is based on language modeling. Due to the

influence of evolutionary pressures, protein functional properties
and other characteristics are often maintained or enhanced in
specific functions. These pressures are reflected in the distribution
of amino acids in natural protein sequences (Bradford and
Westhead, 2005; Díaz-Uriarte and de Andrés, 2006; Pashaei et al.,
2016; Cui et al., 2012). The ProSE feature has been successfully
utilized in several bioinformatics issues. Therefore, the ProSE
feature effectively represents protein sequences as continuous
vectors, combining the advantages of self-supervised learning on
large-scale sequence corpora and structure-supervised learning on
smaller sequence sets.

2.3 Transfer learning

With the development of bioinformatics and computational
biology, several artificial intelligence have been utilized in this field.
Transfer learning is a novel machine learning approach. The field of
data mining and machine learning has been successfully utilized in
several areas (Chen and Liu, 2005; Li et al., 2012; Wang et al., 2018;
Romero-Molina et al., 2019). First of all, the model utilized to
classify the golgi proteins. Then, these ten classification models
are transferred to classify the oral microorganisms’ proteins. Lastly,
these models construct the voting transfer model to classify the Oral

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1277121
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1277121 February 2, 2024 Time: 19:20 # 4

Bao et al. 10.3389/fmicb.2023.1277121

FIGURE 1

The flowchart of Oral_voting_transfer model

microorganisms’ proteins. The model structure is demonstrated in
Figure 1.

2.4 Voting transfer learning model

In this work, we proposed oral_voting_transfer, which is the
voting transfer learning method to deal with the classification
of oral microbiology protein function sites. During this model,
we employed several basic classifiers, including Gaussian Process
Classification, Gaussian Naive Bayes, Bernoulli Naive Bayes,
Decision Trees, Bagging meta-estimator, Random Forest,
AdaBoost, Gradient Tree Boosting and Multilayer Perceptron
(You et al., 2015a). In the following section, some typical methods
can be shown.

2.4.1 Random forest
The random forest algorithm was proposed by Arlot and

Genuer (2016), and it is a very efficient general classification
and regression technique (Sun et al., 2017). The method
combines multiple probabilistic decision trees, aggregates average
predictions, and works well in environments where the number of
variables greatly exceeds the number of observations. Furthermore,
it is general enough to be applied to large-scale problems, can be

easily adapted to different specialized learning tasks, and provides
multiple correlation metrics.

The algorithm works by growing M random trees as follows.
Cases in the original dataset are randomly selected before building
each tree. In each cell of each tree, splitting is performed by
maximizing the basket criterion (see below) in m directions chosen
uniformly and randomly from the original p directions. When the
points of each cell are smaller than the node size, the construction of
the tree ends. For any query point x∈X, each regression tree predicts
the average of the Yi for which the corresponding Xi.

2.4.2 AdaBoost
Boosting is an important method in blended learning. It

provides new methods and ideas for designing learning algorithms.

TABLE 2 The performances of different ratios.

Ratios Sn Sp F1-score MCC ACC

0.1 100% 90.00% 0.9600 0.9045 97.29%

0.2 100% 95.00% 0.9800 0.9512 98.64%

0.3 100% 80.00% 0.9300 0.8165 94.59%

0.4 100% 85.00% 0.9500 0.8597 95.94%

0.5 100% 84.00% 0.9400 0.8510 95.65%
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The idea behind it is to combine several weak learners that are
slightly more accurate than random guessing to create arbitrarily
accurate strong predictors (Zhang et al., 2019). This has important
implications for situations where directly developing powerful
learning algorithms is very difficult. As a meta-learning framework,
Boosting can be applied to almost all popular machine learning
algorithms to further improve prediction accuracy. Because of
this, it is widely used and has had a major impact on the field
of machine learning. Especially among all boosting algorithms,
AdaBoost is the most successful representative, and is rated as one
of the top ten algorithms in the field of data mining (Saha et al.,
2014). Since AdaBoost was proposed, many excellent researchers
have conducted research on various theoretical topics, laid a solid
theoretical foundation for AdaBoost, and made contributions to the
successful implementation of AdaBoost. The success of AdaBoost
is not only because it is an effective learning algorithm, but also
related to the following points.

2.5 Performances evaluation

Accuracy (Acc), sensitivity (Sn), specificity (Sp), and F1-score
were used to evaluate the performance of the prediction system.
were obtained using the formulae in Eqs 1–4, provided hereafter
(Liu et al., 2018).

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

Acc =
TP + TN

TP + TN + FP + FN
(3)

F1 =
2TP

2TP + FN + FP
(4)

FIGURE 2

The ROC of Streptococcus mutans active sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.
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MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

The performance of the classifier is evaluated using various metrics
such as True Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN). Sensitivity (Sn) and specificity (Sp)
measure the proportion of correct predictions for positive and
negative samples, respectively. The F1 score reflects the strength
of the model. The higher the score, the greater the resistance (Eq.
5). MCC is used to measure the strength of the linear relationship
between two variables. The area under the ROC curve (AUC) was
also used as an evaluation metric, with higher values indicating
better model performance.

3 Results and discussions

3.1 The performances of transfer model

This is a machine learning-based voting ensemble strategy
aimed at addressing the sub-classification task of Golgi apparatus
proteins. This model can be employed as the transfer classification

TABLE 3 The performances of voting transfer learning model in
Streptococcus mutans.

Site Feature ACC Recall F1 Sn Sp MCC

Active site TAGPPI 73.05% 0.6000 0.6100 87.50% 32.43% 0.2388

SeqVec 73.76% 0.5100 0.4500 99.04% 2.70% 0.0649

ProSE 73.05% 0.5700 0.5800 90.38% 24.32% 0.1958

Binding site TAGPPI 80.14% 0.8000 0.8000 80.82% 79.41% 0.6024

SeqVec 56.03% 0.5600 0.5500 68.49% 42.65% 0.1153

ProSE 75.18% 0.7500 0.7500 71.23% 79.41% 0.5081

model. The Table 2 show performances the different ratios between
positive and negative samples.

The results show that the proposed machine learning-based
voting ensemble model for Golgi apparatus sub-classification
achieves a stable accuracy of over 95% on the test set across different
ratios of positive and negative samples in the training set. This
indicates that the model has a high accuracy and generalizability.
Overall, based on the results, the MVVM (Multi-Voting Machine
Model) performs exceptionally well for Golgi apparatus sub-
classification.

FIGURE 3

The ROC of Streptococcus mutans binding sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.
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3.2 The performances of voting transfer
learning

From Figures 2, 3 and Table 3, it can be observed that for
Streptococcus mutans, the choice of feature extraction method
has a limited impact on the accuracy of the active site prediction.
However, the three different feature extraction methods still
influence the model. The ProSE tends to provide better balance
in terms of accuracy and positive sample coverage. SeqVec tends
to overfit the positive samples and has a poorer balance. TAGPPI
performs similarly to ProSE and has better coverage of positive
samples but sacrifices some balance. Therefore, depending on the
specific objective, ProSE is better when the balance is emphasized,
while TAGPPI is preferable when emphasizing positive sample
coverage.

Transfer learning offers notable advantages in terms of stability
and coverage when it comes to identifying the active site and
binding site of Streptococcus mutans. Moreover, the coverage of
positive samples mostly exceeds 80%. According to the model
accuracy for the binding site, it can be observed that the ProSE
feature extraction method outperforms the other two methods. It

has higher recall and F1 scores compared to the other methods.
Therefore, ProSE is a better choice for identifying the binding site
in Streptococcus mutans.

It is necessary to evaluate the specific feature selection for
each microorganism using performance metrics and evaluate and
optimize the overall transferred model. Below is the performance
table for the Voting transfer learning models with three feature
extraction methods for the active site.

According to the analysis of the table and ROC curves, it can
be observed that the overall accuracy of the Gaussian Process and
Bernoulli NB classification models is relatively low. This indicates
that Bayesian classification models may not perform well for
protein data where features are correlated. To further optimize
the transfer learning, we can consider transforming the models or
reducing the weight of the Bayesian model in the voting strategy.

By comparing the effect data of the classifier model in the
voting and the effect of the transfer learning voting model, the
accuracy and stability of the model have been optimized to a
certain extent through the voting strategy. The table shows that
TAGPPI, SeqVec, and ProSE have accuracy rates of 73.05, 73.76,
and 73.05% respectively for the three features. The accuracy

FIGURE 4

The ROC of Staphylococcus aureus active sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.
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has been improved compared to the classification model in the
voting process, indicating better stability and generalization than
the trained model. On the other hand, the bagging algorithm
and Decision Tree classification model consistently maintain high
accuracy. We can consider increasing their weights appropriately
to leverage their strong performance in the voting ensemble. The
following is the scoring table for each model in the Voting transfer
learning model of the Binding site in three feature extractions.

Based on the ROC curves, it can be observed that the
green curve representing the Bernoulli NB classification model
performs relatively poorly compared to the other models, and
the difference is quite significant. The SeqVec feature extraction
method, compared to the other two, shows overall lower
training performance and is not suitable for feature extraction
in binding sites.

In summary, the ProSE feature extraction method is more
suitable for Streptococcus pneumoniae as it can extract sufficient
features to ensure high accuracy in model training and prediction.

TABLE 4 The performances of voting transfer learning model in
Staphylococcus aureus.

Site Feature ACC Recall F1 Sn Sp MCC

Active site TAGPPI 94.98% 0.8700 0.9000 98.51% 76.47% 0.7687

SeqVec 88.71% 0.6500 0.7000 100.00% 29.41% 0.4152

ProSE 95.30% 0.8700 0.9000 99.25% 74.51% 0.7613

Binding site TAGPPI 95.61% 0.9600 0.9600 95.98% 95.17% 0.9115

SeqVec 82.76% 0.8200 0.8300 86.78% 77.93% 0.6496

ProSE 93.42% 0.9400 0.9300 91.38% 95.86% 0.8733

From the Figures 4, 5 and Table 4, it can be seen that
for Staphylococcus aureus, overall, the three feature extraction
methods show excellent training results. However, SeqVec has the
lowest accuracy, indicating that it is not suitable for Staphylococcus
aureus. ProSE and TAGPPI, feature extraction methods, perform
equally well, with accuracy above 90%, and exhibit good balance

FIGURE 5

The ROC of Staphylococcus aureus binding sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.
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FIGURE 6

The ROC of Abiotrophia adjacens active sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

and coverage. Both methods can be applied to feature extraction in
Staphylococcus aureus.

The following is the score table of each model in the
Voting transfer learning model of the active site in three
feature extractions.

It can be observed that Gaussian Process and Neighbors have
lower performance, while the models trained on the datasets
extracted by TAGPPI consistently achieve high accuracy. This
indicates that TAGPPI feature extraction is superior. Among the
ProSE models, three of them show lower performance, and the
ROC curve of SeqVec is more scattered. This suggests that the
training of the models using these feature extraction methods is
mostly based on weak learners. However, after applying the voting
strategy, the accuracy is significantly improved, which validates
the effectiveness of the transfer learning models. Through the
evaluation indicators of each model, it can be observed that the
recognition accuracy of Staphylococcus aureus’s active sites is

relatively high. However, the indicators for model generalization
and stability are inconsistent. After applying Voting Transfer
Learning, the final model not only maintains an accuracy rate of
more than 88% but also improves its stability. The following is the
scoring table for each model in the Voting transfer learning model
of the Binding site in three feature extractions.

The table data reveals that the accuracy of the model has
improved after applying Voting Transfer Learning. Both the SN
and SP index values are above 90%, indicating enhanced stability
of the model through transfer learning.

The models trained on datasets extracted by TAGPPI
consistently maintain high accuracy, indicating that TAGPPI
feature extraction is superior. Among the ProSE models, three of
them show lower performance, and the ROC curve of SeqVec is
more scattered. This suggests that the training of these feature
extraction models mostly relies on weak learners. However,
after applying the voting strategy, the accuracy is significantly
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FIGURE 7

The ROC of Abiotrophia adiacens binding sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

TABLE 5 The performances of the voting transfer learning model in
Abiotrophia adjacens.

Site Feature ACC Recall F1 Sn Sp MCC

Active site TAGPPI 94.98% 0.8700 0.9000 98.51% 76.47% 0.7687

SeqVec 88.71% 0.6500 0.7000 100.00% 29.41% 0.4152

ProSE 95.30% 0.8700 0.9000 99.25% 74.51% 0.7613

Binding site TAGPPI 95.61% 0.9600 0.9600 95.98% 95.17% 0.9115

SeqVec 82.76% 0.8200 0.8300 86.78% 77.93% 0.6496

ProSE 93.42% 0.9400 0.9300 91.38% 95.86% 0.8733

improved. This demonstrates that the transfer learning model is
appropriate and effective.

Based on the Figures 6, 7 and Table 5, we can observe that for
Abiotrophia adjacens, overall, the three feature extraction methods
yield good training results. However, there are some differences

among them. SeqVec has the poorest balance, but it achieves 100%
coverage of positive samples, indicating overfitting issues. Based on
the data, we can conclude that TAGPPI is the optimal choice for
both active site and binding site prediction in Abiotrophia adjacens,
considering the model’s generalization, balance, and coverage.

The following is the score table of each model in the
Voting transfer learning model of the active site in three
feature extractions.

It can be observed that the Radius Neighbors Classifier
performs significantly worse than the other models, and Bernoulli
Naive Bayes shows poor performance across all three feature
extraction methods, indicating that it is a weak classifier. The ROC
curve for SeqVec is more scattered, suggesting that SeqVec does
not provide comprehensive feature extraction for the active site of
Abiotrophia adjacens.

The following is the scoring table for each model in the
Voting transfer learning model of the Binding site in three
feature extractions.
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FIGURE 8

The ROC of Bifidobacterial active sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross validation
with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

Based on the ROC curves and the model performance
tables, it can be observed that the active site and binding
site exhibit high similarity. This suggests that Abiotrophia
adjacens likely possesses both the active site and binding site
in most cases, leading to the similarity in the dataset. This
hypothesis needs to be verified, and a correlation analysis
can be conducted between the active site and binding site
of Abiotrophia adjacens to confirm this assumption. If the
hypothesis is confirmed, the model can use the known sequence
of one site to predict the presence of the other site with a
high probability, thus improving the efficiency and accuracy of
the model training.

Based on Figures 8, 9 and Table 6, it can be observed that for
Bifidobacterium, overall, the three feature extraction methods yield
good results in model training, but there are differences among
them. SeqVec has the poorest balance and the lowest accuracy,
sacrificing generalization to achieve a high positive sample coverage

rate, which makes it relatively inferior compared to the other two
methods.

According to the data, it can be concluded that both
ProSE and TAGPPI exhibit good coverage and balance for
the active site and binding site of Bifidobacterium. Both
feature extraction methods are viable options, but considering
model accuracy, ProSE is the optimal choice. However, if
factors such as training cost and large-scale application are
taken into account, TAGPPI, which has lower dimensionality,
is more suitable.

The following is the score table of each model in the
Voting transfer learning model of the active site in three
feature extractions.

It can be observed that the Gaussian Process consistently
performs poorly, and the ROC curve for the SeqVec feature
extraction method is scattered. This clearly indicates that SeqVec
does not provide comprehensive feature extraction for the
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FIGURE 9

The ROC of Bifidobacterial binding sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

TABLE 6 The performances of the voting transfer learning model in
Bifidobacterial.

Site Feature ACC Recall F1 Sn Sp MCC

Active site TAGPPI 95.30% 0.8800 0.9100 98.88% 76.47% 0.7732

SeqVec 89.34% 0.6700 0.7200 100.00% 33.33% 0.4472

ProSE 95.30% 0.8700 0.9000 99.25% 74.51% 0.7613

Binding site TAGPPI 94.67% 0.9500 0.9500 95.98% 93.10% 0.8912

SeqVec 81.19% 0.8000 0.8100 89.08% 71.72% 0.6174

ProSE 93.42% 0.9400 0.9300 91.95% 95.17% 0.8717

active site of Bifidobacterium. This issue was also evident in
the previous analysis of neighboring poor-nutrition bacteria,
suggesting that SeqVec feature extraction method is not suitable
for some microorganisms and yields subpar results. To improve
experimental efficiency, one approach could involve identifying
protein sequences with poor performance and dividing them into
categories of weakly effective proteins.

The following is the scoring table for each model in the
Voting transfer learning model of the Binding site in three
feature extractions.

Based on the ROC curves and model evaluation scores, it can be
observed that the active site and binding site exhibit high similarity,
and Gaussian Process consistently performs poorly. The ROC curve
for SeqVec feature extraction method is scattered.

In summary, for Bifidobacterium, using TAGPPI for feature
extraction is the optimal choice. It yields high accuracy for both
the transfer learning model and the training model. SeqVec feature
extraction method is not suitable for some microorganisms and
produces inferior results. To improve experimental efficiency,
one approach could involve categorizing proteins with poor
performance and identifying weakly effective protein sequences.

The Figures 10, 11 and Table 7 shows that, overall, the three
feature extraction methods perform well for Capnocytophaga.
However, SeqVec exhibits relatively poorer performance and even
has a case where sp = 0, indicating that this feature extraction
method predominantly captures positive site-specific features while
weakening the negative site-specific features. On the other hand,
the other two feature extraction methods not only preserve positive
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FIGURE 10

The ROC of Capnocytophaga active sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

site-specific features but also maintain a coverage rate of around
60% for negative site-specific features. Therefore, ProSE and
TAGPPI are more suitable for Capnocytophaga.

The following is the score table of each model in the
Voting transfer learning model of the active site in three
feature extractions.

It can be observed that the Decision Tree model performs
relatively poorly, while both ProSE and TAGPPI show relatively
higher performance compared to the previous cases, although they
both exhibit weak classifiers. In this case, weak classifiers are present
in both methods, but ProSE has a slightly higher number of weak
classifiers. However, the final accuracy of the transfer learning
models is comparable. SeqVec ROC curve is more scattered,
indicating that the majority of the models trained using this feature
extraction method are weak learners, resulting in significantly
worse performance compared to the other two methods. However,
after applying the voting strategy, the accuracy is only slightly
lower than the other two methods, by around 5%. Overall, this
demonstrates the excellent generalization ability of the models.

The following is the scoring table for each model in the
Voting transfer learning model of the Binding site in three
feature extractions.

The models trained using the TAGPPI feature extraction
method consistently exhibit high accuracy, indicating that TAGPPI
is a superior feature extraction method. Compared to the active site,
it can be observed that there is a significant similarity in both the
overall dataset and model results for the binding site. This suggests
that the active site and binding site in the Capnocytophaga may
have similar feature labels or exhibit some degree of overlap. The
SeqVec feature extraction method still shows scattered ROC curves,
indicating its ongoing issues with training models effectively.

Based on the above analysis, the following feature extraction
methods are recommended for the discrimination of the five oral
microorganisms: Streptococcus mutans: ProSE; Staphylococcus
aureus: ProSE or TAGPPI; Abiotrophia adjacens: ProSE or
TAGPPI; Bifidobacterial: TAGPPI; Capnocytophaga: TAGPPI. The
five oral microorganisms will be judged as a whole.
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FIGURE 11

The ROC of Capnocytophaga binding sites. (A) Is the ROC curve of 10-fold cross validation with TAGPPI. (B) Is the ROC curve of 10-fold cross
validation with SeqVec. (C) Is the ROC curve of 10-fold cross validation with ProSE.

According to Table 8, it can be observed that TAGPPI
performs poorly for the Streptococcus mutans model. However,
for the remaining four species, the models trained using TAGPPI
achieve excellent results with an accuracy of around 95%.
Upon observing the F1 scores, it is evident that most of
them are above 0.85, indicating that the models trained on
TAGPPI’s dataset are stable and comparable to ProSE. The
recall values are also generally around or above 0.85. This
suggests that TAGPPI is the most effective feature extraction
method among the three for this particular transfer learning
model.

According to the Supplementary Tables 2, 3, it can be observed
that SeqVec performs poorly for the Streptococcus mutans model.
For the remaining four species, the models achieve good results
with accuracy above 80%, which is considered excellent. However,
upon observing the F1 scores, it is found that most of them
are below 0.5, indicating a lack of stability in the models. This
is something that should be avoided in practical applications.

TABLE 7 The performances of the voting transfer learning model
in Capnocytophaga.

Site Feature ACC recall F1 Sn Sp MCC

Active site TAGPPI 97.68% 0.8600 0.8800 99.05% 73.49% 0.7503

SeqVec 94.65% 0.5000 0.4900 100.00% 0.00% 0.0000

ProSE 97.35% 0.7800 0.8400 99.66% 56.63% 0.6236

Binding site TAGPPI 97.55% 0.8800 0.9200 99.44% 77.44% 0.7881

SeqVec 93.48% 0.6200 0.6800 99.93% 24.81% 0.3748

ProSE 97.03% 0.8500 0.8900 99.58% 69.92% 0.7277

Considering the recall values, only Staphylococcus aureus and
Bifidobacterium show relatively good performance. It is also
noted that SeqVec exhibits high coverage for positive instances,
indicating an emphasis on extracting features related to positive
class labels. This can be considered the optimal solution for specific
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TABLE 8 Voting transfer learning model with TAGPPI feature performances.

Sites Microbe ACC Recall F1 Sn Sp MCC

Active site Streptococcus 73.05% 0.5700 0.5800 90.38% 24.32% 0.1958

Staphylococcus 95.30% 0.8700 0.9000 99.25% 74.51% 0.7613

Abiotrophia 94.66% 0.8300 0.8600 98.50% 67.38% 0.6932

Bifidobacterial 95.30% 0.8700 0.9000 99.25% 74.51% 0.7613

Capnocytophaga 97.35% 0.7800 0.8400 99.66% 56.63% 0.6236

Binding site Streptococcus 75.18% 0.7500 0.7500 71.23% 79.41% 0.5081

Staphylococcus 93.42% 0.9400 0.9300 91.38% 95.86% 0.8733

Abiotrophia 94.58% 0.8300 0.8600 98.50% 66.67% 0.6875

Bifidobacterial 93.42% 0.9400 0.9300 91.95% 95.17% 0.8717

Capnocytophaga 97.03% 0.8500 0.8900 99.58% 69.92% 0.7277

requirements. Therefore, overall, SeqVec is not suitable for all oral
microbiota and has its limitations.

4 Conclusion

In this work, we proposed a novel method, which is
oral_voting_transfer, to deal with such classification issues
in the field of oral microorganisms. In detail, we utilized
the highly effective model, which successfully classifies the
organelles proteins and transfer to deal with five microorganisms,
including streptococcus mutans, staphylococcus aureus,
abiotrophia adjacens, bifidobacterial and capnocytophaga.
The oral_voting_transfer method employed three deep learning
features, including TAGPPI, SeqVec and ProSE.

The performance of the models trained on the Streptococcus
mutans dataset was poor for all three feature extraction methods.
Among the three methods, ProSE showed the best stability and
accuracy, making it the optimal choice. SeqVec, on the other hand,
exhibited limitations and its model performance was generally
less stable. However, it can be used for feature extraction in
specific microbial protein data, as it excels in capturing positive
sample labels with high coverage. TAGPPI performed comparably
to ProSE, but considering the case of Streptococcus mutans, ProSE
is the preferred choice. However, TAGPPI offers the advantage of
being simpler and more efficient in terms of feature extraction and
training. If large-scale services and training are required, TAGPPI
would be the more favorable option.
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